A Sauer-Shelah-Perles Lemma for Sumsets

Zeev Dvir*

Department of Computer Science and Department of Mathematics
Princeton University
Princeton, U.S.A.

zeev.dvir@gmail.com

Shay Moran'

School of Mathematics
Institute for Advanced Study
Princeton, U.S.A.

shaymoranl@gmail.com

Submitted: Jun 20, 2018; Accepted: Oct 23, 2018; Published: Nov 16, 2018
(© Zeev Dvir and Shay Moran. Released under the CC BY-ND license (International 4.0).

Abstract

We show that any family of subsets A C 2l satisfies |A| < O(nm/ 21), where
d is the VC dimension of {SAT|S,T € A}, and A is the symmetric difference
operator. We also observe that replacing A by either U or N fails to satisfy an
analogous statement. Our proof is based on the polynomial method; specifically, on
an argument due to [Croot, Lev, Pach ’17].

Mathematics Subject Classifications: 05D05, 05E99

1 Introduction

Let A C 2" be a family of subsets of an n element set ([n] w.l.o.g). The VC dimension of
A, denoted by VC-dim(A), is the size of the largest Y C [n] such that {SNY | S € A} = 2Y.
One of the most useful facts about the VC dimension is given by the Sauer-Shelah-Perles
Lemma.

Theorem 1 (Sauer-Shelah-Perles Lemma [12, 13]). Let d < n € N. Suppose A C 2"
satisfies VC-dim(A) < d. Then |A| < (gd).
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The Sauer-Shelah-Perles Lemma has numerous applications ranging from model the-
ory, probability theory, geometry, combinatorics, and various fields in computer science.
A simple-yet-useful corollary of this lemma is that if VC-dim(A) < d, and * is any binary
set-operation (e.g. x € {N,U, A}) then

{S*T|S,T e A}| < ( " ) : ( " ) = O(n2).

<d) \<d

This corollary is used, for example, by [2] to derive closure properties for PAC' learnability.
Let A®A denote the family {S = T'|S,T € A}. In this work we explore the converse
direction: Does an upper bound on the VC-dimension VC-dim(A®)A) imply an upper
bound on |A|? It is not hard to see that VC-dim(A4) < VC-dim(A®A) for x € {U,N, A},
and therefore, by Theorem 1: VC-dim(A®A) < d = |A| < O(n?).

Our main result quadratically improves this naive bound when % is symmetric differ-
ence:

Theorem 2. Let d < n € N. Suppose A C 2" satisfies VC—dim(A@A) < d. Then

42 )

We note that Theorem 2 does not hold when x € {U,N}: pick d > 2, and set
A={5C [n][|S] < d}.

Note that A = A()A and therefore d = VC-dim(A) = VC-dim(A()A). However |A| =
(gd) = O(n%), which is not upper bounded by O(n!%/?1). Picking A = {S C [n]||S| >
n — d} shows that U behaves similarly to N in this context.

The above examples rule out the analog of Theorem 2 for exactly one of U, N. This

suggests the following open question:

Question 3. Let d < n € N. Suppose A C 20 satisfies VC-dim(A(MA) < d and
VC-dim(AWU)A) < d. Ts it necessarily the case that |A] < n¢/2+01)?

Another natural question is whether this phenomenon extends to several applications
of the symmetric difference operator, for example:

Question 4. Does there exist an € < 1/2 such that for every d < n and every A C 2":
VC-dim(A(A)AL)A) < d = |A] < nettO0?
In Section 3 we derive a related statement when A is replaced by addition modulo

p for a prime p, and the VC dimension is replaced by the interpolation degree (which is
defined in the next section).
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1.1 Interpolation degree

Since our proof method is algebraic, it is convenient to view A C 2" as a subset of the
n-dimensional vector space F4 over the field of two elements. In this setting A@A is the
sumset of A, denoted A + A.

Theorem 2 will follow from a stronger statement involving a quantity referred to in
some places as the regularity (as a special case of Castelnuovo-Mumford regularity from
algebraic geometry) [11] and in others as the interpolation-degree [9]. We will use the
more descriptive interpolation-degree for the rest of this paper. We begin with some
preliminary notations and definitions.

Let A C F3. It is a basic fact that for each function f : F} — Fy there exists a unique
multilinear polynomial Py € Fa[zy, ..., z,]| such that f(a) = P¢(a) for all a € F} (existence
is via simple interpolation and uniqueness follows from dimension counting). For a partial
function f : A — Fy there are many (precisely 22"~1l) multilinear polynomials whose
restriction to A computes f. Let deg,(f) denote the minimal degree of any polynomial
whose restriction to A computes f. We define the interpolation-degree of A, denoted
int-deg(A) to be the maximum of deg,(f) taken over all functions f : A +— Fy. In other
words, int-deg(A) is the smallest d such that any function from A to Fy can be realized by
a polynomial of degree at most d. Clearly, int-deg(A) is an integer between 0 and n. It is
also not hard to see that, if A is a proper subset of F4 then int-deg(A) < n. Our interest
in int-deg(A) comes from the following connection to VC-dimension.

Lemma 5 ([1, 8, 14, 9]). For A C F} we have int-deg(A) < VC-dim(A).

This Lemma, under various formulations, was proved in several works. The formula-
tion that appears here can be found in [9]. For completeness, we next sketch the proof:
since the set of all multilinear monomials (also those of degree larger than VC-dim(A))
span the set of functions f : A — Ty, it suffices to show that any monomial (when seen as
an A — Fy function) can be represented a polynomial of degree at most d = VC-dim(A).
The crucial observation is that if x5 = m;cg2; is a monomial of degree larger than d, then
S is not shattered by A. This means that there is a pattern v : S — {0, 1} that does not
appear in any of the vectors in A and therefore

Hieg(wi —+ Vi + 1) =A 0,

« )

where “=4” means equality as functions over A. Now, expanding this product and rear-
ranging the equation yields a representation of g as sum of monomials xg/, where S’ C S,
which by induction can also be represented by polynomials of degree at most d.

Theorem 5 reduces Theorem 2 to the following stronger statement that is proved in
the next section.

Theorem 6. Let d < n € N, and let A C FYy satisfy |A| > Q(QZJ/%). Then int-deg( A +
A) > d.
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2 Proof of Theorem 6

The main technical tool will be a lemma of Croot-Lev-Pach [3] that was the main ingredi-
ent in the recent solution of the cap-set problem [5] and has found many other applications
since then (e.g., [7, 15, 4, 6] to name a few).

Lemma 7 (CLP lemma [3]). Let P € F,[x1,...,2,] be a polynomial of degree at most d
over any finite field F,, and let M denote the ¢" x ¢" matriz with entries M,, = P(x+y)
for x,y € F}. Then rank(M) < 2 - mq2)(q,n), where my(q,n) denotes the number of
monomials in n variables x1, ..., x, such that each variable appears with individual degree
at most ¢ — 1 and the total degree of the monomial is at most k.

Specializing to our setting of F, multilinear polynomials, we see that my(2,n) = (7,)
and so we conclude:

Corollary 8. Let P € Fy[xq, ..., x,] be a polynomial of degree at most d and let M be as

in Lemma 7. Then rank(M) < 2(<L§/2J)'
We are now ready to prove Theorem 6.

Proof of Theorem 6. Suppose A C F4 is such that |A| > 2(<Lg/2j)' Let f: A+ Aw— Fy
be such that f(0) = 1, where 0 is the all zero vector in F%, and f(a) = 0 for all non-zero
a € A+ A. Tt suffices to show that degaa(f) = [d/2] (notice that since A # () it follows
that 0 € A+ A and so f is not constantly 0 on A + A). Let M be the 2" x 2" matrix
whose rows and columns are indexed by F5 and with entries M, , = f(x +y). By our
definition of f we have that the sub-matrix of M whose rows and columns are indexed

by A is just the |A| x |A| identity matrix. This implies
rank(M) > |A].

Let dy = deg 4, 4(f) denote the smallest degree of a polynomial whose restriction to A+ A
computes f. Applying Corollary 8 we get that

Combining the two inequalities on rank(M) and using the bound on the size of A we get

that
2 ) <M< man <2( )

which implies |d/2] < |d;/2]. This means that d; > d and so int-deg(A + A) > d. O
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3 Generalization to sums modulo p

In this section we observe that our proof can be generalized to give stronger bounds in
the case when we take p-fold sums of boolean vectors over F,. The case proved in the
last section corresponds to (two fold) sums modulo 2. For a subset A C F}; and a positive
integer k, we denote by

k:-Az{a1+...+ak|ai€A}

the k-fold sumset of A. To formally define the interpolation degree over F, we need
to consider, instead of multilinear polynomials, polynomials in which each variable has
degree at most p — 1. We call such polynomials p-reduced polynomials. The space of
all p-reduced polynomials has dimension p™ and can uniquely represent any function
f : Fy — F,. The degree of such a function is defined to be the total degree of the
unique p-reduced polynomial representing it and can range between 0 and (p — 1)n. The
interpolation degree of a set A C [y is the minimum d such that any function f: A — F,
can be represented by a p-reduced polynomial of degree at most d. To avoid confusion we
will denote the interpolation degree over ) as int-deg,(A).

We denote by My(p,n) the set of monomials in n variables z1, ..., z, in which each
variable has degree at most p — 1 and the total degree is at most d. When p = 2 we
have the closed formula [My(2,n)| = (gd). When p > 2 the quantity |My(p,n)| is a bit
more tricky to compute but is known to satisfy certain asymptotic inequalities (e.g., large
deviations [10] showing that M, (p,n) < 2" with €(d) going to zero with ¢).

The following theorem generalizes Theorem 2 when p > 2.

Theorem 9. Let p be any prime number and let A C {0,1}" C F} be such that |A| >
p- |Miasp(p,n)|. Then int-deg,(p- A) > d.

The proof of the theorem requires the notion of slice-rank of a tensor which was
introduced by Tao in his symmetric interpretation of the proof of the cap-set conjecture
[16]. By a k-fold tensor of dimension D over a field F we mean a function 7" mapping
ordered tuples (ji, ..., jk) € [D]" to F. The slice-rank of a k-fold tensor T is a the smallest
integer R such that T can be written as a sum T = .7 T} such that, for every i € [R]
there is some j; € [k] so that T;(ji1,...,Jk) = A(Ji)B(J1,- -, Ji-1,Jit1s---»Jk). In other
words, we define the ‘rank one’ tensors to be those in which the dependence on one of the
variables is multiplicative (by a function A(7;)) and the rank of a tensor is the smallest
number of rank one tensors needed to describe it. For 2-fold tensors (or matrices) this
notion coincides with the usual definition of matrix rank.

The proof of Theorem 9 will follow from a combination of two lemmas regarding slice
rank. The first lemma generalizes the Croot-Lev-Pach lemma (and proved in an a similar

way).

Lemma 10. Let f : F) — [, be of degree d. Then the p-fold p" dimensional tensor
T : (F})f — F, defined by T(X',...,XP) = f(X'+ ... 4+ XP?) has slice rank at most
P Miasp) (P, ).
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Proof. Consider T' as a polynomial in p groups of variables X' = (2¢,...,2") with i =
1,2,...,p. Since the degree of f is d, the degree of T" as a polynomial will also be at most
d. This means that, in each monomial of T(X*,...  X?) = f(X' + ...+ X?), the degree
of at least one group of variables will be at most |d/p|. Grouping together monomials
according to which group has low degree (if there is more than one group take the one
with lowest index) we can represent T as a sum of p tensors, each having rank at most

M a/p|(p,n). This completes the proof. O

The second lemma needed to prove Theorem 9 is due to Tao and shows that the
"diagonal’ tensor has full rank.

Lemma 11 ([16)). Let 6(j1,...,jx) : [D]* = F be defined as §(4,7,...,7) = 1 for all j
and is zero otherwise. Then the slice rank of § is equal to D.

Proof of Theorem 9. To prove the bound on int-deg,(p - A) we describe a function f :
p-A— T, that cannot be represented by a low degree polynomial. We take f to be equal
to 1 on the zero vector and zero otherwise. We now consider the tensor T'(X!, ..., X?) =
f(X'+ ...+ XP?) defined on AP. Notice that, since A C {0,1}", the sum of p of them is
equal to zero iff all p summands are identical. This implies that 7" is the diagonal tensor §
of Lemma 11 and hence has rank equal to |A|. On the other hand, if the degree of f (over
p-A) is at most d then, by Lemma 10, the tensor 7" has rank at most p- M4/, (p,n). Since
we assume that [A| > p - M4/, (p,n) this cannot happen and so int-deg,(pA) > d. [
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