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Abstract

Given a finite poset P = (P,6) and two distinct elements x and y, we let
prP(x ≺ y) denote the fraction of linear extensions of P in which x precedes y. The
balance constant δ(P) of P is then defined by

δ(P) = max
x 6=y∈P

min {prP(x ≺ y),prP(y ≺ x)} .

The 1/3-2/3 conjecture asserts that δ(P) > 1
3 whenever P is not a chain, but except

from certain trivial examples it is not known when equality occurs, or even if balance
constants can approach 1/3.

In this paper we make some progress on the conjecture by exhibiting a sequence
of posets with balance constants approaching 1

32(93−
√

6697) ≈ 0.3488999, answer-
ing a question of Brightwell. These provide smaller balance constants than any
other known nontrivial family.

Mathematics Subject Classifications: 06A07, 05A14

1 Introduction

1.1 Definitions

Given a finite poset (partially ordered set) P = (P,6), and distinct elements x, y ∈ P ,
we let prP(x ≺ y) denote the proportion of linear extensions of P in which x precedes y.
In particular, prP(x ≺ y) + prP(y ≺ x) = 1, and if x 6 y in P then prP(x ≺ y) = 1.

The balance constant δ(P) is then defined by

δ(P) = max
x 6=y∈P

min {prP(x ≺ y), prP(y ≺ x)} .

(If P consists of one element, we let δ(P) = 0.) Thus δ(P) ∈ [0, 1
2
] for any finite poset P ;

in fact δ(P) = 0 exactly when P is a chain.
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1.2 The 1/3-2/3 Conjecture

The main conjecture about balance constants is the famous 1/3-2/3 conjecture.

Conjecture 1 (The 1/3-2/3 conjecture). If P is a finite poset which is not a chain, then
δ(P) > 1

3
.

This conjecture was first proposed in 1968 by Kislitsyn [9], then again by Fredman in
1976 [6] and Linial [10]. All three were motivated by the information-theoretic context of
comparison sorting, but the problem is of course interesting in its own right.

The 1/3-2/3 conjecture has been studied extensively. The best bound which has been
shown for all posets is due to Brightwell, Felsner, and Trotter [3] in 1995, who showed
that

δ(P) >
5−
√

5

10
≈ 0.276393

whenever P is not a chain. This improved a result of Kahn and Saks [8] in 1984 which
showed the weaker estimate δ(P) > 3

11
≈ 0.272727.

While still open for general partially ordered sets, the conjecture has been proven for
several other families of partially ordered sets, for example:

• posets of width 2 (proved by Linial [10] in 1984)

• posets with a nontrivial automorphism (proved by Ganter, Hafuer, and Poguntke
[7] in 1987),

• posets of height 2 (proved by Trotter, Gehrlein, Fishburn [17] in 1992),

• 5-thin posets (proved by Brightell and Wright [4] in 1992, though [13] implies it for
6-thin posets, see below),

• semiorders (proved by Brightwell [5] in 1989),

• N-free posets (proved by Zaguia [18] in 2012).

• and posets whose Hasse diagram is a forest (proved by Zaguia [19] in 2016).

In 2006, Peczarski described an even stronger conjecture, the so-called “gold partition
conjecture”, which implies the 1/3-2/3 conjecture. Peczarski has proved the gold partition
conjecture for several cases as well:

• posets with at most 11 elements [12] in 2006,

• 6-thin posets [13] in 2008,

• posets with a nontrivial automorphism [14] in 2017,

• N-free posets [14] in 2017,

among others [14].
An extensive survey on the problem is given by Brightwell [2], which describes it as

“one of the major open problems in the combinatorial theory of partial orders”.
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1.3 Posets with small balance constant

The following example shows that the constant 1/3 in best possible.

Example 2. Consider the poset T with three elements {a, b, c} with the single relation
a 6 b (shown in Figure 1). Then δ(T ) = 1

3
.

Figure 1: The poset T with δ(T ) = 1/3.

It follows that linear sums of T and the singleton poset have balance constant 1/3.

However, other than this example, little is known about the possible sets of balance
constants. For example, it is not known whether there are any other posets which achieve
a balance constant of exactly 1/3, other than those in the example above. It is not even
known whether balance constants can be arbitrarily close to 1/3. On the other hand, for
posets of width 2, Aigner [1] showed that posets which have width 2, and are not linear
sums of copies of the singleton poset and T , must have balance constant strictly greater
than 1/3.

In Brightwell’s survey [2, Section 4], an example of partially ordered set with A with
δ(A) = 16

45
≈ 0.355556 is given. Brightwell also gives a family of partially ordered sets with

balance constant approaching 7−
√
17

8
≈ 0.359162, and asks the following two questions.

Question 3. Is there a poset with balance constant between δ(T ) = 1
3

and δ(A) = 16
45

?

Question 4. Is 7−
√
17

8
≈ 0.359612 the lowest possible limit point other than 1/3?

Olson and Sagan [11] resolve the first question by finding a poset C with

δ(C) =
37

106
≈ 0.34905660

which at the time of submission of this paper, appeared to be the smallest balance constant
exceeding 1/3 in the literature. (See the next subsection for some improvements.) This
poset is shown in Figure 2.

The aim of this paper is to answer both questions with a certain infinite family of
partially ordered sets. We will prove the following theorem.

Theorem 5. There exists a sequence of posets whose balance constants approach

κ =
1

32

(
93−

√
6697

)
≈ 0.34889999.
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Figure 2: The poset C from [11, Figure 13], with δ(C) = 37/106.

1.4 Later results

Subsequent to the submission of this paper, Peczarski [15] published numerical work which
gives examples of partially ordered sets whose balance constants appear to approach a
smaller value. In particular, there is an example of a poset L such that

δ(L) =
39148472052

112223608848
≈ 0.3488434604.

This also answers the two questions supplied by Brightwell.
In private communications, Sah [16] has also constructed a family of posets whose

balance constants approach

5864893 + 27
√

57

16812976
≈ 0.34884346742240946.

Sah [16] has also proven that there exists an ε > 0 such that δ(P) > 1
3

+ ε for all posets
P of width 2 with δ(P) 6= 1

3
, thus improving the result of [1].

1.5 Roadmap

The rest of the paper is divided as follows. In Section 2 we introduce the main players in
our proof, and introduce the notation which we will need for the construction. Section 3
then provides explicit formulas for the number of linear extensions of our family of posets,
and finally in Section 4 we compile these results together to prove the main theorem.

2 Setup

Definition 6. Throughout the paper let κ = 1
32

(
93−

√
6697

)
.

We first define a “master poset” from which our construction will derive.

Definition 7. Let P∞ denote the partially ordered set whose elements consist of two
infinite N-indexed chains

a1 < a2 < a3 < · · ·
b1 < b2 < b3 < · · ·
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together with the additional covering relations that

• ai 6 bi+1 whenever i ≡ 1, 2, 3, 4 (mod 5), and

• bj 6 aj+2 whenever j ≡ 0, 2, 4 (mod 5).

All our constructions will be obtained by taking the bottom-most elements of either
chain.

Definition 8. For positive integers m and n we let P(m,n) denote the sub-poset P∞
induced by taking the elements {a1, . . . , am, b1, . . . , bn}.

The example P(15, 15) is shown in Figure 3.

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

a8 b8

a9 b9

a10 b10

a11 b11

a12 b12

a13 b13

a14 b14

a15 b15

Figure 3: A picture of P(15, 15).

Our main result is the following.

Theorem 9. As k →∞,
δ (P(5k, 5k))→ κ.

To approach this result, we introduce further notation.
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Definition 10. Let E(m,n) denote the number of linear extensions of P(m,n). For
convenience we let E(0, n) = E(m, 0) = 1 for positive integers m and n, but we leave
E(0, 0) undefined.

Then E(m,n) may be computed recursively in the following way.

Proposition 11. For positive integers m and n, we have

E(m,n) =


E(m− 1, n) am > bn

E(m,n− 1) am < bn

E(m− 1, n) + E(m,n− 1) otherwise.

Proof. In a linear extension of P(m,n), either am or bn must be the maximum element,
and so the recursion follows by considering cases on this.

According to Proposition 11, the interesting cases are those for which P(m,n) has no
maximum element. To this end, we introduce the following terminology.

Definition 12. We say the pair (m,n) of positive integers is admissible if P(m,n) has
no maximal element.

One can in fact characterize all the admissible pairs exactly. We obtain, essentially by
definition, the following characterization.

Lemma 13. The pair (m,n) is admissible if and only if it is one of the following forms:

1. m = 5k + 4 and n ∈ {5k + 3, 5k + 4}.

2. m = 5k + 3 and n ∈ {5k + 1, 5k + 2, 5k + 3}.

3. m = 5k + 2 and n ∈ {5k + 1, 5k + 2}.

4. m = 5k + 1 and n ∈ {5k, 5k + 1}.

5. m = 5k and n ∈ {5k − 2, 5k − 1, 5k, 5k + 1}.

Remark 14. Note that this means that (m,n) is admissible only if |m− n| 6 5, in which
case only the residues m mod 5, n mod 5 are relevant. In particular, if (m,n) is admissible
then so is (m+ 5, n+ 5).

3 Enumeration

We now proceed to give explicitly compute E(m,n) using induction. Several base cases
are needed for this proof; we do not address these here, but simply record the results in
Appendix A. In order to make this possible, we make the following observation.

Lemma 15. If (m,n) is admissible then

E(m+ 10, n+ 10) = 164E(m+ 5, n+ 5)− 27E(m,n).
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Proof. When max(m,n) 6 15, the result follows by a manual inspection; see Appendix A
for a table of values of E(m,n). For the remaining cases, we proceed by induction on
m+n. Assume (m,n) is admissible and max(m,n) > 15. First assume am and bn are not
comparable, it follows that am−5 and bn−5 are not comparable, and am−10 and bn−10 are
not comparable. Therefore, according to Proposition 11, we have

E(m,n) = E(m− 1, n) + E(m,n− 1)

E(m− 5, n− 5) = E(m− 6, n− 5) + E(m− 5, n− 6)

E(m− 10, n− 10) = E(m− 11, n− 10) + E(m− 10, n− 11)

By applying the inductive hypothesis, we have both

E(m− 1, n) = 164E(m− 6, n− 5)− 27E(m− 11, n− 10),

E(m,n− 1) = 164E(m− 5, n− 6)− 27E(m− 10, n− 11).

Thus it also follows that

E(m,n) = 164E(m− 5, n− 5)− 27E(m− 10, n− 10)

as desired.
The case where am > bn is done in the same fashion. This implies that am−5 > bn−5

and am−10 > bn−10, and so one applies Proposition 11 to conclude the same result, the
only difference being that the terms E(m,n− 1), E(m− 5, n− 6) and E(m− 10, n− 11)
are omitted. One proceeds in exactly the same way for am < bn.

This implies that the values of E(m,n) satisfy a linear recurrence. Thus it makes
sense to introduce the roots of the corresponding characteristic polynomial.

Definition 16. Throughout this paper, let

θ = 82 +
√

6697 ≈ 163.8352

θ = 82−
√

6697 ≈ 0.1648

be the two roots of the polynomial t2 − 164t+ 27.

Then, a direct computation using the results of Appendix A allows us to compute
explicit closed forms:

Proposition 17. We have the following twelve closed forms.

E(5k + 4, 5k + 4) =
3025

2
√

6697

(
θk − θk

)
+

37

2

(
θk + θ

k
)

(1)

E(5k + 4, 5k + 3) =
1883

2
√

6697

(
θk − θk

)
+

23

2

(
θk + θ

k
)

(2)

E(5k + 3, 5k + 3) =
571√
6697

(
θk − θk

)
+ 7

(
θk + θ

k
)

(3)
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E(5k + 3, 5k + 2) =
741

2
√

6697

(
θk − θk

)
+

9

2

(
θk + θ

k
)

(4)

E(5k + 3, 5k + 1) =
170√
6697

(
θk − θk

)
+ 2

(
θk + θ

k
)

(5)

E(5k + 2, 5k + 2) =
401

2
√

6697

(
θk − θk

)
+

5

2

(
θk + θ

k
)

(6)

E(5k + 2, 5k + 1) =
247

2
√

6697

(
θk − θk

)
+

3

2

(
θk + θ

k
)

(7)

E(5k + 1, 5k + 1) =
77√
6697

(
θk − θk

)
+
(
θk + θ

k
)

(8)

E(5k + 1, 5k) =
93

2
√

6697

(
θk − θk

)
+

1

2

(
θk + θ

k
)

(9)

E(5k, 5k + 1) =
61

2
√

6697

(
θk − θk

)
+

1

2

(
θk + θ

k
)

(10)

E(5k, 5k) =
77

3
√

6697

(
θk − θk

)
+

1

3

(
θk + θ

k
)

(11)

E(5k, 5k − 1) =
125

6
√

6697

(
θk − θk

)
+

1

6

(
θk + θ

k
)

(12)

E(5k, 5k − 2) =
16√
6697

(
θk − θk

)
. (13)

4 Computing the balance constant

Throughout this section, we fix the poset P = P(5k, 5k). With Proposition 17, we now
turn to estimating the balance constant of P . The point is that Proposition 17 essentially
lets us compute prP(ai ≺ bj) for any i and j already. For example, we already have that

prP(a5k ≺ b5k) =
E(5k, 5k − 1)

E(5k, 5k)

=

1
6

(
125√
6697

+ 1
)

1
3

(
77√
6697

+ 1
) as k →∞

=
1

32

(√
6697− 61

)
= 1− κ.

Thus our goal is to show the following.

Proposition 18. For any i, j ∈ {1, . . . , 5k} we have

min {prP(ai ≺ bj), prP(aj ≺ bi)} 6 κ.
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Proof. We give the full proof of Proposition 18 only in the case where i ≡ 1 (mod 5), since
the other cases can be resolved in exactly the same fashion. For notational convenience,
we set

i = 5t+ 1

s = k − t.

We will assume t > 0, since the t = 1 case corresponds to prP(a1 ≺ b1) which is in any
case equal to prP(b5n ≺ a5n) by symmetry.

Consider a linear extension ≺ of P then. Since b5t−1 6 a5t+1 6 b5t+2, we have three
distinct possibilities.

4.1 Case b5t−1 ≺ a5t+1 ≺ b5t

Then if we add the relation b5t−1 6 a5t+1 6 b5t to P , the resulting poset is isomorphic to
the linear sum of P(5t, 5t − 1) and an inverted copy of P(5s + 1, 5s − 1). An example
with (k, t) = (3, 1) is shown in Figure 4.

a1 b1

a2 b2

a3 b3

a4 b4

a5

b5

b6

a7 b7

a8 b8

a9 b9

a10 b10

a11 b11

a12 b12

a13 b13

a14 b14

a15 b15

a6

Figure 4: Adding the condition b4 6 a5 6 b5 to P(15, 15).
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The number of linear extensions in this case is then

E(5t, 5t− 1)E (5s+ 1, 5s− 1) = E(5t, 5t− 1)E (5s, 5s− 1)

=

[
1

6

(
125√
6997

+ 1

)
+ o(1)

]2
θk

=

[
11161 + 125

√
6697

12 · 6697
+ o(1)

]
θk

≈ (0.17745 + o(1))θk.

4.2 Case b5t ≺ a5t+1 ≺ b5t+1

Then if we add the relation b5t 6 a5t+1 6 b5t+1 to P , the resulting poset is isomorphic to
the linear sum of P(5t, 5t) and an inverted copy of P(5s, 5s− 1).

The number of linear extensions in this case is then E(5t, 5t)E(5s, 5s−1), which equals

E(5t, 5t)E(5s, 5s− 1)

=

[
1

3

(
77√
6997

+ 1

)
+ o(1)

] [
1

6

(
125√
6997

+ 1

)
+ o(1)

]
θk

=

[
8161 + 101

√
6697

9 · 6697
+ o(1)

]
θk

≈ (0.27253 + o(1))θk.

4.3 Case b5t+1 ≺ a5t+1 ≺ b5t+2

Then if we add the relation b5t 6 a5t+1 6 b5t+1 to P , the resulting poset is isomorphic to
the linear sum of P(5t, 5t+ 1) and an inverted copy of P(5s− 1, 5s− 1).

Thus the number of linear extensions in this case is equal to

E(4t, 5t+ 1)E(5s− 1, 5s− 1)

=

[
1

2

(
61√
6997

+ 1

)
+ o(1)

] [
1

2

(
3025√
6997

+ 37

)
+ o(1)

]
θk−1

=

[
1411 + 15

√
6697

2 · 6697
+ o(1)

]
θk

≈ [0.19699 + o(1)] θk.

4.4 Collating the cases

On the other hand, the total number of linear extension of P is

E(5t, 5t) =

[
1

3

(
77√
6697

+ 1

)
+ o(1)

]
θk
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≈ (0.64697 + o(1))θk.

So, division gives

prP (b5t−1 ≺ a5t+1 ≺ b5t) =
1

6

(
− 29√

6697
+ 2

)
+ o(1)

≈ 0.27427 + o(1)

prP (b5t ≺ a5t+1 ≺ b5t+1) =
1

6

(
125√
6697

+ 1

)
+ o(1)

≈ 0.42124 + o(1)

prP (b5t+1 ≺ a5t+1 ≺ b5t+2) =
1

2

(
−32√
6697

+ 1

)
+ o(1)

≈ 0.30449 + o(1).

It follows that

min (prP(a5t+1 ≺ bj), prP(bj ≺ a5t+1)) <
1

3
< κ

for j ∈ {5t, 5t+ 1}, assuming t > 0. Hence it holds for all j, since for j /∈ {5t, 5t+ 1} the
left-hand side vanishes.

This completes the proof of Proposition 18 when i ≡ 1 (mod 5); the other four cases
are analogous.
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A Examples of values

The following table lists the values of E(m,n) for max(m,n) 6 15 (except for E(0, 0)
undefined). The pairs (m,n) which are admissible are bolded.
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n = 0 1 2 3 4 5 6 7 8 9 10
m = 0 1 1 1 1 1 1 1 1 1 1
m = 1 1 2 2 2 2 2 2 2 2 2 2
m = 2 1 3 5 5 5 5 5 5 5 5 5
m = 3 1 4 9 14 14 14 14 14 14 14 14
m = 4 1 4 9 23 37 37 37 37 37 37 37
m = 5 1 4 9 32 69 106 143 143 143 143 143
m = 6 1 4 9 32 69 175 318 318 318 318 318
m = 7 1 4 9 32 69 175 493 811 811 811 811
m = 8 1 4 9 32 69 175 668 1479 2290 2290 2290
m = 9 1 4 9 32 69 175 668 1479 3769 6059 6059
m = 10 1 4 9 32 69 175 668 1479 5248 11307 17366
m = 11 1 4 9 32 69 175 668 1479 5248 11307 28673
m = 12 1 4 9 32 69 175 668 1479 5248 11307 28673
m = 13 1 4 9 32 69 175 668 1479 5248 11307 28673
m = 14 1 4 9 32 69 175 668 1479 5248 11307 28673
m = 15 1 4 9 32 69 175 668 1479 5248 11307 28673

n = 11 12 13 14 15
m = 0 1 1 1 1 1
m = 1 2 2 2 2 2
m = 2 5 5 5 5 5
m = 3 14 14 14 14 14
m = 4 37 37 37 37 37
m = 5 328 365 402 439 476
m = 6 318 318 318 318 318
m = 7 811 811 811 811 811
m = 8 2290 2290 2290 2290 2290
m = 9 6059 6059 6059 6059 6059
m = 10 23425 29484 35543 41602 47661
m = 11 52098 52098 52098 52098 52098
m = 12 80771 132869 132869 132869 132869
m = 13 109444 242313 375182 375182 375182
m = 14 138117 242313 617495 992677 992677
m = 15 166790 242313 859808 1852485 2845162
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