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Abstract

We show that any family of subsets A ⊆ 2[n] satisfies |A| 6 O
(
ndd/2e

)
, where

d is the VC dimension of {S4T |S, T ∈ A}, and 4 is the symmetric difference
operator. We also observe that replacing 4 by either ∪ or ∩ fails to satisfy an
analogous statement. Our proof is based on the polynomial method; specifically, on
an argument due to [Croot, Lev, Pach ’17].

Mathematics Subject Classifications: 05D05, 05E99

1 Introduction

Let A ⊂ 2[n] be a family of subsets of an n element set ([n] w.l.o.g). The VC dimension of
A, denoted by VC-dim(A), is the size of the largest Y ⊆ [n] such that {S∩Y |S ∈ A} = 2Y .
One of the most useful facts about the VC dimension is given by the Sauer-Shelah-Perles
Lemma.

Theorem 1 (Sauer-Shelah-Perles Lemma [12, 13]). Let d 6 n ∈ N. Suppose A ⊂ 2[n]

satisfies VC-dim(A) 6 d. Then |A| 6
(
n
6d

)
.
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The Sauer-Shelah-Perles Lemma has numerous applications ranging from model the-
ory, probability theory, geometry, combinatorics, and various fields in computer science.
A simple-yet-useful corollary of this lemma is that if VC-dim(A) 6 d, and ? is any binary
set-operation (e.g. ? ∈ {∩,∪,4}) then

∣∣{S ? T |S, T ∈ A}∣∣ 6 ( n

6 d

)
·
(
n

6 d

)
= O(n2d).

This corollary is used, for example, by [2] to derive closure properties for PAC learnability.
Let A ? A denote the family {S ? T |S, T ∈ A}. In this work we explore the converse
direction: Does an upper bound on the VC-dimension VC-dim(A ? A) imply an upper
bound on |A|? It is not hard to see that VC-dim(A) 6 VC-dim(A ? A) for ? ∈ {∪,∩,4},
and therefore, by Theorem 1: VC-dim(A ? A) < d =⇒ |A| 6 O(nd).

Our main result quadratically improves this naive bound when ? is symmetric differ-
ence:

Theorem 2. Let d 6 n ∈ N. Suppose A ⊂ 2[n] satisfies VC-dim(A 4 A) 6 d. Then

|A| 6 2

(
n

6 bd/2c

)
.

We note that Theorem 2 does not hold when ? ∈ {∪,∩}: pick d > 2, and set

A = {S ⊆ [n] | |S| 6 d}.

Note that A = A ∩ A and therefore d = VC-dim(A) = VC-dim(A ∩ A). However |A| =(
n
6d

)
= Θ(nd), which is not upper bounded by O(ndd/2e). Picking A = {S ⊆ [n] | |S| >

n− d} shows that ∪ behaves similarly to ∩ in this context.
The above examples rule out the analog of Theorem 2 for exactly one of ∪,∩. This

suggests the following open question:

Question 3. Let d 6 n ∈ N. Suppose A ⊂ 2[n] satisfies VC-dim(A ∩ A) 6 d and
VC-dim(A ∪ A) 6 d. Is it necessarily the case that |A| 6 nd/2+O(1)?

Another natural question is whether this phenomenon extends to several applications
of the symmetric difference operator, for example:

Question 4. Does there exist an ε < 1/2 such that for every d 6 n and every A ⊂ 2[n]:

VC-dim
(
A 4 A 4 A

)
6 d =⇒ |A| 6 nε·d+O(1)?

In Section 3 we derive a related statement when 4 is replaced by addition modulo
p for a prime p, and the VC dimension is replaced by the interpolation degree (which is
defined in the next section).
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1.1 Interpolation degree

Since our proof method is algebraic, it is convenient to view A ⊂ 2[n] as a subset of the
n-dimensional vector space Fn2 over the field of two elements. In this setting A 4 A is the
sumset of A, denoted A+ A.

Theorem 2 will follow from a stronger statement involving a quantity referred to in
some places as the regularity (as a special case of Castelnuovo-Mumford regularity from
algebraic geometry) [11] and in others as the interpolation-degree [9]. We will use the
more descriptive interpolation-degree for the rest of this paper. We begin with some
preliminary notations and definitions.

Let A ⊂ Fn2 . It is a basic fact that for each function f : Fn2 7→ F2 there exists a unique
multilinear polynomial Pf ∈ F2[x1, . . . , xn] such that f(a) = Pf (a) for all a ∈ Fn2 (existence
is via simple interpolation and uniqueness follows from dimension counting). For a partial
function f : A 7→ F2 there are many (precisely 22n−|A|) multilinear polynomials whose
restriction to A computes f . Let degA(f) denote the minimal degree of any polynomial
whose restriction to A computes f . We define the interpolation-degree of A, denoted
int-deg(A) to be the maximum of degA(f) taken over all functions f : A 7→ F2. In other
words, int-deg(A) is the smallest d such that any function from A to F2 can be realized by
a polynomial of degree at most d. Clearly, int-deg(A) is an integer between 0 and n. It is
also not hard to see that, if A is a proper subset of Fn2 then int-deg(A) < n. Our interest
in int-deg(A) comes from the following connection to VC-dimension.

Lemma 5 ([1, 8, 14, 9]). For A ⊂ Fn2 we have int-deg(A) 6 VC-dim(A).

This Lemma, under various formulations, was proved in several works. The formula-
tion that appears here can be found in [9]. For completeness, we next sketch the proof:
since the set of all multilinear monomials (also those of degree larger than VC-dim(A))
span the set of functions f : A→ F2, it suffices to show that any monomial (when seen as
an A→ F2 function) can be represented a polynomial of degree at most d = VC-dim(A).
The crucial observation is that if xS = πi∈Sxi is a monomial of degree larger than d, then
S is not shattered by A. This means that there is a pattern v : S → {0, 1} that does not
appear in any of the vectors in A and therefore

Πi∈S(xi + vi + 1) =A 0,

where “=A” means equality as functions over A. Now, expanding this product and rear-
ranging the equation yields a representation of xS as sum of monomials xS′ , where S ′ ⊂ S,
which by induction can also be represented by polynomials of degree at most d.

Theorem 5 reduces Theorem 2 to the following stronger statement that is proved in
the next section.

Theorem 6. Let d 6 n ∈ N, and let A ⊂ Fn2 satisfy |A| > 2
(

n
6bd/2c

)
. Then int-deg(A +

A) > d.
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2 Proof of Theorem 6

The main technical tool will be a lemma of Croot-Lev-Pach [3] that was the main ingredi-
ent in the recent solution of the cap-set problem [5] and has found many other applications
since then (e.g., [7, 15, 4, 6] to name a few).

Lemma 7 (CLP lemma [3]). Let P ∈ Fq[x1, . . . , xn] be a polynomial of degree at most d
over any finite field Fq, and let M denote the qn× qn matrix with entries Mx,y = P (x+y)
for x, y ∈ Fnq . Then rank(M) 6 2 · mbd/2c(q, n), where mk(q, n) denotes the number of
monomials in n variables x1, . . . , xn such that each variable appears with individual degree
at most q − 1 and the total degree of the monomial is at most k.

Specializing to our setting of F2 multilinear polynomials, we see that mk(2, n) =
(
n
6k

)
and so we conclude:

Corollary 8. Let P ∈ F2[x1, . . . , xn] be a polynomial of degree at most d and let M be as
in Lemma 7. Then rank(M) 6 2

(
n

6bd/2c

)
.

We are now ready to prove Theorem 6.

Proof of Theorem 6. Suppose A ⊂ Fn2 is such that |A| > 2
(

n
6bd/2c

)
. Let f : A + A 7→ F2

be such that f(0̄) = 1, where 0̄ is the all zero vector in Fn2 , and f(a) = 0 for all non-zero
a ∈ A+A. It suffices to show that degA+A(f) > bd/2c (notice that since A 6= ∅ it follows
that 0̄ ∈ A + A and so f is not constantly 0 on A + A). Let M be the 2n × 2n matrix
whose rows and columns are indexed by Fn2 and with entries Mx,y = f(x + y). By our
definition of f we have that the sub-matrix of M whose rows and columns are indexed
by A is just the |A| × |A| identity matrix. This implies

rank(M) > |A|.

Let df = degA+A(f) denote the smallest degree of a polynomial whose restriction to A+A
computes f . Applying Corollary 8 we get that

rank(M) 6 2

(
n

6 bdf/2c

)
.

Combining the two inequalities on rank(M) and using the bound on the size of A we get
that

2

(
n

6 bd/2c

)
< |A| 6 rank(M) 6 2

(
n

6 bdf/2c

)
,

which implies bd/2c < bdf/2c. This means that df > d and so int-deg(A+ A) > d.
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3 Generalization to sums modulo p

In this section we observe that our proof can be generalized to give stronger bounds in
the case when we take p-fold sums of boolean vectors over Fp. The case proved in the
last section corresponds to (two fold) sums modulo 2. For a subset A ⊂ Fnp and a positive
integer k, we denote by

k · A = {a1 + . . .+ ak | ai ∈ A}

the k-fold sumset of A. To formally define the interpolation degree over Fp we need
to consider, instead of multilinear polynomials, polynomials in which each variable has
degree at most p − 1. We call such polynomials p-reduced polynomials. The space of
all p-reduced polynomials has dimension pn and can uniquely represent any function
f : Fnp 7→ Fp. The degree of such a function is defined to be the total degree of the
unique p-reduced polynomial representing it and can range between 0 and (p− 1)n. The
interpolation degree of a set A ⊂ Fnq is the minimum d such that any function f : A 7→ Fp
can be represented by a p-reduced polynomial of degree at most d. To avoid confusion we
will denote the interpolation degree over Fnp as int-degp(A).

We denote by Md(p, n) the set of monomials in n variables x1, . . . , xn in which each
variable has degree at most p − 1 and the total degree is at most d. When p = 2 we
have the closed formula |Md(2, n)| =

(
n
6d

)
. When p > 2 the quantity |Md(p, n)| is a bit

more tricky to compute but is known to satisfy certain asymptotic inequalities (e.g., large
deviations [10] showing that Mδn(p, n) 6 2εn with ε(δ) going to zero with δ).

The following theorem generalizes Theorem 2 when p > 2.

Theorem 9. Let p be any prime number and let A ⊂ {0, 1}n ⊂ Fnp be such that |A| >
p · |Mbd/pc(p, n)|. Then int-degp(p · A) > d.

The proof of the theorem requires the notion of slice-rank of a tensor which was
introduced by Tao in his symmetric interpretation of the proof of the cap-set conjecture
[16]. By a k-fold tensor of dimension D over a field F we mean a function T mapping
ordered tuples (j1, . . . , jk) ∈ [D]n to F. The slice-rank of a k-fold tensor T is a the smallest
integer R such that T can be written as a sum T =

∑R
i=1 Ti such that, for every i ∈ [R]

there is some ji ∈ [k] so that Ti(j1, . . . , jk) = A(ji)B(j1, . . . , ji−1, ji+1, . . . , jk). In other
words, we define the ‘rank one’ tensors to be those in which the dependence on one of the
variables is multiplicative (by a function A(ji)) and the rank of a tensor is the smallest
number of rank one tensors needed to describe it. For 2-fold tensors (or matrices) this
notion coincides with the usual definition of matrix rank.

The proof of Theorem 9 will follow from a combination of two lemmas regarding slice
rank. The first lemma generalizes the Croot-Lev-Pach lemma (and proved in an a similar
way).

Lemma 10. Let f : Fnp 7→ Fp be of degree d. Then the p-fold pn dimensional tensor
T : (Fnp )k 7→ Fp defined by T (X1, . . . , Xp) = f(X1 + . . . + Xp) has slice rank at most
p · Mbd/pc(p, n).
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Proof. Consider T as a polynomial in p groups of variables X i = (xi1, . . . , x
i
n) with i =

1, 2, . . . , p. Since the degree of f is d, the degree of T as a polynomial will also be at most
d. This means that, in each monomial of T (X1, . . . , Xp) = f(X1 + . . .+Xp), the degree
of at least one group of variables will be at most bd/pc. Grouping together monomials
according to which group has low degree (if there is more than one group take the one
with lowest index) we can represent T as a sum of p tensors, each having rank at most
Mbd/pc(p, n). This completes the proof.

The second lemma needed to prove Theorem 9 is due to Tao and shows that the
’diagonal’ tensor has full rank.

Lemma 11 ([16]). Let δ(j1, . . . , jk) : [D]k 7→ F be defined as δ(j, j, . . . , j) = 1 for all j
and is zero otherwise. Then the slice rank of δ is equal to D.

Proof of Theorem 9. To prove the bound on int-degp(p · A) we describe a function f :
p ·A 7→ Fp that cannot be represented by a low degree polynomial. We take f to be equal
to 1 on the zero vector and zero otherwise. We now consider the tensor T (X1, . . . , Xp) =
f(X1 + . . . + Xp) defined on Ap. Notice that, since A ⊂ {0, 1}n, the sum of p of them is
equal to zero iff all p summands are identical. This implies that T is the diagonal tensor δ
of Lemma 11 and hence has rank equal to |A|. On the other hand, if the degree of f (over
p·A) is at most d then, by Lemma 10, the tensor T has rank at most p·Mbd/pc(p, n). Since
we assume that |A| > p · Mbd/pc(p, n) this cannot happen and so int-degp(pA) > d.
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