
Uniquely K(k)
r -saturated Hypergraphs

András Gyárfás∗
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Abstract

In this paper we generalize the concept of uniquely Kr-saturated graphs to hy-

pergraphs. Let K
(k)
r denote the complete k-uniform hypergraph on r vertices. For

integers k, r, n such that 2 6 k < r < n, a k-uniform hypergraph H with n vertices

is uniquely K
(k)
r -saturated if H does not contain K

(k)
r but adding to H any k-set

that is not a hyperedge of H results in exactly one copy of K
(k)
r . Among uniquely

K
(k)
r -saturated hypergraphs, the interesting ones are the primitive ones that do not

have a dominating vertex—a vertex belonging to all possible
(
n−1
k−1
)

edges. Trans-
lating the concept to the complements of these hypergraphs, we obtain a natural
restriction of τ -critical hypergraphs: a hypergraph H is uniquely τ -critical if for
every edge e, τ(H − e) = τ(H) − 1 and H − e has a unique transversal of size
τ(H)− 1.

We have two constructions for primitive uniquely K
(k)
r -saturated hypergraphs.

One shows that for k and r where 4 6 k < r 6 2k−3, there exists such a hypergraph
for every n > r. This is in contrast to the case k = 2 and r = 3 where only the
Moore graphs of diameter two have this property. Our other construction keeps
n− r fixed; in this case we show that for any fixed k > 2 there can only be finitely
many examples. We give a range for n where these hypergraphs exist. For n−r = 1

the range is completely determined: k + 1 6 n 6 (k+2)2

4 . For larger values of n− r
the upper end of our range reaches approximately half of its upper bound. The
lower end depends on the chromatic number of certain Johnson graphs.
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1 Introduction

A graph G is said to be H-saturated if G contains no subgraph isomorphic to H and if for
every edge e in the complement of G, the graph G+e does contain a subgraph isomorphic
to H. A classic result regarding such graphs is provided by Turán [12]: the maximum
number of edges in a Kr-saturated graph on n vertices is achieved by the nearly-balanced
complete (r − 1)-partite graph on n vertices. Note that in this graph, although Kr does
not appear as a subgraph, adding any missing edge results in many copies of Kr.

On the other hand, Erdős, Hajnal, and Moon [6] showed that the minimum number
edges in a Kr-saturated graph on n vertices is achieved by an (r − 2)-clique joined with
an independent set of size n − r + 2. In this graph, adding any missing edge results in
exactly one copy of Kr. Motivated by this phenomenon, a graph G is said to be uniquely
H-saturated if G contains no copy of H and if for every edge e in the complement of G,
the graph G+ e contains exactly one copy of H.

Cooper, Lenz, LeSaulnier, Wenger, and West [2] initiated the study of uniquely sat-
urated graphs by classifying all uniquely Ck-saturated graphs for k ∈ {3, 4}, proving
that there are only finitely many such graphs in each case. Later, Wenger and West [14]
proved that the uniquely C5-saturated graphs are precisely the friendship graphs and that
there are no uniquely Ck-saturated graphs for k ∈ {6, 7}. Furthermore, they prove that
there are only finitely many Ck-saturated graphs for all k > 6 and conjecture that no
such graphs exist. Other studies of uniquely H-saturated graphs include that of Berman,
Chappell, Faudree, Gimbel, and Hartman [1], in which the authors characterize uniquely
T -saturated graphs for certain trees T .

The study ofH-saturated graphs most relevant to this paper was undertaken by Hartke
and Stolee [9], who examined the case H = Kr. The uniquely K3-saturated graphs were
already characterized in [2] since K3 = C3, but prior to this study, few examples of these
graphs were known for r > 3. Using a computational search, Hartke and Stolee discovered
several new uniquely Kr-saturated graphs for 4 6 r 6 7 and two new infinite families of
uniquely Kr-saturated Cayley graphs. Nevertheless, uniquely Kr-saturated graphs appear
to quite sporadic. In fact, for all r > 3, Cooper conjectured that there are only finitely
many uniquely Kr-saturated graphs that do not contain a dominating vertex.

In this paper, we generalize the concept of uniquelyKr-saturated graphs by considering
them within the context of hypergraphs. Specifically, for k < r, let K

(k)
r denote the

complete k-uniform hypergraph on a set of r vertices. We then say that a k-uniform
hypergraph H = (V,E) is uniquely K

(k)
r -saturated if H contains no copy of K

(k)
r and if for

any k-set S of V (H) in the complement of H, the graph H +S contains exactly one copy

of K
(k)
r . Our primary goal is to determine the values of r, k, and n for which uniquely

K
(k)
r -saturated hypergraphs do or do not exist on n vertices.

In our search for uniquely K
(k)
r -saturated hypergraphs on n vertices, we ignore trivial

examples by assuming k < r < n. Furthermore, in a k-uniform hypergraph H, we say
that a vertex v ∈ V (H) is a dominating vertex if all k-sets of V (H) that contain v
are hyperedges of H. Note that this definition generalizes the concept of dominating
vertices in graphs. To see the importance of these vertices, suppose that a hypergraph H
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is uniquely K
(k)
r -saturated and contains a dominating vertex v. It follows that H − v is

uniquely K
(k)
r−1-saturated. In other words, H can be formed by simply adding a dominating

vertex to a smaller uniquely K
(k)
r−1-saturated hypergraph, and it does not provide any

new information regarding the characterization of uniquely K
(k)
r -saturated hypergraphs.

Therefore, we seek hypergraphs that do not contain a dominating vertex. Similar to
the definition used in [9], we call such hypergraphs primitive uniquely K

(k)
r -saturated

hypergraphs.
One result of this paper is that unlike the case where k = 2, many of these hypergraphs

exist for uniformities k > 4. Specifically, we show that for any integers k, r where 4 6 k <
r 6 2k − 3, there exists a primitive uniquely K

(k)
r -saturated hypergraph on n vertices for

all n > r. In order to show this, we construct the complementary hypergraph of a uniquely
K

(k)
r -saturated hypergraph H, which consists of the complements of all k-sets of V (H)

that are not hyperedges of H. These complementary hypergraphs provide insight into
the structure and properties of uniquely K

(k)
r -saturated hypergraphs and offer a useful

framework for proving their existence or nonexistence under certain conditions.
Additionally, we describe the relationship between uniquely K

(k)
r -saturated hyper-

graphs and τ -critical hypergraphs, where τ denotes the transversal number of a hyper-
graph as defined in [13]. Specifically, we show that H is a primitive uniquely K

(k)
r -

saturated hypergraph on n vertices if and only if its k-uniform complement Hc is τ -critical
with τ(Hc) = n − r + 1 and for each S ∈ E(Hc) the hypergraph Hc − S has a unique
transversal of size n− r. We say that such a hypergraph is uniquely τ -critical.

Using this relationship, we see that if the difference n − r between clique size and
number of vertices in the hypergraph is bounded, then primitive uniquely K

(k)
r -saturated

hypergraphs do not exist on n vertices for n sufficiently large. We also provide a construc-
tion of uniquely τ -cricital hypergraphs to prove a range for n where these hypergraphs
do exist. The upper end of this range reaches approximately half of our proven upper
bound, and the lower end depends on the chromatic number of certain Johnson graphs.
Furthermore, we show that when n−r = 1, the range for n where these hypergraphs exist

is completely determined: k + 2 6 n 6 (k+2)2

4
.

Finally, we report the results of a computational search to determine when primitive
uniquely K

(k)
r -saturated hypergraphs exist for relatively small values of k, r, and n. The

results of this search suggest that many such hypergraphs exist outside the parameter
range of our constructions and offer directions for future research.

2 Complementary Hypergraphs

Given a k-uniform hypergraph H on n vertices, set t = n − k. The complementary
hypergraph of H is the t-uniform hypergraph R where V (R) = V (H) and

E(R) =

{
S ∈

(
V (H)

t

)
: V (H) \ S /∈ E(H)

}
.

That is, E(R) consists of the complements of all k-sets of V (H) that are not hyperedges
of H. Note that this operation can easily be reversed to obtain the original hypergraph
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H from R, and H is the complementary hypergraph of R. Hence, we say that H and
R are a pair of complementary hypergraphs. The following theorem characterizes the
complementary hypergraphs of uniquely K

(k)
r -saturated hypergraphs and serves as a useful

tool in our search for these hypergraphs.

Theorem 1. Let H be a k-uniform hypergraph on n vertices. Set t = n− k and for any
r > k, set s = r − k. Then H is a primitive uniquely K

(k)
r -saturated hypergraph if and

only if its complementary hypergraph R satisfies the following three properties:

1. Every (t− s)-set of V (H) is covered by a hyperedge of R.

2. Every hyperedge of R contains exactly one (t− s)-subset that is covered by no other
hyperedge of R.

3. No vertex appears in all of E(R).

Throughout the following proof of this theorem, we assume that all set complement
operations, denoted by c, are performed within the universe V (H). Furthermore, for any
(t − s)-set S of V (H), define the codegree of S in R to be the number of hyperedges in
R that contain S. Also, for any k-set S of V (H) that is not a hyperedge of H, we say
that an s-set T is a completion of S in H if all k-sets of S ∪ T (with the exception of S)
are hyperedges in H. Finally, for the purpose of readability, we will use the term “edge”
interchangeably with “hyperedge”.

Proof. We first show that R satisfies Property 1 in Theorem 1 if and only if H contains no
copy of K

(k)
r . For the forward direction, assume that R satisfies Property 1 and suppose

for the purpose of contradiction that H contains a copy of K
(k)
r . Let S denote the vertex

set of this subgraph. It follows that Sc is a subset of V (H) of size n − r = t − s, so by
assumption, it is covered by a hyperedge of R. This edge must be of the form Sc ∪ T for
some s-set T ⊂ S. However, this implies that the complement of this edge, which is the
k-set S ∩ T c, is a non-edge of H, contradicting the fact that S ∩ T c is a k-set in a copy of
K

(k)
r in H.

Conversely, suppose that R does not satisfy Property 1, so that there exists a (t− s)-
set W of V (H) that is not covered by any edge of R. Then |W c| = k + s = r, and all

k-sets of W c must be edges in H. Thus, W c induces a copy of K
(k)
r in H.

Next, we show that R satisfies Property 2 if and only if each non-edge k-set in H has
a unique completion to a copy of K

(k)
r in H. To do this, given any non-edge k-set S of

V (H), we establish a bijection between completions of S in H and (t− s)-sets of Sc with
codegree 1 in R. For the forward direction, let T be a completion of S in H. Then (S∪T )c

is a (t − s)-set of the edge Sc in R. Furthermore, by the definition of completion, any
non-edge of H other than S must contain at least one element outside of S ∪ T . Hence,
no other edge of R may contain (S ∪ T )c, which implies that (S ∪ T )c is a (t − s)-set of
Sc with codegree 1 in R.

For the reverse direction of the bijection, suppose that Sc contains a (t−s)-set W with
codegree 1 in R. Take T = Sc \W , so that |T | = s. We claim that T is a completion of S
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in H. To see this, let S ′ be a k-set of S∪T containing at least one element of T ; it suffices
to show that S ′ is an edge of H. Suppose for the purpose of contradiction that S ′ is a
non-edge. Note that since both S and T are disjoint from W , it holds that S ′ ∩W = ∅.
This implies that (S ′)c would be another edge of R that contains W , contradicting the
fact that W has codegree 1 in R. Therefore, S ′ must indeed be an edge of H, which
implies that T is a completion of S in H. Now that this bijection has been established,
it follows immediately that for any non-edge S of H, there exists a unique completion of
S in H if and only if Sc contains a unique (t− s)-set of codegree 1 in R.

Finally, we show that R satisfies Property 3 if and only if H contains no dominating
vertex. Suppose first that R satisfies property 3, and let v ∈ V (H). Then there exists
an edge Sc of R that does not contain v. Thus, the k-set S must be a non-edge of H
containing v, so v cannot be a dominating vertex in H. Conversely, suppose that H
contains no dominating vertex. Then for any v ∈ V (H), there exists a non-edge k-set S
of H that contains v. Hence, v does not belong to the edge Sc of R. Since v was arbitrary,
this implies that no vertex belongs to each edge of R.

The primary implication of Theorem 1 is that in order to prove or disprove the exis-
tence of a primitive uniquely K

(k)
r -saturated hypergraph for any combination of parame-

ters, it suffices to search for a hypergraph R that satisfies the properties of the theorem.
We have found it simpler to search for these complementary hypergraphs rather than
searching for uniquely K

(k)
r -saturated hypergraphs directly due to the fact that the prop-

erties of the theorem are easily verifiable.

3 The Double Star Construction

We now employ Theorem 1 to prove the existence of primitive uniquely K
(k)
r -saturated

hypergraphs for a wide range of parameters. For example, consider the complementary
hypergraphs described in Theorem 1 when t = 2 and s = 1. They are simple graphs with
no isolated vertices in which each edge has exactly one endpoint of degree 1 and where
no vertex is an endpoint of every edge. These graphs are precisely the forests of multiple
stars where each star has at least two edges. The smallest such forest is a double star
consisting of two copies of P3. By taking the complementary hypergraphs of these forests,
we see that for all n > 6, there exists a primitive uniquely K

(n−2)
n−1 -saturated hypergraph

on n vertices.
By generalizing the concept of a double star to hypergraphs of uniformity k > 4, we

construct hypergraphs that satisfy the conditions of Theorem 1 and whose complementary
hypergraphs are uniquely K

(k)
r -saturated for certain values of k and r. In the proof of

the following theorem, if j is a positive integer, we use the notation [j] to denote the set
{1, 2, . . . , j}.
Theorem 2. Let k > 4 be given. Then for any clique size r such that k < r 6 2k − 3,
there exists a primitive uniquely K

(k)
r -saturated hypergraph on n vertices for every n > r.

Proof. Set t = n− k and set s = r − k, noting that r 6 2k − 3 implies k > s+ 3. It will
suffice to find a t-uniform hypergraph R on n vertices that satisfies the three properties
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of Theorem 1. To do so, assume V (R) = [n] and consider the following two families A,B
of t-sets of [n]:

A = {[s] ∪ S : S is a (t− s)-set of {s+ 1, . . . , n} containing some element i < n− t},
B = {X ∪ S : S is a (t− s)-set of {n− t, . . . , n− s} and X = {n− s+ 1, . . . , n}}.

Hence, B consists of all t-sets of {n−t, . . . , n} containing the s-set X = {n−s+1, . . . , n} as
a subset. Note that A resembles a t-uniform “star” with center [s] and that B resembles a
star with center X. We claim that taking E(R) = A∪B results in the desired hypergraph
R.

To prove that R has Property 1, let W be a (t − s)-set of [n]. If W contains any
i < n − t, then W \ [s] must be a subset of at least one (t − s)-set S described in the
definition of A. Hence, W is covered by the edge [s] ∪ S of R. On the other hand, if W
is a subset of {n − t, . . . , n}, then W \ X must be a subset of at least one (t − s)-set S
described in the definition of B, implying that W is covered by the edge X ∪ S of R.

Next, to prove that R has Property 2, first consider an edge E = [s] ∪ S from A. We
claim that S is the unique (t − s)-set of E with codegree 1 in R. To see this, note that
S cannot be contained in any other member of A, and since S contains some i < n − t,
it is not contained in any member of B. Hence, S indeed has codegree 1. Now let S ′ be
any other (t − s)-set of E. It then holds that S ′ contains some element of [s], so that
|S ′\ [s]| < t−s. If S ′\ [s] still contains some i < n−t, then it is possible to construct some
edge E ′ = [s] ∪ T of A where S ′ \ [s] ⊂ T by simply choosing elements of {n − t, . . . , n}
to make up T \ S ′ in such a way that T 6= S. It would then follow that S ′ ⊂ E ′, or that
S ′ has codegree at least 2.

However, if S ′ \ [s] contains no element i < n − t, then in order for E ′ = [s] ∪ T to
belong to A, we must make sure to include some element i, where s < i < n − t, when
constructing the (t− s)-set T . Furthermore, we must also ensure that T 6= S. To do this,
note that since n− t = k > s + 3, at least two elements (s + 1 and s + 2) belong to this
interval. Hence, we can select one of {s + 1, s + 2} to belong to T , include S ′ \ [s] in T ,
and select the remaining elements of T from {n− t, . . . , n} in such a way that T 6= S. It
would then follow that E ′ ∈ A and that S ′ ⊂ E ′, or that S ′ has codegree at least 2 in R.
Therefore, S must indeed be the unique (t− s)-set of E having codegree 1 in R.

The other case that must be examined to show that R has Property 2 is an edge of
form E = X ∪ S from B. Again, we claim that S is the unique (t − s)-set of E with
codegree 1 in R. Clearly S is not contained in any other members of B, and since all
elements of S are at least n − t, it is not contained in any members of A. Thus, S has
codegree 1 in R. To show that it is unique, let S ′ be any other (t − s)-set of E. Then
S ′ contains some member of X, implying that |S ′ \ X| < t − s. It is now easy to find
another edge E ′ = X ∪ T containing S ′ by simply letting T contain S ′ \ X and other
elements of {n− t, . . . , n− s} in such a way that T 6= S. This follows from the fact that
|{n − t, . . . , n − s}| = t − s + 1 > |S ′ \ X| + 2. Thus, S ′ has codegree at least 2 in R,
which implies that E contains exactly one (t − s)-set of codegree 1 in R and completes
the proof of Property 2.
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Lastly, it remains to be shown that no element of [n] belongs to all of E(R), but this
is trivial. To see this, note that no i < n− t belongs to any member of B. Furthermore,
for any i > n− t, there clearly exists a member of A that does not contain i.

One implication of this theorem is that for all k > 4, there are infinitely many primitive
uniquely K

(k)
k+1-saturated hypergraphs (at least one on n vertices for each n > k+2). This

is rather surprising considering that for k = 2, the primitive uniquely K
(k)
k+1-saturated

hypergraphs are precisely the Moore graphs of diameter two [2], and there are only finitely
many such graphs [10].

4 Uniquely τ -critical Hypergraphs

In addition to the complementary hypergraphs described in Theorem 1, uniquely K
(k)
r -

saturated hypergraphs are also closely related to τ -critical hypergraphs where τ(H) de-
notes the transversal number of a hypergraph H. A transversal of H is a subset of V (H)
that intersects each hyperedge of H. The transversal number τ(H) of H is the minimum
size of a transversal of H. Furthermore, H is said to be τ -critical if the removal of any
hyperedge from H decreases its transversal number. Based on these definitions, we say
that H is uniquely τ -critical if H is τ -critical and for any S ∈ E(H), the hypergraph
H − S contains a unique minimum transversal (which necessarily has size τ(H)− 1).

Uniquely τ -critical hypergraphs are intimately related with uniquely K
(k)
r -saturated

hypergraphs, as shown in the following theorem.

Theorem 3. Let H be a k-uniform hypergraph on n vertices and let Hc denote the k-
uniform hypergraph with vertex set V (H) and edge set

(
V (H)

k

)
\ E(H). Then H is a

primitive uniquely K
(k)
r -saturated hypergraph if and only if Hc is a uniquely τ -critical

hypergraph with no isolated vertices where τ(Hc) = n− r + 1.

Proof. Note that a set S ⊆ V (H) is a transversal of Hc if and only if V (H) \ S induces
a clique in H. Hence, H being Kr-free is equivalent to Hc having no transversal of size
n − r. It also follows that for any S ∈

(
V (H)

k

)
\ E(H), the hypergraph H + S contains a

(unique) copy of Kr if and only if its complement Hc− S contains a (unique) transversal
of size n− r. Finally, note that H has no dominating vertex if and only if each vertex of
V (H) is covered by some edge of Hc.

Although the concept of uniquely τ -critical hypergraphs is new, τ -critical hypergraphs
were first introduced by Erdős and Gallai in 1961 [5]. Various results have been proven
regarding τ -critical hypergraphs, including bounds on the size of their vertex set. These
bounds also apply to clique-saturated hypergraphs, and hence, uniquely K

(k)
r -saturated

hypergraphs. The strongest known upper bound is provided by Tuza:

Theorem 4 (Tuza [13], 1989). The maximum number of vertices in a k-uniform, τ -critical
hypergraph with no isolated vertices and with τ(H) = τ is less than(

k + τ − 1

k − 1

)
+

(
k + τ − 2

k − 1

)
.
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In fact, this bound is best possible apart from a constant factor.
When translating this result to K

(k)
r -saturated hypergraphs on n vertices, whose as-

sociated τ -critical hypergraphs have transversal number n− r+ 1, we see that the bound
is a function of k and ` := n− r. Fixing ` and k, we obtain an upper bound on n.

Theorem 5. Fix k > 2. Then if the difference between the number of vertices n and
the clique size r is fixed at some constant ` > 1, there exist no primitive (uniquely)

K
(k)
r -saturated hypergraphs on n vertices for any n at least(

k + `

k − 1

)
+

(
k + `− 1

k − 1

)
.

Proof. By Theorem 3, the complement Hc of a primitive K
(k)
n−`-saturated hypergraph H

is a τ -critical hypergraph for τ = n − (n − `) + 1 = ` + 1. The bound now follows from
Theorem 4.

Thus, we see that when n − r is fixed for any uniformity k > 2, only finitely many
primitive uniquely K

(k)
r -saturated hypergraphs exist. This is a contrast to Theorem 2,

which states that as long as the clique size is not too large, infinitely many primitive
uniquely K

(k)
r -saturated hypergraphs exist for all uniformities k > 4.

A natural question to be asked is that of the sharpness of Theorem 5, or if a sharper
upper bound can be obtained. For general ` > 1, we offer a construction to prove a range
for n where primitive uniquely K

(k)
n−`-saturated hypergraphs exist. The upper end of this

range is approximately half of the bound given by Theorem 5, and the lower end depends
on the chromatic number of certain Johnson graphs.

The well known Johnson graph J(m, k) has vertex set
(
[m]
k

)
with two vertices adjacent

if and only if the corresponding k-sets intersect in k − 1 vertices. Let χ(m, k) denote the
chromatic number of J(m, k); this parameter is well investigated and relates to constant
weight codes. Graham and Sloane [8] proved that χ(m, k) 6 m for all 0 < k 6 m.
Obviously χ(m, 2) is the chromatic index, or edge chromatic number, of the complete
graph Km, equal to m−1 or m according to m ≡ 0 or m ≡ 1 (mod 2). The construction
in the proof of the following theorem provides uniquely τ -critical hypergraphs for the
stated range.

Theorem 6. Assume that k > 3, ` > 1, and n are integers that satisfy the following
inequality:

χ(`+ k − 1, k − 1) + `+ k − 1 6 n 6

(
`+ k − 1

k − 1

)
+ `+ k − 1.

Then there is a uniquely τ -critical k-uniform hypergraph H with n vertices and with
τ(H) = `+ 1.

Proof. Set u = χ(`+ k − 1, k − 1) and w = n− u− (`+ k − 1). Let H be a hypergraph
whose vertex set is A∪B for two disjoint sets A,B where |A| = `+k−1 and |B| = u+w.
Observe that |A| + |B| = n and thus H has n vertices. From the definition of u, the
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(k− 1)-element subsets of A can be partitioned into u classes A1, . . . , Au so that in every
Ai no two sets intersect in k − 2 elements. We can obviously refine this partition into
a partition A′1, . . . , A

′
u+w, keeping the property that in every A′i no two sets intersect in

k − 2 elements and all A′i-s are nonempty. Assume B = {b1, . . . , bu+w} and let Ei be the
family of sets obtained by adding bi to all (k − 1)-element sets of A′i. The edge set of H
is then defined to be ∪u+w

i=1 Ei.
Clearly H is a k-uniform hypergraph on n vertices. Since any `+ 1 vertices of A is a

transversal of H, τ(H) 6 `+1. On the other hand, for any edge e of H, the set A\e is an
`-element transversal of H−e. We show that this is in fact the only `-element transversal
of H − e, which completes the proof.

Assume that T is a transversal of H − e, |T | = `. Set

B̂ = T ∩B, Â = A \ (T ∩ A).

Assume that |B̂| = h > 0; then |Â| = k − 1 + h. For any b ∈ B̂ let xb be the number
of edges of H − e containing b and intersecting Â in k − 1 elements. Since no two edges
containing b intersect in k − 2 elements of A, |xb| 6

(
k+h−1
k−2

)
/(k − 1). Thus at most

h
(
k+h−1
k−2

)
/(k − 1) edges of H have a vertex in B̂ and all other vertices in Â. Since all

(k − 1)-element subsets of Â are in a unique edge of H, the number of edges of H that
are disjoint from T is at least(

k + h− 1

k − 1

)
− h
(
k + h− 1

k − 2

)
/(k − 1) =

(
k + h− 1

k − 1

)
1

h+ 1
>

(
h+ 2

2

)
1

h+ 1
> 1

since k > 3 and h > 0. This is a contradiction because only the edge e can be disjoint
from T . Thus h = 0, so T ⊂ A. No `-set of A can be a transversal of H, so it most hold
that T ∩ e = ∅. Therefore, we have T = A \ e.

In terms of uniquely saturated hypergraphs, Theorems 3 and 6 imply the following.

Theorem 7. Let k, r, n be integers where 3 6 k < r < n that satisfy the following
inequality:

χ(n− r + k − 1, k − 1) + n− r + k − 1 6 n 6

(
n− r + k − 1

k − 1

)
+ n− r + k − 1.

Then there exists a primitive uniquely K
(k)
r -saturated hypergraph on n vertices.

Using that χ(m, k) 6 m [8] and that χ(m, 2) is the chromatic index of Km, Theorem 7
yields the following corollaries.

Corollary 8. Let k, r, n be integers where 3 6 k < r < n that satisfy the following
inequality:

2(n− r + k − 1) 6 n 6

(
n− r + k − 1

k − 1

)
+ n− r + k − 1.

Then there exists a primitive uniquely K
(k)
r -saturated hypergraph on n vertices.
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Corollary 9. Let r, n be integers where 3 < r < n that satisfy the following inequality:(
n− r + 3

2

)
> n >

{
2(n− r) + 4 if n− r is odd
2(n− r) + 3 if n− r is even

Then there exists a primitive uniquely K
(3)
r -saturated hypergraph on n vertices.

Thus, uniquely τ -critical hypergraphs can be used to prove the existence of primitive
uniquely K

(k)
r -saturated hypergraphs on n vertices for a wide range of parameter combi-

nations. In the special case where ` = n − r = 1, we show that the range of parameters
is completely determined.

Theorem 10. Let k > 4 be given. There exists a primitive uniquely K
(k)
n−1-saturated

hypergraph on n vertices if and only if k + 2 6 n 6 (k+2)2

4
.

Proof. We first prove necessity. The lower bound is trivial. For the upper bound, take

n > (k+2)2

4
, s = (n − 1) − k, and t = n − k, noting that t − s = 1. It suffices to show

that there does not exist a hypergraph R that satisfies the properties of Theorem 1 with
parameters n, t, and s.

Suppose for the purpose of contradiction that such a hypergraph R does exist and let
x = |E(R)|. Since t− s = 1, it follows that each element of V (R) is covered by an edge of
R, and each edge of R contains exactly one element of V (R) of codegree 1. Let S denote
the set containing the elements of V (R) that have codegree 1 in R (so that |S| = x), and
put T = [n] \S. Then each edge of R consists of one element of S and (t− 1) elements of
T , implying that each edge of R misses precisely |T | − (t− 1) = n− x− t+ 1 elements of
T . Since each element of T must be missed by at least one of the x edges of R, it must
hold that x(n − x − t + 1) > |T | = n − x. Substituting k = n − t and rearranging this
inequality yields −x2 + (k + 2)x− n > 0.

Note that the quadratic function f(x) = −x2 + (k+ 2)x− n is concave, so it takes on
nonnegative values if and only if f has at least one real zero. However, the discriminant
of the quadratic equation −x2 + (k+ 2)x− n = 0 is (k+ 2)2− 4n < 0. Therefore, it does
not hold that f(x) > 0 for any value of x, a contradiction.

We prove sufficiency by constructing the complements of the desired hypergraphs.
Theorem 3 implies that these hypergraphs must be uniquely τ -critical for τ = 2. Hence,
the removal of any edge should result in a unique minimum transversal consisting of a
single vertex.

Let V be the set [n], and for some integer m such that 4 6 m 6 k, let A denote the
subset [m] of V . Define a k-uniform hypergraph H with vertex set V and with edges
e1, . . . , em so that each ei contains A \ {i} and the parts of the ei’s outside of A define a
(k−m+ 1)-uniform hypergraph H ′ on the vertex set V \A (with repeated edges allowed)
with no isolated vertices. If each vertex in H ′ belongs to at most m−2 edges, a minimum
transversal of H has size at least 2, and for any ei ∈ E(H), the hypergraph H − ei has
the unique minimum transversal {i}.
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Thus, it suffices to show that such a hypergraph H exists whenever k+2 6 n 6 (k+2)2

4
.

Note that for a fixed value of m, the largest possible size of V is m + m(k −m + 1) =
m(k−m+ 2), which occurs when the edges of H ′ are disjoint. Therefore, if we fix m = k,
the largest such construction occurs on 2k vertices. Since m = k > 4, we can obtain
similar constructions on n vertices for all n ∈ {k + 2, . . . , 2k}.

Next, fix m =
⌈
k+2
2

⌉
. The largest possible construction again occurs on m(k−m+2) =⌈

k+2
2

⌉
·
⌊
k+2
2

⌋
=
⌊(

k+2
2

)2⌋
vertices. We can remove vertices from this construction and

adjust the edges of H ′ in order to obtain valid constructions for all n where 2k + 1 6

n 6
⌊(

k+2
2

)2⌋
. Specifically, always let e1 \ A = {m + 1, . . . , k + 1} and e2 \ A = {k +

2, . . . , 2k −m + 2}. Select the remaining edges such that ei \ A ⊆ {2k −m + 3, . . . , n}
for each ei and all of {2k − m + 3, . . . , n} is eventually covered, which is possible as
long as n > m + 3(k − m + 1). In the smallest case where n = m + 3(k − m + 1), we
have n =

⌈
k+2
2

⌉
+ 3

(
bk+2

2
c − 1

)
6 2k + 1. Hence, there exist valid constructions for all

n ∈ {k + 2, . . . ,
⌊(

k+2
2

)2⌋}.
Note that the proof also holds for k = 3 with the exception of the case n = 5, since in

the construction where m = k, two vertices in V \ A is not enough to form a graph with
the desired degree requirements.

5 Computational Search

A primitive uniquely K
(k)
r -saturated hypergraph exists on n vertices if and only if there

exists a hypergraph R on n vertices satisfying the three properties of Theorem 1 with
parameters t = n − k and s = r − k. Hence, a straightforward approach to determine
when primitive uniquelyK

(k)
r -saturated hypergraphs exist is to computationally determine

for which values of n, t, and s valid complementary hypergraphs exist.
To this end, we developed an integer program with parameters n, t, and s that has a

feasible solution if and only if a desired complementary hypergraph R exists. Specifically,
for each t-set T of [n], we introduce a binary variable xT that indicates whether or not T is
included in E(R). Furthermore, for each (t−s)-set S of [n], we introduce a binary variable
yS that indicates whether or not S has codegree 1 in R. The number of binary variables
in this integer program increases exponentially with n, so it is only computationally
feasible to use this method to determine the existence of relatively small complementary
hypergraphs. Nevertheless, we were able to solve the integer program for small values,
and the results suggest directions for future research.

We generated the integer program using the accompanying SageMath [11] script1 and
solved the integer program using CPLEX [3]. The following tables summarize the main

results of our search when put into the context of primitive uniquely K
(k)
r -saturated hyper-

graphs on n vertices, separated according to uniformity. The symbols X and 7 indicate the
existence or nonexistence, respectively, of a desired hypergraph with parameters n, k, and

1The SageMath script is exist complementary hypergraph.sage generates the integer program.
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r, and a question mark indicates that we have yet to obtain results for the corresponding
parameter combination.

k = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

n = r + 1 7 75 75 75 75 75 75 75
75−−→

n = r + 2 X 7 75 75 75 75 75 75
75−−→

n = r + 3 7 X 7 75 75 75 75 75
75−−→

n = r + 4 7 7 X 7 75 75 75 75
75−−→

n = r + 5 7 7 7 X 7 75 75 75
75−−→

n = r + 6 7 X 7 7 X 7 75 75
75−−→

n = r + 7 X 7 7 7 7 X 7 75
75−−→

n = r + 8 7 X 7 7 7 7 X 7 11 75−−→
n = r + 9 7 X 7 X 7 7 7 X 12 75−−→

Table 1: Existence of primitive uniquely K
(k)
r -saturated hypergraphs for k = 2.

In Table 1, we see that primitive uniquely Kr-saturated graphs are fairly uncommon.
The diagonal of Xs beginning at the entry (n = r+ 2, r = 3) corresponds to the comple-
ments of odd cycles, which were shown to be uniquely clique-saturated by David Collins
and Bill Kay in 2011. The Petersen graph, a uniquely K3-saturated Moore graph, cor-
responds to the entry (n = r + 7, r = 3), and the entries n = r + 6 and n = r + 8 in
the column r = 4 correspond to two sporadic uniquely K4-saturated graphs discovered
by Cooper and Collins. The r = 4 and r = 6 entries in the n = r + 9 row correspond to
uniquely Kr-saturated graphs discovered by Hartke and Stolee [9]. Other than these, few
primitive uniquely Kr-saturated graphs exist on n vertices for small values of n. We were
not able to solve our integer program for larger values of n and r, so Table 1 includes the
results of the computational study included in [9].

On the other hand, in Tables 2 through 5, we see that many primitive uniquely K
(k)
r -

saturated hypergraphs exist with uniformity at least 3. Note that the ith column of
each table corresponds to the situation s = r − k = i and the jth row corresponds
to ` = n − r = j. In terms of these tables, Theorem 2 implies that certain columns
correspond to situations in which the desired hypergraphs will always exist. Specifically,
for each k > 4, any parameter combination within the first k− 3 columns of the table for
uniformity k yields a desired hypergraph. The entries for which Theorem 2 applies are
each marked with a X2.

On the other hand, Theorem 5 implies that in any row of these tables, entries far
enough to the right correspond to parameter combinations for which no desired hyper-
graphs exist. This phenomenon is visible in the second row of Table 2; an entry beyond
the upper bound is marked with 75. Theorem 7 implies that a large portion of the entries
in each row before approximately half of this upper bound indeed correspond to situations
in which desired hypergraphs exist. Those entries covered by Theorem 7 as implied by
Corollaries 8 and 9 or bounds on χ(n− r+ k− 1, k− 1) given by [7] are marked with X7.
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k = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14
n = r + 1 7 X8 78 78 78 78 78 78 78 78 78

78−−→
n = r + 2 7 X7 X7 X7 X7 7 7 ? ? ? 75

75−−→
n = r + 3 X X X X7 X7 X7 X7 X7 X7 ? ? ? 22 75−−→
n = r + 4 7 X X X7 X7 X7 X7 X7 X7 X7 X7

X7−−−→17 32 75−−→
n = r + 5 7 X ? X ? X7 X7 X7 X7 X7 X7

X7−−−→23 44 75−−→

Table 2: Existence of primitive uniquely K
(k)
r -saturated hypergraphs for k = 3.

k = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14

n = r + 1 X2 X8 X8 X8 78 78 78 78 78 78
78−−→

n = r + 2 X2 X X X7 X7 X7 X7 X7 X7 ? ? 28 75−−→
n = r + 3 X2 X X X X7 X7 X7 X7 X7 X7

X7−−→23 52 75−−→
n = r + 4 X2 X X X X7 X7 X7 X7 X7 X7

X7−−→38 87 75−−→
n = r + 5 X2 X ? X ? X7 X7 X7 X7 X7

X7−−→59 135 75−−→

Table 3: Existence of primitive uniquely K
(k)
r -saturated hypergraphs for k = 4.

k = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14

n = r + 1 X2 X2 X8 X8 X8 X8 78 78 78
78−−→

n = r + 2 X2 X2 X X X7 X7 X7 X7 X7
X7−−→19 48 75−−→

n = r + 3 X2 X2 X X X X7 X7 X7 X7
X7−−→39 102 75−−→

n = r + 4 X2 X2 X X X7 X7 X7 X7 X7
X7−−→74 192 75−−→

n = r + 5 X2 X2 ? ? ? ? X7 X7 X7
X7−−→130 331 75−−→

Table 4: Existence of primitive uniquely K
(k)
r -saturated hypergraphs for k = 5.

k = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15 r = 16
n = r + 1 X2 X2 X2 X8 X8 X8 X8 X8 X8 78

78−−→
n = r + 2 X2 X2 X2 X X X7 X7 X7 X7 X7

X7−−−→26 75 75−−→
n = r + 3 X2 X2 X2 X X X X7 X7 X7 X7

X7−−−→61 179 75−−→
n = r + 4 X2 X2 X2 X X ? ? X7 X7 X7

X7−−−→131 374 75−−→
n = r + 5 X2 X2 X2 ? ? ? X7 X7 X7 X7

X7−−−→257 709 75−−→

Table 5: Existence of primitive uniquely K
(k)
r -saturated hypergraphs for k = 6.
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We also observe the sharpness of Theorem 10; those entries corresponding to situations
in which the hypergraphs do not exist as described by the theorem are each marked with
78, and those that can be constructed using the method in the proof of the theorem are
marked with a X8 if the parameter combination is not covered by Theorem 2.

6 Conclusions and Future Directions

In this paper, we have shown the existence and nonexistence of various primitive uniquely
K

(k)
r -saturated hypergraphs by examining their related complementary hypergraphs and

τ -critical hypergraphs. Although few of these graphs are known to exist when k = 2,
we have shown that many of these hypergraphs indeed exist for larger uniformities via
special constructions. However, we also see that many parameter combinations do not
permit these hypergraphs, leaving more questions to be answered regarding the precise
parameter combinations for which these hypergraphs exist.

Interesting phenomena encountered during our computational search include the re-
sults for k = 3, r = 4, which can be found in the first column of Table 2. This table shares
a similar structure with Tables 3 through 5 corresponding to higher uniformities with the
exception of this first column. The only instance of a primitive uniquely K

(3)
4 -saturated

hypergraph encountered throughout our search exists on n = 7 vertices and corresponds
to the Császár polyhedron [4] when each triangular face is considered as an edge. Oth-
erwise, it is unknown whether or not any other such hypergraph exists, motivating the
following question.

Question 11. Are there only finitely many primitive uniquely K
(3)
4 -saturated hyper-

graphs?

In [2], primitive uniquely K3-saturated graphs were shown to be the Moore graphs
of diameter two, of which there are only finitely many [10]. Thus primitive uniquely

K
(3)
4 -saturated hypergraphs may be viewed as a 3-uniform generalization of these Moore

graphs.
Furthermore, with the exception of this first column of Table 2, it appears that each

row in Tables 2 through 5 is “monotone” in the sense the hypergraphs always exist in the
first portion of the row, including those parameter combinations falling in between the
ranges given by Theorems 2 and 7, but once a parameter combination is encountered for
which no hypergraph exists, no such hypergraph exists for larger values of r and n. This
suggests a possible generalization of Theorem 10 that holds for each row of the tables.

Question 12. Given integers k > 3, ` > 1, can we completely determine a range for n
where primitive uniquely K

(k)
n−`-saturated hypergraphs exist on n vertices?

Such a result would completely characterize the values of k, r, n for which primitive
uniquely K

(k)
r -saturated hypergraphs exist on n vertices.
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