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Abstract

We show how the combinatorial interpretation of the normalized median Genoc-
chi numbers in terms of multiset tuples, defined by Hetyei in his study of the al-
ternation acyclic tournaments, is bijectively equivalent to previous models like the
normalized Dumont permutations or the Dellac configurations, and we extend the
interpretation to the Kreweras triangle.
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1 Introduction

For all pair of integers n < m, the set {n, n+ 1, . . . ,m} is denoted by [n,m], and the set
[1, n] by [n]. The set of the permutations of [n] is denoted by Sn.

1.1 Genocchi numbers, Kreweras triangle, Dumont permutations

The Genocchi numbers (G2n)n>1 = (1, 1, 3, 17, 155, 2073, . . .) [13] and median Genocchi
numbers (H2n+1)n>0 = (1, 2, 8, 56, 608, . . .) [14] can be defined as the positive integers
G2n = g2n−1,n and H2n+1 = g2n+2,1 [7] where (gi,j)16j6i is the Seidel triangle, defined by
g1,1 = 1 and

g2p,j = g2p−1,j + g2p,j+1,

g2p+1,j = g2p+1,j−1 + g2p,j
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for all p > 1, where g2p,p+1 = g2p+1,0 = 0. It is well known that H2n+1 is divis-
ible by 2n for all n > 0 [1]. The normalized median Genocchi numbers (hn)n>0 =
(1, 1, 2, 7, 38, 295, . . .) [15] are the positive integers defined by

hn = H2n+1/2
n.

Among the first combinatorial models of the (median) Genocchi numbers [5, 7, 1, 6], there
is the set PD2n of the Dumont permutations of the second kind, that is, the permutations
σ ∈ S2n+2 such that σ(2i − 1) > 2i − 1 and σ(2i) < 2i for all i ∈ [n + 1], whose
cardinality #PD2n equals H2n+1 for all n > 0. In [11], Kreweras introduced the subset
PD2Nn ⊂ PD2n of the normalized permutations, i.e., the permutations σ ∈ PD2n such
that σ−1(2i) < σ−1(2i+ 1) for all i ∈ [n], whose number is #PD2Nn = hn.

Remark 1. For all (k, l) ∈ [n]2, let PD2Nn,k (respectively PD2N ′n,l) be the subset of the
permutations σ ∈ PD2Nn such that σ(1) = 2k (respectively σ(2n + 2) = 2l + 1). It is
easy to see that {PD2Nn,k : k ∈ [n]} and {PD2N ′n,l : l ∈ [n]} are partitions of PD2Nn.

In [12], by introducing the model of the alternating diagrams and connecting them
bijectively to the normalized Dumont permutations, Kreweras and Barraud proved that

#PD2Nn,k = #PD2N ′n,k = hn,k

where the Kreweras triangle (hn,k)n>1,k∈[n] [11] (see Figure 1.1) is defined by h1,1 = 1 and,
for all n > 2 and k ∈ [3, n],

hn,1 = hn−1,1 + hn−1,2 + . . .+ hn−1,n−1,

hn,2 = 2hn,1 − hn−1,1, (1)

hn,k = 2hn,k−1 − hn,k−2 − hn−1,k−1 − hn−1,k−2.

1
1 1

2 3 2
7 12 12 7

38 69 81 69 38
295 552 702 702 552 295

. .
. . . .

Figure 1: The Kreweras triangle.

For example, we depict in Figure 1.1 how are partitioned the h3 = 2 + 3 + 2 elements
of PD2N3.

For all n > 1 and k ∈ [n], the Kreweras triangle has the visible two properties

hn,n = hn−1, (2)

hn,k = hn,n−k+1, (3)
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61427583 61427385

PD2N3,1

PD2N3,2

PD2N3,3

PD2N ′3,1 PD2N ′3,2 PD2N ′3,3

Figure 2: The partition of PD2N3.

of which [12] implies interpretations in terms of PD2Nn. Formula (2) follows from the
bijection σ ∈ PD2N ′n,n 7→ σ|[2n] ∈ PD2Nn−1. Afterwards, let σ ∈ PD2Nn and (k, l) ∈ [n]2

such that σ(1) = 2k and σ(2n + 2) = 2l + 1, we define two permutations σt and σr as
follows.

– If k = l, we define σt as σ, otherwise it is defined as the following composition of σ
with a 4-cycle : (

2k 2l 2l + 1 2k + 1
)
◦ σ.

– We define σr by σr(i) = 2n+ 3− σ(2n+ 3− i) for all i ∈ [2n+ 2].

The maps σ 7→ σt and σ 7→ σr are involutions of PD2Nn which induce bijections

PD2Nn,k ∩ PD2N ′n,l ←→ PD2Nn,l ∩ PD2N ′n,k,

PD2Nn,l ∩ PD2N ′n,k ←→ PD2Nn,n−k+1 ∩ PD2N ′n,n+1−l,

from which follows Formula (3), which can also be obtained by induction from System (1)
through the following easy equality (see also [12])

hn,k − hn,k−1 =
n−1∑
i=k

hn−1,i −
k−2∑
i=1

hn−1,i

for all n > 1 and k ∈ [n] (where hn,0 is defined as 0).
There are several other bijectively equivalent models of the Kreweras triangle [4, 12, 9,

8, 2]. The Kreweras triangle also appeared recently in the theory of finite type Vassiliev
knot invariants [3], more precisely through a polynomial generalization.

1.2 The Dellac configurations

The Dellac configurations [4] form the earliest combinatorial model of the Kreweras tri-
angle and provide a geometrical analogous of the previous results. Recall that a Dellac
configuration of size n is a tableau D, made of n columns and 2n rows, that contains 2n
dots such that :
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– every row contains exactly one dot;

– every column contains exactly two dots;

– if there is a dot in the box (j, i) of D (i.e., in the intersection of its j-th column
from left to right and its i-th row from bottom to top), then j 6 i 6 j + n.

The set of the Dellac configurations of size n is denoted by DCn. It can be partitionned
into {DCn,k : k ∈ [n]} or {DC ′n,l : l ∈ [n]} where DCn,k (respectively DC ′n,l) is the subset
of the tableaux D ∈ DCn whose box (k, n+ 1) (respectively (l, n)) contains a dot, for all
(k, l) ∈ [n]2. In [8, Proposition 3.3], Feigin constructs a bijection f1 : PD2Nn → DCn

such that f1(PD2Nn,k) = DCn,k, hence hn,k = #DCn,k, for all k ∈ [n]. One can also
check that f1(PD2N ′n,k) = DC ′n,k, so hn,k = #DC ′n,k. For example, the h3 = 2 + 3 + 2
elements of DC3 are partitionned as depicted in Figure 3.

DC3,1

DC3,2

DC3,3

DC ′3,1 DC ′3,2 DC ′3,3

Figure 3: The partition of DC3.

The combinatorial interpretations of Formulas (2) and (3) in terms of Dellac configu-
rations are simple. Every element of DCn−1 can be obtained by deleting the n-th colomn
(from left to right) and the (n + 1)-th and 2n-th rows (from bottom to top) of a unique
element of DC ′n,n, which gives Formula (2). Afterwards, for all D ∈ DCn,k ∩DC ′n,l,

– let Dt ∈ DCn,l ∩DC ′n,k be obtained by deleting the dots of the boxes (k, n+ 1) and
(l, n) of D and placing dots in the boxes (l, n+ 1) and (k, n),

– let Dr ∈ DCn,n+1−l ∩DC ′n,n−k+1 be obtained by rotating D through 180◦,
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the maps D 7→ Dt and D 7→ Dr are involutions of DCn that induce bijections

DCn,k ∩DC ′n,l ←→ DCn,l ∩DC ′n,k,
DCn,l ∩DC ′n,k ←→ DCn,n−k+1 ∩DC ′n,n+1−l,

from which follows Formula (3).

1.3 Hetyei’s model

In his study of the alternation acyclic tournaments [10], Hetyei proved that the median
Genocchi number H2n+1 is the number of pairs

((a1, . . . , an), (b1, . . . , bn)) ∈ Zn × Zn

such that (ai, bi) ∈ [0, n] × [n] for all i ∈ [n], and the set [n] is contained in the multiset
{a1, b1, . . . , an, bn}. He then defined a free group action of (Z\2Z)n on the set of these
pairs, whose orbits are indexed by the n-tuples ({ui, vi})i∈[n] such that (ui, vi) ∈ [i]2 for
all i ∈ [n] and the multiset {u1, v1, . . . , un, vn} contains [n], which raises a new proof of
H2n+1 being a multiple of 2n, and a new combinatorial model of hn through the set Mn

of these tuples ({ui, vi})i∈[n]. For example, the h3 = 7 elements of M3 are

{1, 1}, {2, 2}, {3, 3}
{1, 1}, {1, 2}, {3, 3}
{1, 1}, {2, 2}, {2, 3}
{1, 1}, {1, 2}, {2, 3}
{1, 1}, {1, 1}, {2, 3}
{1, 1}, {2, 2}, {1, 3}
{1, 1}, {1, 2}, {1, 3}.

As for the Dumont permutations and the Dellac configurations, we now intend to
define two partitions of Mn.

Definition 2. Let M = ({ui, vi})i∈[n] ∈Mn, we define a tuple

n = i1 > i2 > . . . > im > 1

as follows : if uip = vip = ip, then m is defined as p, otherwise ip+1 is defined as
min{uip , vip} < ip. This tuple is well-defined because u1 = v1 = 1 in general.

Afterwards, for all integer i ∈ [im, n], let p ∈ [m] such that i ∈ [ip, ip−1 − 1] (where i0
is defined as n + 1), we say that i is M-redundant if ip ∈ {ui, vi}. Note that the set of
such integers is not empty because it contains im.

We are ready to define two partitions {Mn,k : k ∈ [n]} and {M′
n,l : l ∈ [n]} of Mn.
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Definition 3. For all n > 1 and (k, l) ∈ [n]2, we define Mn,k (respectively M′
n,l) as the

set of the tuples M ∈Mn such that

max{i ∈ [n] : i is M -redundant} = n− k + 1

(respectively
max{i ∈ [n] : 1 ∈ {ui, vi}} = n− l + 1).

For example, consider the tuple M0 = ({1, 1}, {1, 2}, {2, 2}, {3, 4}, {3, 5}) ∈ M5. We
can see in Picture 4 (in which the multisets {uip , vip} are encircled and the multisets
{ui, vi} where i is M0-redundant are underlined) that M0 ∈M5,2 ∩M′

5,4.

{1, 1},

i4 = 1

{1, 2},

i3 = 2

{2, 2},

i2 = 3

{3, 4}, {3, 5}

i1 = 5

Figure 4: Tuple M0 ∈M5,2 ∩M′
5,4.

The h3 = 7 elements of M3 are partitionned as depicted in Figure 5.

{1, 1}, {1, 2}, {3, 3} {1, 1}, {2, 2}, {3, 3}

{1, 1}, {1, 2}, {1, 3} {1, 1}, {1, 2}, {2, 3} {1, 1}, {2, 2}, {2, 3}

{1, 1}, {2, 2}, {1, 3} {1, 1}, {1, 1}, {2, 3}

M3,1

M3,2

M3,3

M′
3,1 M′

3,2 M′
3,3

Figure 5: The partition of M3.

One of the results of this paper is to show that the properties of Hetyei’s model extend
to the Kreweras triangle, i.e., that #Mn,k = #M′

n,k = hn,k for all k ∈ [n]. To do so,
we connect Mn bijectively to the previous models of hn. In Section 2, we describe a
model introduced by Feigin is his study of the degenerate flag varieties [8], and whose
construction fits Mn in the best way. Incidentally, we define a slight adjustment of
this model in a way that describes its inner construction. In Section 3, we construct a
bijection between Feigin’s and Hetyei’s model, which provides the wanted combinatorial
interpretation of the Kreweras triangle in terms of Mn.
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2 Feigin’s model

In order to label the torus fixed points of the degenerate flag variety Fa
n , Feigin [8] intro-

duced the set In of the tuples (I0, . . . , In) where Ii ⊂ [n] has the conditions

#Ii = i, (4)

Ii−1\{i} ⊂ Ii. (5)

In [8, Proposition 3.1], Feigin constructs a bijection f2 : In → DCn, thus #In = hn. The
set In can be partitionned into {In,k : k ∈ [n]} or {I ′n,l : l ∈ [n]} where In,k (respectively
I ′n,l) is the subset of the elements (I0, . . . , In) ∈ In such that k = min{i : 1 ∈ Ii}
(respectively l = min{i : n ∈ Ii}). One can check that f2(In,k) = DCn,k and f2(I ′n,l) =
DC ′n,l, so #In,k = #I ′n,k = hn,k. For example, the h3 = 2 + 3 + 2 elements of I3 are
partitionned as depicted in Figure 6.

∅, {1}, {1, 3}, [3] ∅, {1}, {1, 2}, [3]

∅, {3}, {1, 3}, [3] ∅, {2}, {1, 3}, [3] ∅, {2}, {1, 2}, [3]

∅, {3}, {2, 3}, [3] ∅, {2}, {2, 3}, [3]

I3,1

I3,2

I3,3

I ′3,1 I ′3,2 I ′3,3

Figure 6: The partition of I3.

In the following, we define a tweaking of this model.

Notation. For all n-tuple (S1, . . . , Sn) of subsets of [n] and for all i ∈ [n], the set
{j ∈ [n] : i ∈ Sj} is denoted by S−1i .

Definition 4. For all n > 1, let Sn be the set of the tuples (S1, . . . , Sn) of subsets of [n]
with the conditions

– #Si = #S−1i = 1 or 2,

– if #Si = 2, then S−1i = {i1, i2} for some i1 < i < i2.

Remark 5. We can partition Sn into {Sn,k : k ∈ [n]} and {S ′n,l : l ∈ [n]} where Sn,k (respec-

tively S ′n,k) is the set of the (S1, . . . , Sn) such that S−11 = {k} (respectively S−1n = {l}).

Proposition 6. The map (Ii)i∈[0,n] 7→ (Ii\Ii−1)i∈[n] is a bijection between In and Sn, which
sends In,k and I ′n,l to Sn,k and S ′n,l respectively. In particular hn,k = #Sn,k = #S ′n,k.

Proof. For all i ∈ [n], let Si = Ii\Ii−1. There are two situations.

1. If i ∈ Ii−1∩Ii or i 6∈ Ii−1, then Ii = Ii−1t{j} for some j 6∈ [n], and #Si = #S−1i = 1.
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2. Else i ∈ Ii−1 and i 6∈ Ii, in which case Ii = (Ii−1\{i})t{j1, j2} for some (j1, j2) ∈ [n]2,
and #Si = 2. Also, let

i1 = min{j ∈ [n] : i ∈ Ij} < i,

i2 = min{j ∈ [i, n] : i ∈ Ij} > i,

then S−1i = {i1, i2}.
So (Si)i∈[n] ∈ Sn. The inverse map is obtained as follows. Let (Si)i∈[n] ∈ Sn and I0 = ∅.
For all i ∈ [n], suppose that we have defined I0, . . . , Ii−1 with Conditions (4) and (5), and
the additional condition for all j ∈ [n] :

min{k ∈ [i− 1] : j ∈ Ik} = minS−1j . (6)

If #Si = 1, then Ii is defined as Ii−1 t Si. Otherwise S−1i = {i1, i2} with i1 < i < i2,
so i ∈ Ii1 in view of Condition (6), hence i ∈ Ii−1 by Condition (5), and Ii is defined as
(Ii−1\{i})tSi. In both cases I0, . . . , Ii have Conditions (4),(5) and (6), and (Ii)i∈[0,n] ∈ In.
The rest of the lemma is straightforward.

Remark 7. For all (Si)i∈[n] ∈ Sn, the inverse image (Ii)i∈[0,n] is also given by Ii =(⋃i
j=1 Sj

)
\{j ∈ [i] : minS−1j < i < maxS−1j }.

For example, the h3 = 2+3+2 elements of S3 are partitionned as depicted in Figure 7.

{1}, {3}, {2} {1}, {2}, {3}

{3}, {1}, {2} {2}, {1, 3}, {2} {2}, {1}, {3}

{3}, {2}, {1} {2}, {3}, {1}

S3,1

S3,2

S3,3

S ′3,1 S ′3,2 S ′3,3

Figure 7: The partition of S3.

Remark 8. There is a natural injection Sn ↪→ Sn : σ 7→ ({σ(i)})i∈[n], which is the
analogous of the elements (Ii)i∈[0,n] with the conditions

#Ii = i,

Ii−1 ⊂ Ii

forming a subset of In and labelling the torus fixed points of the flag variety Fn [8].

The bijection S ′n,n → Sn−1, from which arises Formula (2), is the plain map
(S1, . . . , Sn) 7→ (S1, . . . , Sn−1). The involution (S1, . . . , Sn) ∈ Sn 7→ (St

1, . . . , S
t
n), defined

by replacing every occurrence of 1 (respectively n) by n (respectively 1) in all St
i , induces

the bijection Sn,k ∩S ′n,l → Sn,l ∩S ′n,k. The involution (S1, . . . , Sn)→ (Sr
1 , . . . , S

r
n), defined

by Sr
i = {n+ 1− j : j ∈ Sn+1−i}, induces the bijection Sn,k ∩ S ′n,l → Sn,n+1−l ∩ S ′n,n−k+1,

from which follows Formula (3).
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3 Bijective equivalence with Hetyei’s model

Definition 9 (map ϕ : In → Mn). Let I = (I0, . . . , In) ∈ In and L0 = (n, . . . , 1).
Consider k ∈ [n] and suppose that we have defined :

– a multiset {un−k+2, vn−k+2, . . . , un, vn}, such that (ui, vi) ∈ [i]2 for all i ∈ [n−k+2, n],
which contains the set [n− k + 2, n];

– a tuple Lk−1 = (jk−11 , jk−12 , . . . , jk−1n−k+1) such that

{jk−11 , . . . , jk−1n−k+1} = [n]\Ik−1.

We now define (un−k+1, vn−k+1) ∈ [n− k + 1]2 and Lk as follows.

1. If Ik−1 ⊂ Ik, let p ∈ [n− k + 1] such that Ik = Ik−1 t {jk−1p }.

a) If k ∈ Ik−1, we define {un−k+1, vn−k+1} as {p, p}.
b) Otherwise, we define {un−k+1, vn−k+1} as {p, n− k + 1}.

In either case, let

Lk = (jk−11 , . . . , jk−1p−1 , j
k−1
n−k+1, j

k−1
p+1 , . . . , j

k−1
n−k).

2. Otherwise k ∈ Ik−1 and k 6∈ Ik, hence Ik = (Ik−1\{k}) t {jk−1p , jk−1q } for some
1 6 p < q 6 n− k + 1. We define {un−k+1, vn−k+1} as {p, q}, and

Lk = (jk−11 , . . . , jk−1p−1 , j
k−1
n−k+1, j

k−1
p+1 , . . . , j

k−1
q−1 , k, j

k−1
q+1 , . . . , j

k−1
n−k).

For the algorithm to move to k+1, we only need to show that the integer n−k+1 belongs
to {un−k+1, vn−k+1, . . . , un, vn}. It is obvious if {un−k+1, vn−k+1} is defined by Rule 1.b).
Otherwise, by hypothesis, we have k ∈ Ik−1. Let

i0 = min{i ∈ [n] : k ∈ Ii} ∈ [k − 1].

By construction of L1, . . . , Lk−1, it is easy to see that ji0−1n−k+1 = k, hence n − k + 1 ∈
{un+1−i0 , vn+1−i0} by either Rule 1.a) or Rule 2.

This algorithm provides a tuple ({ui, vi})i∈[n] ∈Mn, that we denote by ϕ(I).

For example, let I0 = (∅, {3}, {1, 3}, {1, 3, 4}, {1, 2, 3, 5}, [5]) ∈ I5 and L0 = 54321.
We obtain ϕ(I0) = ({ui, vi})i∈[5] where

{u5, v5} = {3, 5}, L1 = 5412 (rule 1.b)),

{u4, v4} = {3, 4}, L2 = 542 (rule 1.b)),

{u3, v3} = {2, 2}, L3 = 52 (rule 1.a)),

{u2, v2} = {1, 2}, L4 = 4 (rule 2.),

{u1, v1} = {1, 1}, L5 = ∅ (rule 1.a)).
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Proposition 10. The map ϕ : In →Mn is a bijection which sends In,k and I ′n,l to Mn,k

and M′
n,l respectively for all (k, l) ∈ [n]2. In particular hn,k = #Mn,k = #M′

n,k.

Proof. We construct the inverse map of ϕ. Let M = ({ui, vi})i∈[n] ∈Mn, L0 = (n, . . . , 1)
and I0 = ∅. Suppose that, for some k ∈ [n], we defined subsets I0, . . . , Ik−1 of [n] with
Conditions (4) and (5), and a tuple Lk−1 = (jk−11 , . . . , jk−1n−k+1) with {jk1 , . . . , jk−1n−k+1} =
[n]\Ik−1. We define Ik and Lk as follows.

I. If un−k+1 = vn−k+1 or n − k + 1 6∈ {un−k+2, vn−k+2, . . . , un, vn}, there exists p ∈
[n − k + 1] such that {un−k+1, vn−k+1} = {p, p} or {p, n − k + 1}. We define Ik as
Ik−1 t {jk−1p }, and Lk as in Rule 1.

II. Otherwise {un−k, vn−k} = {p, q} for some 1 6 p < q 6 n − k + 1. We define Ik as
(Ik−1\{k}) t {jk−1p , jk−1q }, and Lk as in Rule 2.

For the algorithm to iterate, we only need to prove that #Ik = k if it is defined by
Rule II. In this context, let n− i0 + 1 = max{l ∈ [n] : n− k+ 1 ∈ {ul, vl}}, by hypothesis
i0 ∈ [k − 1]. By construction of L1, . . . , Lk−1, we have ji0−1n−1+k = k, hence k ∈ Ii0 , which
implies that k ∈ Ik−1 in view of Condition (5).

So this algorithm provides an element (I0, . . . , In) ∈ In that we denote by φ(M), and
it is straightforward that ϕ and φ are inverse maps.

One can then thoroughly check that ϕ(In,k) = Mn,k and ϕ(I ′n,l) = M′
n,l for all

(k, l) ∈ [n]2.

For example, the tuple M0 = ({1, 1}, {1, 2}, {2, 2}, {3, 4}, {3, 5}) ∈ M5,2 ∩M′
5,4 (see

Figure 4), to which I0 = (∅, {3}, {1, 3}, {1, 3, 4}, {1, 2, 3, 5}, [5]) ∈ I5,2 ∩ I ′5,4 is mapped
by ϕ as seen earlier, is indeed sent back to I0 by the map φ defined in the proof of
Proposition 10.
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