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Abstract

We show how the combinatorial interpretation of the normalized median Genoc-
chi numbers in terms of multiset tuples, defined by Hetyei in his study of the al-
ternation acyclic tournaments, is bijectively equivalent to previous models like the
normalized Dumont permutations or the Dellac configurations, and we extend the
interpretation to the Kreweras triangle.
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1 Introduction

For all pair of integers n < m, the set {n,n +1,...,m} is denoted by [n,m], and the set
[1,n] by [n]. The set of the permutations of [n] is denoted by &,,.

1.1 Genocchi numbers, Kreweras triangle, Dumont permutations

The Genocchi numbers (Ga,)n>1 = (1,1,3,17,155,2073,...) [13] and median Genocchi
numbers (Hopi1)ns0 = (1,2,8,56,608,...) [14] can be defined as the positive integers
ng = Jon—1n and H2n+1 = §2n+2,1 [7] where (gi,j)léjéi is the Seidel triangle, defined by
911 = 1and

92p,j = 92p—1,j T G2p,j+1,

92p+1,5 = 92p+1,5—1 T G2p,j
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for all p > 1, where gopp41 = gopr10 = 0. It is well known that Hs,yq is divis-
ible by 2" for all n > 0 [1]. The normalized median Genocchi numbers (hy)ps0 =
(1,1,2,7,38,295,...) [15] are the positive integers defined by

hn = H2n+1/2n-

Among the first combinatorial models of the (median) Genocchi numbers [5, 7, 1, 6], there
is the set PD2,, of the Dumont permutations of the second kind, that is, the permutations
0 € Gy,uio such that (20 — 1) > 20 — 1 and o(2i) < 2i for all i@ € [n + 1], whose
cardinality #PD2,, equals Hy, . for all n > 0. In [11], Kreweras introduced the subset
PD2N, C PD2, of the normalized permutations, i.e., the permutations ¢ € PD2,, such
that 071(2i) < 071(2i + 1) for all i € [n], whose number is #PD2N,, = h,,.

Remark 1. For all (k1) € [n]?, let PD2N, ;. (respectively PD2N, ;) be the subset of the
permutations ¢ € PD2N,, such that o(1) = 2k (respectively o(2n + 2) = 21 +1). It is
easy to see that {PD2N,, . : k € [n]} and {PD2N]; : 1 € [n]} are partitions of PD2N,,.

In [12], by introducing the model of the alternating diagrams and connecting them
bijectively to the normalized Dumont permutations, Kreweras and Barraud proved that

#PD2N, ; = #PD2N,’L’,€ = Ik

where the Kreweras triangle (hq,k)n>1kepn [11] (see Figure 1.1) is defined by hy; = 1 and,
for all n > 2 and k € [3,n],

oy =hp—11+hp_12+ ...+ hp_1 -1,
hn,2 = 2hn,1 - hn—l,la (1)

hn,k - 2hn,k71 - hn,k72 - hnfl,kfl - hnfl,ka-

1
1 1
2 3 2
7 12 12 7
38 69 81 69 38
295 952 702 702 552 295

Figure 1: The Kreweras triangle.

For example, we depict in Figure 1.1 how are partitioned the hy = 2 4 3 4+ 2 elements
of PD2Nj.
For all n > 1 and k € [n], the Kreweras triangle has the visible two properties

hn,n = hnfh (2)
hn,k’ = hn,n—k’-{—la (3)

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(4) (2018), #P4.44 2



PD2Ns 21637485 21436587
PD2N3,| 41627583 41627385 41526387
PD2N33| 61427583 61427385

PD2N}, PD2N}, PD2N},

Figure 2: The partition of PD2Nj.

of which [12] implies interpretations in terms of PD2N,,. Formula (2) follows from the
bijection 0 € PD2N,, ,, + 0|2, € PD2N,,_;. Afterwards, let o € PD2N,, and (k,[) € [n]?
such that (1) = 2k and o(2n + 2) = 2] + 1, we define two permutations o' and " as
follows.

— If k = [, we define o' as o, otherwise it is defined as the following composition of o
with a 4-cycle :
(2k 20 20+1 2k+1)oo0.

— We define 0" by 0" (i) =2n+3 — o(2n+ 3 — i) for all i € [2n + 2].
The maps o — o' and o — o" are involutions of PD2N,, which induce bijections

PD2N,.x N PD2N},, +— PD2N,; N PD2N, .,
PD2N,; N PD2N,, , +— PD2N,,, 41 N PD2N., ..\,

from which follows Formula (3), which can also be obtained by induction from System (1)
through the following easy equality (see also [12])

n—1 k—2
hn,k - hn,k—l - E hn—l,i - E hn—l,i
i=k i=1

for all n > 1 and k € [n] (where h,, ¢ is defined as 0).

There are several other bijectively equivalent models of the Kreweras triangle [4, 12, 9,
8, 2]. The Kreweras triangle also appeared recently in the theory of finite type Vassiliev
knot invariants [3], more precisely through a polynomial generalization.

1.2 The Dellac configurations

The Dellac configurations [4] form the earliest combinatorial model of the Kreweras tri-
angle and provide a geometrical analogous of the previous results. Recall that a Dellac
configuration of size n is a tableau D, made of n columns and 2n rows, that contains 2n
dots such that :
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— every row contains exactly one dot;
— every column contains exactly two dots;

— if there is a dot in the box (j,i) of D (i.e., in the intersection of its j-th column
from left to right and its i-th row from bottom to top), then j <i < j + n.

The set of the Dellac configurations of size n is denoted by DC,. It can be partitionned
into {DCy : k € [n]} or {DC;,; : 1 € [n]} where DC,,, (respectively DCy ) is the subset
of the tableaux D € DC,, whose box (k,n + 1) (respectively (I,n)) contains a dot, for all
(k,1) € [n]?. In [8, Proposition 3.3], Feigin constructs a bijection f, : PD2N, — DC,
such that fi(PD2N, ) = DC,, hence hy, = #DC,, for all k € [n]. One can also
check that fi(PD2N, ) = DC} ., so b,y = #DC), . For example, the hy = 2+ 3 + 2
elements of DC'; are partitionned as depicted in Figure 3.

DCjs ;4 .
DC3’2 ° hd : hd
DC3’3 ° hd ° hd

DCy ' DC3, ' DCy

Figure 3: The partition of DCj5.

The combinatorial interpretations of Formulas (2) and (3) in terms of Dellac configu-
rations are simple. Every element of DC,,_; can be obtained by deleting the n-th colomn
(from left to right) and the (n + 1)-th and 2n-th rows (from bottom to top) of a unique
element of DCj ,, which gives Formula (2). Afterwards, for all D € DC,,x N DCy,

n,n’

~ let D' € DC,,;N DC;,, be obtained by deleting the dots of the boxes (k,n + 1) and
(I,n) of D and placing dots in the boxes (I,n + 1) and (k,n),

—let D" € DCy ny11 N DCY .y be obtained by rotating D through 180,
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the maps D +— D' and D ~ D" are involutions of DC), that induce bijections

DCyx N DC.,, +— DCyy N DCL .,
Dcn’l ﬂ DC’;I,]C — DCrnqnfkuFl ﬂ DC?’I,TL*F].*Z’

from which follows Formula (3).

1.3 Hetyei’s model

In his study of the alternation acyclic tournaments [10], Hetyei proved that the median
Genocchi number Hy, ;1 is the number of pairs

((al,...,an),(bl,...,bn)) e x 7"

such that (a;,b;) € [0,n] x [n] for all i € [n], and the set [n] is contained in the multiset
{a1,b1,...,a,,b,}. He then defined a free group action of (Z\2Z)" on the set of these
pairs, whose orbits are indexed by the n-tuples ({u;, v;})icf such that (u;,v;) € [i]* for
all ¢ € [n] and the multiset {uy,v1,...,u,,v,} contains [n], which raises a new proof of
Hy, 11 being a multiple of 2", and a new combinatorial model of h,, through the set M,,
of these tuples ({u;, v;})icpn). For example, the hy = 7 elements of M3 are

{1,1},{2,2},{3,3}
{1,1},{1,2},4{3,3}
{1,1},4{2,2},{2,3}
{1,1},{1,2},{2,3}
{1,1},{1,1},{2,3}
{1,1},{2,2},{1,3}
{1,1},{1,2},{1, 3}.

As for the Dumont permutations and the Dellac configurations, we now intend to
define two partitions of M,,.

Definition 2. Let M = ({u;, vi})icpn) € My, we define a tuple
N=1>0>...>10, =1

as follows : if u;, = v, = ip, then m is defined as p, otherwise i,,; is defined as
min{u;,,v;,} < i,. This tuple is well-defined because u; = vy = 1 in general.

Afterwards, for all integer ¢ € [i,,, n], let p € [m] such that i € [y, 4,1 — 1] (where iy
is defined as n + 1), we say that i is M-redundant if i, € {u;,v;}. Note that the set of
such integers is not empty because it contains i,,.

We are ready to define two partitions {M,, ), : k € [n]} and {M;,; : [ € [n]} of M,,.
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Definition 3. For all n > 1 and (k,1) € [n]*, we define M, (respectively M, ;) as the
set of the tuples M € M,, such that

max{i € [n]: i is M-redundant} =n —k +1

(respectively
max{i € [n]: 1 € {us,v;}} =n—1+1).

For example, consider the tuple My = ({1, 1}, {1,2},{2,2},{3,4},{3,5}) € M;5. We
can see in Picture 4 (in which the multisets {u;,,v;,} are encircled and the multisets
{u;,v;} where i is My-redundant are underlined) that My € M52 N Mz .

i4:1 i;5:2 ZZZS 11:5

Figure 4: Tuple My € M55 MN My 4.

The hg = 7 elements of M3 are partitionned as depicted in Figure 5.

M3,1 {171}7{172}7{373} {171}7{272}7{373}
Mo | {1,1},{1,2},{1,3} | {1,1},{1,2},{2,3} | {1,1},{2,2},{2,3}

Mz [ {1,1},{2,2},{1,3} | {1,1},{1,1},{2,3}

/ / i
3,1 3,2 3,3

Figure 5: The partition of M.

One of the results of this paper is to show that the properties of Hetyei’s model extend
to the Kreweras triangle, i.e., that #M, = #M; ; = hy, for all k € [n]. To do so,
we connect M,, bijectively to the previous models of h,. In Section 2, we describe a
model introduced by Feigin is his study of the degenerate flag varieties [8], and whose
construction fits M,, in the best way. Incidentally, we define a slight adjustment of
this model in a way that describes its inner construction. In Section 3, we construct a
bijection between Feigin’s and Hetyei’s model, which provides the wanted combinatorial
interpretation of the Kreweras triangle in terms of M,,.
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2 Feigin’s model

In order to label the torus fixed points of the degenerate flag variety F2, Feigin [8] intro-
duced the set Z, of the tuples (Io, ..., I,) where I; C [n] has the conditions

Ty (4)

In [8, Proposition 3.1], Feigin constructs a bijection f5 : Z,, — DC,,, thus #Z,, = h,,. The
set Z,, can be partitionned into {Z, . : k € [n]} or {Z] ; : | € [n]} where Z,, (respectively
7,,,) is the subset of the elements (lo,...,I,) € Z, such that k = min{i : 1 € I}
(respectively [ = min{7 : n € I;}). One can check that fy(Z,x) = DCyx and fo(Z},;) =
DC, s0o #IL,x = #1; = hypi. For example, the hy = 2 + 3 + 2 elements of Z3 are
partitionned as depicted in Figure 6.

13,1 ®>{1}>{173}a[3] ®7{1}7{172}’[3]
1.372 ®7{3}7{173}7[3] ®7{2}7{173}7[3] ®7{2}7{172}7[3]

Is3 | @,{3}.{2,3},[3] @,{2},{2,3},[3]

! ! !
I3,1 I3,2 I3,3

Figure 6: The partition of Z3.

In the following, we define a tweaking of this model.

Notation. For all n-tuple (Si,...,S,) of subsets of [n] and for all i € [n], the set
{j €n]:i€S;}is denoted by S; .

Definition 4. For all n > 1, let S,, be the set of the tuples (Si,...,.S,) of subsets of [n]
with the conditions

~ #S;=#S; ' =1or2,
— if #5; = 2, then S; ' = {iy, 4y} for some i; < i < is.

Remark 5. We can partition S, into { Sy 1, : k € [n]} and {5}, : | € [n]} where S, ;. (respec-
tively S/, ) is the set of the (Si,...,S,) such that S;' = {k} (respectively St = {i}).

Proposition 6. The map (1;)icon) = (Li\li-1)ic[n) is a bijection between I,, and S,,, which
sends L, and 1), to Spx and 8], respectively. In particular hy, ) = #Snx = #8,, ;.-

Proof. For all i € [n], let S; = I;\I;_1. There are two situations.

1. Ifi € I_1NLiori &Iy, then I; = I;_11U{j} for some j & [n], and #S; = #5;* = 1.
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2. Elsei € I;_y and i & I;, in which case I; = (I,_1\{i})U{j1, j2} for some (j1, j2) € [n]?,
and #S; = 2. Also, let

iy =min{j € [n] : i € [;} <4,
iy =min{j € [i,n] i € I;} > 1,
then SZ_I = {il,ig}.

So (Si)icfn] € Sn- The inverse map is obtained as follows. Let (S;)icin) € S, and Iy = @.
For all ¢ € [n], suppose that we have defined Iy, ..., ;_; with Conditions (4) and (5), and
the additional condition for all j € [n] :

min{k € [i — 1] : j € [;} = min S; . (6)

If #Sz = ]_, then Iz is defined as Ii—l L Sz Otherwise Sl_l = {il,ig} with <1< ig,
so i € I;; in view of Condition (6), hence i € I;_; by Condition (5), and I; is defined as
(I;—1\{i})US;. In both cases Iy, ..., I; have Conditions (4),(5) and (6), and (I;)ico,n] € Zn-
The rest of the lemma is straightforward. m

Remark 7. For all (S;)icjy € Sp, the inverse image (I;)icpon is also given by I; =
(Uizi S5) \{j € [i] - min S < i < max ;).
For example, the hy = 2+ 3+ 2 elements of S3 are partitionned as depicted in Figure 7.

Sz {1}, {3}, {2} {1}, {2}, {3}
Ssp | {31 {1}, {2} {23, {1, 3}, {2} {2}, {1}, {3}
Ssp | {3h{2h {1} {24 {35 {1}
S3.1 S3.2 S35

Figure 7: The partition of Ss.

Remark 8. There is a natural injection &, — S, : 0 +— ({0(i)})icn), which is the
analogous of the elements (/;);cpo,n) With the conditions

#-[l - 2.7
Iy C I

forming a subset of Z,, and labelling the torus fixed points of the flag variety F,, [8].

The bijection S;, — S,-1, from which arises Formula (2), is the plain map
(S1,...,50) = (S1,...,S,-1). The involution (Si,...,S,) € S, — (St,...,St), defined
by replacing every occurrence of 1 (respectively n) by n (respectively 1) in all S, induces
the bijection S, x NS, ; = Sp1NS), ;. The involution (Si,...,S,) — (S7,...,S;,), defined
by S ={n+1—j:j € Sy}, induces the bijection S,,x NS, | = Spni1-1 NS, pirs
from which follows Formula (3).
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3 Bijective equivalence with Hetyei’s model
Definition 9 (map ¢ : Z,, = M,). Let I = (Iy,...,I,) € Z, and Ly = (n,...,1).
Consider k € [n] and suppose that we have defined :

— amultiset {U, 19, Vn_ki2;- - Un, Uy}, such that (u;,v;) € [i]* for alli € [n—k+2,n],
which contains the set [n — k + 2, nl;

~atuple Ly = (j{ ', 47", ..., jk"4,1) such that
{7 dnht = [\ e
We now define (t,_g41, Vn_rs1) € [n — k +1]? and L;, as follows.
L If Iy C I, let p € [n — k+ 1] such that [ = I,y L {ji~'}.

a) If k € Iy, we define {up—k41,Vn—r+1} as {p, p}.
b) Otherwise, we define {u,_g11,vn—x+1} as {p,n — k+ 1}.

In either case, let
Lk = (jf_la cee 7]5 117‘72 ]1g+1a.7p+17' .- 7]5 llg)
2. Otherwise k € Iy and k & I, hence I, = (L—1\{k}) U {j}~", ji~'} for some
1<p<qg<n—Fk+1 Wedefine {u, g1, _xs+1} as {p,q}, and

k—1 k—1 k—1 k—1
Lk:(jl 7“'7]p 17jn k+17.]p+17"‘7jq 17k jq+17“'7jn k)

For the algorithm to move to k+1, we only need to show that the integer n—k+1 belongs
t0 {Un_k41s Vnkity- -+, Un, Up}. 1t is obvious if {u, gi1, Vs g1} is defined by Rule 1.b).
Otherwise, by hypothesis, we have k € [},_;. Let

io=min{i € [n] : k€ L} € [k —1].

By construction of Li,..., Ly, it is easy to see that j“’ k1+1 =k, hencen —k+1 €
{Unt1—igs Vnt1—ig} DY either Rule 1.a) or Rule 2
This algorithm provides a tuple ({u;, vi})ie[n} € M,, that we denote by ¢(I).
For example, let Iy = (&, {3}, {1,3},{1,3,4},{1,2,3,5},[5]) € Zs and Lo = 54321.
We obtain ¢(1o) = ({ui, vi})ic[s) where
{us,vs} = {3,5}, L1 = 5412 (rule 1.b)),
{ug,v4} = {3,4}, Ly = 542 (rule 1.b)),
{us,vs} = {2,2}, Ly = 52 (rule l.a)),
{ug, v} ={1,2}, Ly = 4 (rule 2.),
{uy,m} ={1,1}, Ls = @ (rule 1.a)).
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Proposition 10. The map ¢ : Z,, = M,, is a bijection which sends L, ;, and I7/1,l to M,
and M, respectively for all (k,1) € (). In particular b, = #M,x = #FM,, .

Proof. We construct the inverse map of ¢. Let M = ({u;, vi})icp) € My, Lo = (n,...,1)
and Iy = @. Suppose that, for some k € [n], we defined subsets Iy, ..., I,_1 of [n] with
Conditions (4) and (5), and a tuple Ly_y = (j{~',..., 557 ) with {j¥,...,5"7, )} =

[n]\Ix—1. We define I} and Lj as follows.

LoIf wup g1 = Upgrr or n—k+1 & {Up_ti2,Vn_s2,.-,Un, Uy}, there exists p €
[n — k + 1] such that {u, g1, _ks1} = {p,p} or {p,n — k + 1}. We define I}, as
Ir—y U{j;~'}, and Ly as in Rule 1.

IT. Otherwise {uy_k, Un_r} = {p,q} for some 1 < p < g < n—k+1. We define I as
(Te—1\{E}) LU {75, 78"}, and Ly as in Rule 2.

For the algorithm to iterate, we only need to prove that #1I, = k if it is defined by
Rule II. In this context, let n —ip+ 1 = max{l € [n] : n —k+1 € {w;,v;}}, by hypothesis
ip € [k — 1]. By construction of Ly, ..., Ly_1, we have jflo__11+k = k, hence k € I;,, which
implies that k € Ix_; in view of Condition (5).

So this algorithm provides an element ([, ..., I,) € Z, that we denote by ¢(M), and
it is straightforward that ¢ and ¢ are inverse maps.

One can then thoroughly check that ¢(Z,x) = M, and ¢(Z, ;) = M, for all

(k1) € [n]*. O

For example, the tuple My = ({1,1},{1,2},{2,2},{3,4},{3,5}) € M52 N Mj, (see
Figure 4), to which Iy = (&, {3},{1,3},{1,3,4},{1,2,3,5},[5]) € Zs» NI, is mapped
by ¢ as seen earlier, is indeed sent back to Iy by the map ¢ defined in the proof of
Proposition 10.
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