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Abstract

Given a word, we are interested in the structure of its contiguous subwords split
into k blocks of equal length, especially in the homogeneous and anti-homogeneous
cases. We introduce the notion of (µ1, . . . , µk)-block-patterns, words of the form
w = w1 · · ·wk where, when {w1, . . . , wk} is partitioned via equality, there are µs
sets of size s for each s ∈ {1, . . . , k}. This is a generalization of the well-studied
k-powers and the k-anti-powers recently introduced by Fici, Restivo, Silva, and
Zamboni, as well as a refinement of the (k, λ)-anti-powers introduced by Defant. We
generalize the anti-Ramsey-type results of Fici et al. to (µ1, . . . , µk)-block-patterns
and improve their bounds on Nα(k, k), the minimum length such that every word
of length Nα(k, k) on an alphabet of size α contains a k-power or k-anti-power. We
also generalize their results on infinite words avoiding k-anti-powers to the case of
(k, λ)-anti-powers. We provide a few results on the relation between α and Nα(k, k)
and find the expected number of (µ1, . . . , µk)-block-patterns in a word of length n.

Mathematics Subject Classifications: 05A05, 68R15

1 Introduction

In 1975, Erdős, Simonivits, and Sós [4] introduced anti-Ramsey theory, the idea that suf-
ficiently large partitioned structures cannot avoid anti-homogeneous substructures. Their
investigation was initially graph-theoretic, but with time anti-Ramsey-type results have
permeated many areas of combinatorics, including the studies of Sidon sets, canonical
Ramsey theory, and the spectra of colorings [1, 10, 12]. The study of homogeneous
and anti-homogeneous substructures can also be extended to words, finite or infinite (to
the right) sequences of letters from a fixed alphabet. The substructures of interest are
contiguous subwords, known as factors. A well-studied type of regularity in words con-
cerns k-powers, that is, words of the form uk = uu · · ·u (concatenated k times) for some
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nonempty word u (see, for example, [7]). Recently Fici et al. [5] introduced a notion of
anti-regularity in words through their definition of k-anti-powers.

Definition 1. Let |u| denote the length of a word u. A k-anti-power is a word w of the
form

w = w1w2 · · ·wk
such that |w1| = · · · = |wk| and w1, . . . , wk are distinct.

Fici et al. [5] were able to show several properties of anti-powers in words, including
anti-Ramsey results concerning the existence of `-powers or k-anti-powers. Gaetz [6]
showed that the minimum mk,j > 0 for which the factor of length kmk,j beginning at
the jth index of the famous Thue-Morse word t is a k-anti-power, grows linearly in k;
Defant [3] and Narayanan [9] studied the case j = 0. Defant also introduced the notion
of (k, λ)-anti-powers, which are a generalization of k-anti-powers.

Definition 2. A (k, λ)-anti-power is a word w of the form

w = w1w2 · · ·wk

such that |w1| = · · · = |wk| and |{i : wi = wj}| 6 λ for each fixed j ∈ {1, . . . , k}.

Note that when λ = 1, this is precisely the definition of a k-anti-power. Whenever
such a generalization is nontrivial, we prove that the results of Fici et al. in [5] concerning
k-anti-powers generalize to the case of (k, λ)-anti-powers. In fact, many of these results
can be strengthened by enforcing a particular structure on the partition of the blocks
by equality. We generalize the notions of k-powers and k-anti-powers while refining the
(k, λ)-anti-powers through the introduction of (µ1, . . . , µk)-block-patterns.

Definition 3. Let µ1, . . . , µk be nonnegative integers satisfying
∑k

s=1 sµs = k. A
(µ1, · · · , µk)-block-pattern is a word of the form w = w1 · · ·wk where, if the set {1, . . . , k}
is partitioned via the rule i ∼ j ⇐⇒ wi = wj, there are µs parts of size s for all
1 6 s 6 k.

For example, 10 01 00 01 10 is a (1, 2, 0, 0, 0)-block-pattern. Let Pk,6λ denote the set

of k-tuples of natural numbers (µ1, . . . , µk) such that
∑k

s=1 sµs = k and µs = 0 for s > λ.
These correspond to the partitions of k such that each part has size at most λ. We can
relate (µ1, . . . , µk)-block-patterns to (k, λ)-anti-powers via the following observation.

Remark 4. Let APA(k, λ) be the set of (k, λ)-anti-powers on an alphabet A. Let
BPA(µ1, . . . , µk) be the set of (µ1, . . . , µk)-block-patterns on A. Then

APA(k, λ) =
⋃

(µ1,...,µk)∈Pk,6λ

BPA(µ1, . . . , µk).

In particular, the k-anti-powers are precisely the (k, 0, . . . , 0)-block-patterns, and moreover
the k-powers are precisely the (0, . . . , 0, 1)-block-patterns.
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The generalizations of the anti-Ramsey results of Fici et al. in [5] to the case of
(µ1, . . . , µk)-block-patterns are the focus of Section 3. In particular, we obtain bounds on
the sizes of words avoiding powers or block-patterns with at most σ pairs of equal blocks.
In Section 4, we generalize the results of [5] on avoiding k-anti-powers in infinite words to
(k, λ)-anti-powers. We also observe that Sturmian words have anti-powers of every order
starting at each index.

A slight strengthening of the arguments of Fici et al. in [5] also provide better bounds
for Nα(k, k), the smallest positive integer such that every word of length Nα(k, k) over an
alphabet of size α contains a k-power or k-anti-power. Namely, it is shown in [5] that for
k > 2, k2 − 1 6 Nα(k, k) 6 k3

(
k
2

)
. In Section 5, we improve both the lower and upper

bounds according to the following theorem.

Theorem 27. For any k > 3,

2k2 − 2k 6 Nα(k, k) 6 (k3 − k2 + k)

(
k

2

)
.

We also investigate how the size of the alphabet affects Nα(k, k) in Section 5. In
Section 6, we return to the more general setting and compute the expected number of
(µ1, . . . , µk)-block-patterns in a word of length n.

2 Preliminaries

Let N = {1, 2, 3, . . . }. The ith letter of a word x is denoted x[i], and for i < j the
contiguous substring beginning at the ith letter and ending with the jth is denoted x[i..j].
A word v is a factor of x if x = uvw for words u and w. In the case that u is empty, v is
a prefix of x, and if w is empty, then v is a suffix of x. The suffix of x beginning at the
jth index of x is denoted x(j). If w is both a prefix and suffix of x, then w is a border of x.

A word is called recurrent if every finite factor appears infinitely many times in the
word. A word x is called uniformly recurrent if for every finite factor u, there exists a
positive integer nu such that u appears in every factor of x of length nu. A word x is
called eventually periodic if there exists an index j > 0 and a finite word u such that
x(j) = uω; otherwise x is called aperiodic. A word is called ω-power-free if for every finite
factor u, there exists an ` ∈ N such that u` is not a factor. Note that a word that avoids
k-powers for some k ∈ N is ω-power-free, but the converse is not necessarily true.

Let [α] = {1, . . . , α}. The lower density and upper density of a subset S of N are
given respectively by

d(S) = lim inf
n→∞

|S ∩ [n]|
n

and d(S) = lim sup
n→∞

|S ∩ [n]|
n

.
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3 Generalization of an Anti-Ramsey result to (µ1, . . . , µk)-
block-patterns

A main result of Fici et al. [5] is that every infinite word contains either powers of all orders
or anti-powers of all orders. Since powers are homogeneous substructures whereas the anti-
powers are anti-homogeneous, one may wonder if similar results can be demonstrated for
substructures between these extremes. We will generalize their result to the case of
(µ1, . . . , µk)-block-patterns in infinite words. The density bounds rely on the number of
pairs of equal blocks that are forced in the prefixes of length km, . . . , k(m + β) for some
m,β. The following definition is created to account for these pairs.

Definition 5. Let D(x, k, σ) be the set of m ∈ N such that the prefix of the word x of
length km is a (µ1, . . . , µk)-block-pattern satisfying

∑k
s=1 µs

(
s
2

)
6 σ.

Note that D(x, k, σ) is closed downward with respect to the dominance order. That
is, if m ∈ D(x, k, σ) and m′ ∈ N are such that x[1..km] is a (µ1, . . . , µk)-block-pattern
and x[1..km′] is a (µ′1, . . . , µ

′
k)-block-pattern satisfying

∑`
s=1 µs >

∑`
s=1 µ

′
s for each ` ∈

{1, . . . , k}, then m′ ∈ D(x, k, σ).
For the proof of Theorem 7, we make use of the following lemma of Fici, Restivo,

Silva, and Zamboni.

Lemma 6. ([5], Lemma 3) Let v be a border of a word w and let u be the word such that
w = uv. If ` is an integer such that |w| > `|u|, then u` is a prefix of w.

Theorem 7. Let x be an infinite word such that

d(D(x, k, σ)) >

(
1 +

⌊
1

σ

(
k

2

)⌋)−1
for some k, σ ∈ N. For every `, there is a word u with |u| 6 (k − 1)

⌊
1
σ

(
k
2

)⌋
such that u`

is a factor of x.

Proof. Fix such a k and σ. Fix an arbitrary ` > 1, and let β =
⌊
1
σ

(
k
2

)⌋
. By the condition

on the upper density of D(x, k, σ), there exists some integer m > `(k − 1)β such that
{m,m + 1, . . . ,m + β} ⊂ D(x, k, σ). Following [5], for every j ∈ {0, . . . , k − 1} and
r ∈ {m, . . . ,m+ β}, set

Uj,r = x[jr + 1..(j + 1)r].

That is, U0,r · · ·Uk−1,r = x[1..kr]. Since {m,m + 1, . . . ,m + β} ⊂ D(x, k, σ), we are
guaranteed at least (β + 1)σ >

(
k
2

)
triples (i, j, r) such that i < j and Ui,r = Uj,r. By the

Pigeonhole Principle, there exist i, j, r, s such that 0 6 i < j 6 k− 1, m 6 r < s 6 β + 1,
Ui,r = Uj,r, and Ui,s = Uj,s.

Setting w = x[is+ 1..(i+ 1)r] and v = x[js+ 1..(j + 1)r], we have

|v| = (j + 1)r − js < (i+ 1)r − is = |w|,
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so v is a border of w. Writing w = uv, we have

1 6 |u| = |w| − |v| = (j − i)(s− r) 6 (k − 1)β

while
|v| = r − j(s− r) > m− (k − 1)β > `(k − 1)β > (`− 1)|u|.

Hence, |w| = |u|+ |v| > `|u|. By Lemma 6, u` is a factor of x.

Theorem 7 can be applied to the special case of (k, λ)-anti-powers. The definition of
(k, λ)-anti-powers suggests the following generalization of AP(x, k), the set of integers m
such that the prefix of x of length km is a k-anti-power.

Definition 8. Let AP(x, k, λ) be the set of m ∈ N such that the prefix of the word x of
length km is a (k, λ)-anti-power.

Note that AP(x, k, 1) = AP(x, k).

Corollary 9. Let x be an infinite word such that

d(AP(x, k, λ)) <

(
1 +

⌊
k2 − k
λ2 + λ

⌋)−1
for some k, λ ∈ N. For every `, there is a word u with |u| 6 (k − 1)

⌊
k2−k
λ2+λ

⌋
such that u`

is a factor of x.

Proof. Fix k and λ as above. Note that N\AP(x, k, λ) ⊆ D
(
x, k,

(
λ+1
2

))
. Hence,

d(AP(x, k, λ)) <

(
1 +

⌊
k2 − k
λ2 + λ

⌋)−1
implies

d

(
D

(
x, k,

(
λ+ 1

2

)))
>

⌊
k2−k
λ2+λ

⌋
1 +

⌊
k2−k
λ2+λ

⌋ >
1

1 +
⌊(

λ+1
2

)−1(k
2

)⌋ .
This shows that x satisfies the conditions of Theorem 7 for the same k and σ =

(
λ+1
2

)
.

In the case that our alphabet is finite, there are finitely many factors of length at most

(k − 1)
⌊
k2−k
λ2+λ

⌋
. Thus, the Pigeonhole Principle allows us to choose a word u that works

for every ` in Theorem 9.

Corollary 10. Let x be an infinite word on a finite alphabet such that

d(AP(x, k, λ)) <

(
1 +

⌊
k2 − k
λ2 + λ

⌋)−1
for some k, λ ∈ N. There is a word u with |u| 6 (k− 1)

⌊
k2−k
λ2+λ

⌋
such that u` is a factor of

x for every ` > 0. In particular, x is not ω-power-free.
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There is a λ = 1 analogue to Corollary 9 in [5] (their Theorem 4), which claims under
the same density condition that x is not ω-power-free. Though the condition that the
alphabet is finite is not explicitly stated, their result is false for infinite alphabets. In fact,
there exist ω-power-free words which avoid k-anti-power prefixes for some fixed k ∈ N.
These words also show that Theorem 6 of [5], which states that ω-power-free words have
anti-powers of every order beginning at each index, is false when infinite alphabets are
allowed. Theorem 11 provides a counterexample to Theorems 4 and 6 in [5] when infinite
alphabets are permitted.

Theorem 11. There exists an ω-power-free word x on an infinite alphabet such that
AP(x, k) is empty for some k ∈ N.

Proof. Let y =
∏∞

i=1(ai)
2i . Since there are finitely many appearances of each letter ai, y

is clearly ω-power-free. Note that if 2i+1 − 2i = 2i > 4m for some block length m and
some i satisfying 2i+1 < km, then two blocks of the prefix of length km must equal ami .
Hence, m 6∈ AP(x, k). For k > 17, such an i always exists. AP(x, k) is empty for k > 17,
despite x being ω-power-free.

We return to a modified version of the proof of Theorem 7 in order to find bounds on
the length of words avoiding k-powers and k-anti-powers.

Theorem 12. For all integers ` > 1, k > 1, σ > 1 there exists N ′α(`, k, σ) such that
every word of length N ′α(`, k, σ) on [α] contains an `-power or (µ1, . . . , µk)-block-pattern
satisfying

∑k
s=1 µs

(
s
2

)
6 σ. Moreover,

k

(
k −

⌊
1

2
(
√

8σ + 1 + 1)

⌋)
6 N ′α(k, k, σ) 6

⌊
1

σ

(
k

2

)⌋
(k3 − k2 + k).

Proof. As in [5], the upper bound follows from the proof of the infinite case in Theorem
7. Let β =

⌊
1
σ

(
k
2

)⌋
. Let x be any word of length β(k3 − k2 + k). For each r ∈ {(k2 −

k)β, . . . , (k2 − k + 1)β}, consider the first k consecutive blocks of length r in x, denoted
by U0,r, U1,r, . . . , Uk−1,r. If x does not contain any element of D(x, k, σ), then there exist
i, j, r, s such that 0 6 i < j 6 k − 1, m 6 r < s 6 β + 1, Ui,r = Uj,r and Ui,s = Uj,s.
Setting w = x[is + 1..(i + 1)r] and v = x[js + 1..(j + 1)r], we have that v is a border of
w. Writing w = uv, we have |u| 6 (k − 1)β and

|w| = |u|+ |v| > |u|+ r − j(s− r) > |u|+ (k − 1)2β > k|u|.

By Lemma 6, we get that uk is a factor of x, i.e., x contains a k-power. The length of x
is chosen to accommodate k blocks of size at most (k2 − k + 1)β.

The lower bound is proven via a construction; we will show that the word

x = 0k−1(10k−1)k−b
1
2
(
√
8σ+1+1)c−1

avoids k-powers and (µ1, . . . , µk)-block-patterns with
∑k

s=1 µs
(
s
2

)
6 σ. Since σ > 1, we

have

k −
⌊

1

2
(
√

8σ + 1 + 1)

⌋
− 1 6 k − 1.
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If uk were a factor of x, either u would contain the letter 1, contradicting the fact that
that x has at most k − 1 copies of the letter 1, or u = 0m for some m > 1, contradicting
the fact that x has no factor equal to 0k. Hence, x avoids k-powers. We can see that for
every factor v of length km, at least

⌊
1
2
(
√

8σ + 1 + 1)
⌋

+ 1 blocks of v are equal to 0m. v
is a (µ1, . . . , µk)-block-pattern with

k∑
s=1

µs

(
s

2

)
>

(⌊
1
2
(
√

8σ + 1 + 1)
⌋

+ 1

2

)
>

1

8
(
√

8σ + 1 + 1)(
√

8σ + 1) > σ.

We can specialize Theorem 12 to the case of (k, λ)-anti-powers.

Corollary 13. For all integers ` > 1, k > 1, λ > 1, there exists Nα(`, k, λ) such that every
word of length Nα(`, k, λ) on [α] contains an `-power or (k, λ)-anti-power. Moreover,

k(k − λ) 6 Nα(k, k, λ) 6

⌊
k2 − k
λ2 + λ

⌋
(k3 − k2 + k).

Proof. If a word avoids (k, λ)-anti-powers, then it avoids (µ1, . . . , µk)-block-patterns with∑k
s=1 µs

(
s
2

)
6
(
λ+1
2

)
. Applying Theorem 12 with σ =

(
λ+1
2

)
yields the corresponding

bounds.

In particular, this improves upon the upper bound for Nα(k, k) (in their notation,
N(k, k)) in [5].

Corollary 14. For all k > 1,

Nα(k, k) 6 (k3 − k2 + k)

(
k

2

)
.

4 Avoiding Anti-Powers

This section is devoted to generalizing the results of Fici et al. [5] on infinite words
avoiding k-anti-powers to the case of (k, λ)-anti-powers. Many of these generalizations
can be achieved using proofs similar to those in [5]. We also provide a condensed proof of
the fact that the Sturmian words contain anti-powers of every order beginning at every
index.

We begin with a straightforward lemma.

Lemma 15. Suppose k > λ > j > 1. If a word avoids (k, λ)-anti-powers, then it avoids
(k − j, λ− j)-anti-powers.

Proof. It is enough to show that if a word avoids (k, λ)-anti-powers, then it avoids (k −
1, λ − 1)-anti-powers. Suppose that a word x contains a (k − 1, λ − 1)-anti-power w of
length km. If we extend to the right by m letters, we obtain a (k, λ)-anti-power, since we
increase the number of equal blocks, |{i : wi = wj}| for any j, by at most 1.
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Definition 16. We call an infinite word constant if it is of the form aω for some a ∈ A.

In order to classify the words avoiding (k, k−2)-anti-powers, we will use two results of
Fici, Restivo, Silva, and Zamboni. The case k = 3, that is, the avoidance of 3-anti-powers,
is handled in their paper [5].

Lemma 17. ([5], Lemma 9) Let x be an infinite word. If x avoids 3-anti-powers, then x
is a binary word.

Proposition 18. ([5], Proposition 10) Let x be an infinite word. If x avoids 3-anti-powers,
then it cannot contain a factor of the form 10n1 or 01n0 with n > 1.

Theorem 19.

1. For k > 1, the infinite words avoiding (k, k−1)-anti-powers are precisely the constant
words.

2. For k > 3, infinite words avoiding (k, k − 2)-anti-powers are the words that differ
from a constant word in at most one position.

3. For k > 3, there exist infinite aperiodic words avoiding (k, k − 3)-anti-powers.

Proof. The first claim is trivial; merely note that the avoidance of (k, k − 1)-anti-powers
implies that every factor whose length is a multiple of k is a k-power.

For the second claim, let x be a word avoiding (k, k−2)-anti-powers. By Lemma 15, x
avoids 3-anti-powers and (4, 2)-anti-powers. By Lemma 17, x is a binary word. Suppose,
seeking a contradiction, that x has at least 2 instances of 1 and at least 2 instances of 0,
i.e., x differs from a constant word in more than one position. Note x contains no factor
of the form 1100 or 0011, as these are (4, 2)-anti-powers. Thus x has a factor of the form
10a1b0 or 01a0b1 for some a > 1, b > 1; without loss of generality assume it is the first.
By Proposition 18, a = b = 1. However, under these conditions, x has a factor of the
form 1010, which is itself a (4, 2)-anti-power.

For the third claim, we exhibit a family of infinite aperiodic words avoiding (k, k− 3)-
anti-powers. Let {γi}ni=1 be an increasing sequence such that γi+1 > (k+1)γi for all i ∈ N.
Define a word x as follows:

x[j] =

{
1 if j = γi for some i;

0 otherwise.

We will show that x avoids (k, k− 3)-anti-powers. Note that if x[`+ 1..`+ n] has at least
two nonzero entries, then for some i we have

`+ 1 6 γi < (k + 1)γi 6 γi+1 6 `+ n.

This implies that n > kγi > k(`+ 1), so `+ 1 6 n
k
. Suppose, seeking a contradiction, that

the k consecutive blocks x[j+ 1..j+m], . . . , x[j+ (k− 1)m+ 1..j+ km] form a (k, k− 3)-
anti-power. At most k − 3 of these blocks can be 0m, so the word x[j + m + 1..j + km]

has at least two nonzero entries. Thus, j + m + 1 6 (k−1)m
k

. It follows that j + 1 < 0, a
contradiction.
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Theorem 20. For all k > 6, there exist aperiodic recurrent words avoiding (k, k − 5)-
anti-powers.

Proof. Let w be the limit of the sequence w0 = 0, wn+1 = wn1(k−3)|wn|wn. Note that each
occurrence of wn except the first is preceded and followed by 1(k−3)|wn|. Let v = v1v2 · · · vk
be a factor of w, where |vi| = ` > 0 for all i ∈ {1, . . . , k}. Let n be the largest integer
such that

|wn| = (k − 1)n < 2` < (k − 1)n+1 = |wn+1|.

Since w is recurrent, we can assume v appears after the first appearance of wn.
We claim that at most four blocks of v can intersect an occurrence of wn. Each

occurrence of wn intersects at most two blocks of v by the condition 2` > |wn|. Moreover,
any three occurrences of wn are separated by factors of 1(k−3)|wn| and 1(k−3)|wn+1|,. As

|v| = k` <
k

2
|wn+1| 6 (k − 3)|wn+1|,

v can intersect at most 2 occurrences of wn. We can conclude that at most four blocks of
v are not equal to 1`.

We now restrict ourselves to the setting of k-anti-powers. In [5], Fici et al. question
under what conditions aperiodic recurrent words can avoid k-anti-powers. It is known
this is possible for k > 6 and impossible for k 6 3, but nothing has been shown for k = 4
or 5. One class of words that we can exclude from this search are the aperiodic recurrent
words, including the well-studied class of Sturmian words.

Definition 21. A Sturmian word is an infinite word x such that for all n ∈ N, x has
exactly n+ 1 distinct factors of length n.

Note that Sturmian words are necessarily binary. An alternate characterization of
the Sturmian words in terms of irrationally mechanical words was given by Morse and
Hedlund [8] in 1938.

Definition 22. The upper mechanical word sθ,x and the lower mechanical word s′θ,x with
angle θ and initial position x are defined, respectively, by

sθ,x[n] =

{
1 if θ(n− 1) + x ∈ [1− θ, 1) mod 1

0 if θ(n− 1) + x ∈ [0, 1− θ) mod 1

s′θ,x[n] =

{
1 if θ(n− 1) + x ∈ (1− θ, 1) mod 1

0 if θ(n− 1) + x ∈ [0, 1− θ] mod 1

for some θ, x ∈ R. A word w is called irrationally mechanical if w = sθ,x or w = s′θ,x for
some x ∈ R and irrational θ ∈ R.

Theorem 23. ([8]) A word is Sturmian if and only if it is irrationally mechanical.
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Irrationally mechanical words can be interpreted through the lens of mathemati-
cal billiards. Consider the unit circle centered at the origin, parameterized by g(t) =
(cos(2πt), sin(2πt)) for t ∈ R. Place an (infinitesimal) ball at point g(x) on the circle and
shoot it in a straight trajectory toward g(x+ θ). At each moment the ball “bounces off”
the circle, it generates a 0 if it hits the point g(x) for x ∈ [0, 1 − θ) and a 1 otherwise.
The sequence generated by the trajectory of such a ball is precisely the word sθ,x. For
example, a trajectory generating the famous Fibonacci word is shown below.

Figure 1: The trajectory associated with the Fibonacci word sφ,φ = 01001010 . . ., where
φ is the golden ratio 1.6180339 . . .. A white point indicates that the letter 0 is generated,
and a black point indicates that the letter 1 is generated. The Fibonacci word can also be
generated as the limit of the sequence {Sn}∞n=1, where S1 = 0, S2 = 01, and Sn = Sn−1Sn−2
for n > 3.

It is well-known that every Sturmian word is uniformly recurrent (See, for example,
Proposition 2.2.30 of [7]). It is straightforward to see that any uniformly recurrent, aperi-
odic word is ω-power-free. We note that the following theorem of Fici et al. in [5] implies
that any Sturmian word has a k-anti-power starting at every position.

Theorem 24. ([5], Theorem 6) Let x be an ω-power-free word on a finite alphabet. For
every k > 1 there is an occurrence of a k-anti-power starting at every position of x.

We can also deduce a structural property of recurrent words avoiding k-anti-powers
in terms of their representation as a sesquipower.

Definition 25. Given a sequence {vn}∞n=1 of finite words, define words wn by w1 = v1
and wn+1 = wnvnwn. The limit of the sequence of words {wn}∞n=1 is called the sesquipower
induced by the sequence {vn}∞n=1.

It is well-known that an infinite word is recurrent if and only if it is a sesquipower
(see, for example, [7]). We show that if an aperiodic recurrent word avoids k-anti-powers,
then {vn}∞n=1 must contain words with powers of arbitrary order as factors.
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Theorem 26. Let x be the aperiodic sesquipower on a finite alphabet induced by {vn}∞n=1,
and suppose x avoids k-anti-powers for some k > 2. There exists a word u of length at
most k − 1 such that for all ` > 0, there is some n > 0 such that u` is a factor of vn.

Proof. Since x avoids k-anti-powers, Corollary 10 implies x is not ω-power-free. Thus,
there is some factor u of x such that u` is a factor for every ` > 0. We can assume
u is not an m-power for any m > 2; otherwise, let u = u(|u|/m). Suppose, seeking a
contradiction, that |u| > k. Note that the prefix of length k(|u| + 1) of uk+1 is a k-anti-
power, contradicting the fact that uk+1 is a factor of x that avoids k-anti-powers. Thus,
|u| 6 k − 1.

We now know arbitrarily long powers of u occur in x, but, in fact, we can show that
arbitrarily long powers of u occur in {vn}∞n=1. Since x is not periodic, there exists a k
such that vk is not a factor of uω. Let `0 be the largest power of u that is a factor of xk.
For sufficiently large `, there is some m > k such that u` is a factor of wm+1 but not of
wm. We can conclude u`−2`0−2 is a factor of vm+1, as wk is a border of wm. As `0 is fixed,
this implies that for all ` > 0, u` is a factor of some vm.

To summarize, if x is an aperiodic recurrent word avoiding k-anti-powers for some
k > 2, then x is not uniformly recurrent, hence not Sturmian, and is the sesquipower
induced by a sequence {vn}∞n=1 where the words {vn} contain arbitrarily long powers of
some word u of length at most k − 1.

5 Avoiding Powers and Anti-Powers

In [5], Fici et al. show that for every `, k > 1, there exists Nα(`, k) such that every word
of length Nα(`, k) on an alphabet of size α contains either an `-power or a k-anti-power.
They prove that for k > 2, one has k2 − 1 6 Nα(k, k) 6 k3

(
k
2

)
. We improve both these

lower and upper bounds.

Theorem 27. For any k > 3,

2k2 − 2k 6 Nα(k, k) 6 (k3 − k2 + k)

(
k

2

)
.

Proof. The upper bound is precisely the statement of Corollary 14.
For the lower bound, consider the word

x = 1(0k−11)k−20k−210k−2(10k−1)k−21.

We begin by showing that the border 1(0k−11)k−20k−210k−2 of length k2 − 2 avoids k-
powers and k-anti-powers. In their proof that k2 − 1 6 Nα(k, k), Fici et al. [5] show that
the word (0k−11)k−20k−210k−1 avoids k-powers and k-anti-powers, so we need only check
this border for k-power or k-anti-power prefixes. We can see immediately that there are
no k-power prefixes: as 1 6 m 6 k − 1, the first block of length m of the prefix of length
km begins with 1 while the second begins with 0. Suppose, seeking a contradiction, that
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the prefix of length km is a k-anti-power for some m. Since the prefix of length km would
need to contain at least k−1 instances of the letter 1 to distinguish the blocks, we require
km > 1 +k(k− 2). Hence, m > k− 1. We know the block length m is at most k− 1 since
1(0k−11)k−20k−210k−2 has length k2 − 2. However, as k(k − 2) + 1 = (k − 1)2, the last
two blocks must be 0k−21. The equality of these blocks contradicts the assumption that
the prefix of length km is a k-anti-power. 1(0k−11)k−20k−210k−2 avoids both k-powers and
k-anti-powers.

Thus, we need to consider only those factors of x intersecting nontrivially with the
prefix and suffix of length k2− 2. Fix such a factor y of length km starting at position j.

Suppose, seeking a contradiction, that y is a k-power. Let y` = x[j+`m..j+(`+1)m−1]
be the `th block of length m in y. Choose b such that the central letter 1 of x is contained
in yb. That is, j + bm 6 k(k − 1) 6 j + (b + 1)m − 1. Since k > 4 and there are
exactly two occurrences of the factor 10k−21 in x, the block yb cannot contain 10k−21
as a factor. Note y` 6= 0m for any nonnegative integers ` and m. As k > 4, one of
b− 2, b + 2 ∈ {0, . . . , k − 1}; without loss of generality assume it is b + 2. Thus, the two
factors yb−1yb and yb+1yb+2 of x each contain an occurrence of the factor 10k−21. However,
the only two occurrences of 10k−21 in x intersect while yb−1yb and yb+1yb+2 are disjoint,
so we’ve reached a contradiction. Therefore, x avoid k-powers.

Now we show that such a factor y is not a k-anti-power. Suppose it were. Since y
contains at least k − 1 occurrences of the letter 1, it follows that m > k − 2. In the case
m = k− 2, each block contains at most one occurrence of the letter 1, but there are only
k − 1 distinct such blocks. One can check m 6= k − 1, k by examining the period of the
prefix/suffix of length k(k − 2) + 1 or the middle section of length 2k − 1. Thus, taking
into consideration the length of x, we have k+1 6 m 6 2k−3. Consider all blocks except
yb (the block containing the central 1). Note that the letters of each block are determined
by the number of leading 0’s, which is at most k − 1. If there are ` blocks preceding yb,
and yb−1 has z leading zeros, then the numbers of leading zeros for all blocks except yb
are given by the multiset

{z + (`− 1)m, . . . , z +m, z, z − 2m− 2, z − 3m− 2, . . . , z − (k − `)m− 2} mod k (∗)

which has a repeated element if and only if the multiset

{(l − 1)m, . . . ,m, 0, (k − 2)m− 2, (k − 3)m− 2, . . . , `m− 2} mod k

has a repeated element. Assuming this has no repeated element, we have

{`m− 2, . . . , (k − 2)m− 2} ⊆ {`m, (`+ 1)m, . . . , (k − 1)m}.

The left-hand side has size k− `− 1 while the right-hand side has size at most k− `, and
both are arithmetic progressions with difference m. Thus, either `m − 2 ≡ `m mod k
or `m − 2 ≡ (` + 1)m mod k. In the former case, 2 ≡ 0 mod k, but this would imply
k = 2, contradicting the fact that k > 4. In the latter case, m ≡ −2 mod k, but this
also leads to a contradiction as k + 1 6 m 6 2k − 3. Therefore, x avoids k-powers and
k-anti-powers.
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Note that the above bounds are independent of the alphabet size. This leads to two
questions: does Nα(k, k) depend on the size of the alphabet, and if so, in what way?
Note that Nα(k, k) is nondecreasing as α increases. The following values of N2(k, k) were
computed by Shallit [11].

N2(1, 1) = 1 N2(2, 2) = 2 N2(3, 3) = 9 N2(4, 4) = 24 N2(5, 5) = 55

For small α and k, Nα(k, k) can be computed by testing all α-ary strings of small length
with a computer. In particular, we were able to check that N4(3, 3) = N2(3, 3) = 9, which
implies Nα(3, 3) = 9 for all α > 2. This follows because a word of length 9 avoiding 3-anti-
powers would use at most 4 letters. We also computed that N11(4, 4) = N2(4, 4) = 24.
It is straightforward to check that a word of length 24 avoiding 4-anti-powers would use
at most 11 letters. Thus, Nα(3, 3) and Nα(4, 4) are independent of α. It remains open if
this is true for all k.

Another scenario to investigate is under what conditions a word can be extended (in a
potentially larger alphabet) and still avoid k-powers and k-anti-powers. We aim to show
that for large enough α, no word of length Nα(k, k) − 1 can be extended (in a larger
alphabet) and avoid k-powers and k-anti-powers. To do so, we require the following
lemma.

Lemma 28. If there exists α > 2 such that Nα(k, k) < Nα+1(k, k), then one of the
following must hold:

1. Let Wk,α be the set of words on [α + 1] of length Nα(k, k) that avoid k-powers and
k-anti-powers. For every word w ∈ Wk,α, the two factors of w of length Nα(k, k)−1
each use exactly α + 1 letters.

2. There exists a word on [α] of the form

w = u1(1u1)
k−1x1 = u2(2u2)

k−1x2 = · · · = uα(αuα)k−1xα

that avoids k-powers and k-anti-powers, where x1, . . . , xα, u1, . . . , uα are finite words,
|u1| < · · · < |uα|, and for all 1 6 i < j 6 α,

gcd(|ui|+ 1, |uj|+ 1) 6
|uj|+ 1

k − 1
.

Proof. Suppose that the first case does not hold. There is a word w of length Nα(k, k)−1
on [α] such that (α + 1)w, the extension of w by the addition the letter α + 1 on the
left, avoids k-powers and k-anti-powers. Since |w| is maximal for words on [α] avoiding
k-powers and k-anti-powers, the extension aw contains a k-power or k-anti-power for any
a ∈ [α]. As (α + 1)w contains no k-anti-powers, neither does aw for any a ∈ [α]. Thus,
aw has a prefix that is a k-power for each a ∈ [α].

Hence,
w = u1(1u1)

k−1x1 = u2(2u2)
k−1x2 = · · · = uα(αuα)k−1xα,
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where x1, . . . , xα, u1, . . . , uα are finite words. Note that this implies w[m(|u`| + 1)] = `
for all 1 6 m 6 k − 1 and 1 6 ` 6 k. Without loss of generality (since the labels of the
letters are arbitrary), we can assume |u1| < · · · < |uα|. Suppose, seeking a contradiction,

that for some 1 6 i < j 6 α, we have gcd(|ui| + 1, |uj| + 1) > |uj |+1

k−1 . There is some
1 6 m 6 k− 1 such that m(|ui|+ 1) ≡ 0 mod (|uj|+ 1). Hence, m(|ui|+ 1) = d(|uj|+ 1)
for some 1 6 d 6 k − 1. However, this implies

i = w[m(|ui|+ 1)] = w[d(|uj|+ 1)] = j.

Since we assumed i < j, we’ve reached a contradiction.

An investigation of the failure of the first case leads to the following corollary.

Corollary 29. Suppose α > Nα(k,k)
k
− k + 3. If a word w has a factor u 6= w of length

Nα(k, k)− 1 that uses only α letters, w contains a k-power or k-anti-power.

Proof. Suppose, seeking a contradiction, that w is as above but contains no k-power or
k-anti-power. For all 1 6 i < j 6 α, we have by Lemma 28 that

1 6 gcd(|ui|+ 1, |uj|+ 1) 6
|uj|+ 1

k − 1
.

Thus, |uj| > k − 2 for all j > 2. Since the |uj|’s are strictly increasing, this implies
|uα| > (α− 2) + (k − 2) = α + k − 4. As w = uα(αuα)k−1xα, we have

|w| > k(α + k − 4) + k − 1 = kα + k2 − 3k − 1.

Since w is a word on [α] avoiding k-powers and k-anti-powers, kα+k2−3k−1 6 Nα(k, k).
If this inequality is not satisfied, then we can conclude w is as above but contains a k-power
or k-anti-power.

6 Block Patterns and Their Expectation

In this section, we return to the general setting of block-patterns to calculate the expected
number of (µ1, . . . , µn)-block-patterns in a word of length n on an alphabet of size α. The
special case of this expectation for k-powers was calculated by Christodoulakis, Christou,
Crochemore, and Iliopoulos in [2].

Theorem 30. ([2], Theorem 4.1) On average, a word of length n has Θ(n) k-powers.
More precisely, this number is

(n+1)
α1−k(1− α(1−k)bn

k
c)

1− α1−k − k

αk−1

(
1

1− α1−k −
bn
k
cα(1−k)bn

k
c

1− α1−k +
α1−k(1− α(1−k)(bn

k
c−1))

(1− α1−k)2

)
.

Theorem 31. On average, a word of length n has O(n2) and Ω(n) (µ1, . . . , µk)-block-
patterns. More precisely, the expected number of (µ1, . . . , µk)-block-patterns is

bn
k
c∑

m=1

(n+ 1− km)
k!

µ1! · · ·µk!
1

αkm

µ1+···+µk∏
`=1

(αm − (`− 1)) .
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Proof. Let x be a word of length n, drawn uniformly at random. Let

Xi,j =

{
1 if x[i..j] is a (µ1, . . . , µk)-block-pattern;

0 otherwise.

Let N =
∑

i6j Xi,j. That is, N is the number of (µ1, . . . , µk)-block-patterns in x. We
have

E [N ] = E

[
n−k+1∑
i=1

n∑
j=i+1

Xi,j

]

=
n−k+1∑
i=1

n∑
j=i+1

E [Xi,j]

=
n−k+1∑
i=1

n∑
j=i+1

P (x[i..j] is a (µ1, . . . , µk)-block-pattern) .

Let us count the number of (µ1, . . . , µk)-block-patterns of length αj+1−i on [α]. Par-
tition [k] into unlabeled parts with µs parts of size s, and choose µ1 + · · · + µk distinct
ordered elements from α(j+1−i)/k. We can assign elements to parts by order of appearance
of the parts, which will yield a (µ1, . . . , µk)-block-pattern. Moreover, the block-pattern
is uniquely determined by the choice of an unlabeled partition and ordered m-tuple. Let
[A] denote the indicator function of the event A. We have

E [N ] =
n−k+1∑
i=1

n∑
j=i+1

k!

µ1! · · ·µk!
1

αj+1−i

µ1+···+µk∏
`=1

(
α(j+1−i)/k − (`− 1)

)
[j + 1− i ≡ 0 mod k]

=

bn
k
c∑

m=1

(n+ 1− km)
k!

µ1! · · ·µk!
1

αkm

µ1+···+µk∏
`=1

(αm − (`− 1)) .

Since there are only
(
n
2

)
+ n nonempty factors of x, we have E [N ] = O(n2). Note that

the expectation is minimized for k-powers, where µk = 1 and µs = 0 for all s < k. Thus,
from Theorem 30, we have E [N ] = Ω(n).

Corollary 32. On average, a word of length n has Θ(n2) k-anti-powers. More precisely,
the expected number of k-anti-powers is

bn
k
c∑

m=1

(n+ 1− km)
k−1∏
`=0

(
1− `

αm

)
.

Proof. Let x be a word of length n on an alphabet of size α. The formula follows Theorem
31 in the case µ1 = k and µs = 0 for s > 1. Restricting the sum (of nonnegative terms)
to the range

⌊
n
4k

⌋
6 m 6

⌊
3n
4k

⌋
, we see

E [#(k-anti-powers in x)] >
( n

2k
− 1
)(n

4
+ 1
)(

1− k − 1

αb
n
4k
c

)k−1
.
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For n > 4k
(

1 + logα
k−1

1−2−k−1

)
, we have

(
1− k−1

αb
n
4k
c

)k−1
> 1

2
, hence

E [#(k-anti-powers in x)] >
n2

16k
− n

4
− 1

2
= Ω(n2).

There are
(
n
2

)
+n nonempty factors of x, so we have E [#(k-anti-powers in x)] = O(n2).

7 Further Directions

Recall that Theorem 7 shows that having a small enough density of (µ1, . . . , µk)-block-
pattern prefixes with few equal blocks implies the existence of arbitrarily long power
prefixes. We believe that a strengthening of this argument could yield a lower bound on
the density of P (x, k), the set of m ∈ N such that the prefix of x of length km is a k-power.
In Section 3, we also remark that Theorem 6 of [5], stating that if x is an ω-power-free
word then AP (x(j), k) is nonempty for every j and k, is false if we allow infinite alphabets.
Perhaps there is a finer characterization of which ω-power-free words fail this condition.

As in the bounds found by Fici et al. [5], our upper and lower bounds for Nα(k, k)
are polynomials in k whose degrees differ by 3. If it is the case that Nα(k, k) depends on
α, such a dependence could be used to strengthen the bounds for Nα(k, k). Given the
few known values of Nα(k, k), it seems plausible that k always divides Nα(k, k). On the
other hand, if Nα(k, k) is independent of α, this alone would be an interesting structural
property of the set of words avoiding k-powers and k-anti-powers achieving the length
Nα(k, k) for arbitrary α. We believe the second case holds.

Conjecture 33. The quantity Nα(k, k) is independent of α.

Whether there exist aperiodic recurrent words avoiding 4 or 5 powers remains an open
question. One may wish to investigate other large classes of words, such as the morphic
words, and their potential to avoid k-anti-powers. A natural generalization is to find
the structure of infinite words avoiding (µ1, . . . , µk)-block-patterns other than (k, λ)-anti-
powers.

Lastly, fix a finite alphabet A = {a1, . . . , aα}. The Parikh vector P(w) = (e1, . . . , eα)
of a finite word w on A has entry ei equal to the number of instances of ai in w. Define
an abelian (µ1, . . . , µk)-block-pattern to be a word of the form w = w1 · · ·wk where, if the
set {1, . . . , k} is partitioned via the rule i ∼ j ⇐⇒ P(wi) = P(wj), there are µs parts of
size s for all 1 6 s 6 k. One may ask questions similar to those addressed in this paper
for abelian (µ1, . . . , µk)-block-patterns.
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