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Abstract

Forbidden characterizations may sometimes be the most natural way to describe
families of graphs, and yet these characterizations are usually very hard to exploit
for enumerative purposes.

By building on the work of Gioan and Paul (2012) and Chauve et al. (2014), we
show a methodology by which we constrain a split-decomposition tree to avoid cer-
tain patterns, thereby avoiding the corresponding induced subgraphs in the original
graph.

We thus provide the grammars and full enumeration for a wide set of graph
classes: ptolemaic, block, and variants of cactus graphs (2,3-cacti, 3-cacti and 4-
cacti). In certain cases, no enumeration was known (ptolemaic, 4-cacti); in other
cases, although the enumerations were known, an abundant potential is unlocked
by the grammars we provide (in terms of asymptotic analysis, random generation,
and parameter analyses, etc.).

We believe this methodology here shows its potential; the natural next step to
develop its reach would be to study split-decomposition trees which contain certain
prime nodes. This will be the object of future work.

Mathematics Subject Classifications: 05C30, 05A15, 05C05, 05A16.

Introduction

Many important families of graphs can be defined (sometimes exclusively) through a
forbidden graph characterization. These characterizations exist in several flavors:

1. Forbidden minors, in which we try to avoid certain subgraphs from appearing after
arbitrary edge contractions and vertex deletion.
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2. Forbidden subgraphs, in which we try to avoid certain subgraphs from appearing as
subsets of the vertices and edges of a graph.

3. Forbidden induced subgraphs, in which we try to avoid certain induced subgraphs
from appearing (that is we pick a subset of vertices, and use all edges with both
endpoints in that subset).

As far as we know, while these notions are part and parcel of the work of graph theorists,
they are usually not exploited by analytic combinatorists. For forbidden minors, there
is the penetrating article of Bousquet-Mélou and Weller [5]. For forbidden subgraphs
or forbidden induced subgraphs, we know of few papers, except because of the simple
nature of graphs [33], or because some other, alternate property is used instead [6], or
only asymptotics are determined [34].

We are concerned, in this paper, with forbidden induced subgraphs.

Split-decomposition and forbidden induced subgraphs.

Chauve et al. [8, 9] observed that a relatively well-known graph decomposition, called
the split-decomposition, could be a fruitful means to enumerate a class called distance-
hereditary graphs, of which the enumeration had until then not been known (at the time,
the best known result was the bound from Nakano et al. [27], which stated that there are
at most 2b3.59nc unlabeled distance-hereditary graphs on n vertices).

In addition, the reformulated version of this split-decomposition introduced by Paul
and Gioan, with internal graph-labels, considerably improved the legibility of the split-
decomposition tree.

We have discovered, and we try to showcase in this paper, that the split-decomposition
is a very convenient tool by which to find induced subpatterns: although various connected
portions of the graphs may be broken down into far apart blocks in the split-decomposition
tree, the property that there is an alternated path between any two vertices that are
connected in the original graph is very powerful, and as we show in Section 2 of this
paper, allows to deduce constraints following the appearance of an induced pattern or
subgraph.

Outline of paper.

In Section 1, we introduce all the definitions and preliminary notions that we need for
this paper to be relatively self-contained (although it is based heavily on work introduced
by Chauve et al. [8]).

In Section 2, we introduced a collection of bijective lemmas, which translate several
forbidden patterns (a cycle with 4 vertices, a diamond, cliques, a pendant vertex and a
bridge, all illustrated in Figure 4) into constraints on the split-decomposition tree of a
graph. In each of the subsequent sections, we show how these constraints can be used to
express a formal symbolic grammar that describes the constrained tree—and by so doing,
we obtain a grammar for the associated class of graphs.
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We start by studying block graphs in Section 3, because their structure is sufficiently
constrained as to yield a relatively simple grammar. We then study ptolemaic graphs in
Section 4 (which allows us to showcase how to use the symbolic grammar to save “state”
information, since we have to remember the provenance of the hierarchy of each node
to determine whether it has a center as a starting point). And we finally look at some
varieties of cactus graphs in Section 5.

Finally, in Section 6, we conclude and introduce possible future directions in which to
continue this work.

1 Definitions and Preliminaries

In this rather large section, we introduce standard definitions from graph theory (1.1
to 1.3) and analytic combinatorics (1.4), and then present a summary of the work of
Chauve et al. [8] (1.5), as well as a summary of how they used the dissymmetry theorem,
introduced by Bergeron et al. [2] (1.6).

1.1 Graph definitions

For a graph G, we denote by V (G) its vertex set and E(G) its edge set. Moreover, for
a vertex x of a graph G, we denote by N(x) the (open) neighborhood of x, that is the
set of vertices y 6= x such that {x, y} ∈ E(G); this notion extends naturally to vertex
sets: if V1 ⊆ V (G), then N(V1) is the set of vertices defined by the (non-disjoint) union
of the neighborhoods of the vertices in V1, excluding V1 itself. Finally, the subgraph of G
induced by a subset V1 of vertices is denoted by G[V1].

Given a graph G and two vertices u, v ∈ V (G) in the same connected component of G,
the distance between u and v denoted by dG(u, v) is defined as the length of the shortest
path between u and v.

A graph on n vertices is labeled if its vertices are identified with the set {1, . . . , n},
with no two vertices having the same label. A graph is unlabeled if its vertices are
indistinguishable.

A clique on k vertices, denoted Kk is the complete graph on k vertices (i.e., there
exists an edge between every pair of vertices). A star on k vertices, denoted Sk, is the
graph with one vertex of degree k− 1 (the center of the star) and k− 1 vertices of degree
1 (the extremities of the star).

1.2 Special graph classes

The following two graph classes are important because they are supersets of the classes
we study in this paper.

Definition 1. A connected graph G is distance-hereditary if for every induced subgraph
H and every u, v ∈ V (H), dG(u, v) = dH(u, v).

Definition 2. A connected graph is chordal, or triangulated, or C>4-free, if every cycle of
length at least 4 has a chord.
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(a) A graph-labeled tree with four graph-
labels (one for each of the four internal
nodes); the leaves also have labels, but
these are of a separate kind.
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(b) Original graph for (or accessibility
graph of) the graph-labeled tree in Fig. 1a.

Figure 1. Two leaves of the split-decomposition graph-labeled tree (left) correspond
to adjacent vertices in the original graph that was decomposed (right) if there exists
an alternated path: a path between those leaves, which uses at most one interior edge
of any given graph-label. For example, vertex 5 is adjacent to vertex 4 in the original
graph, because there is an alternated path between the two corresponding leaves in the
split-decomposition tree; vertex 5 is not adjacent to vertex 3 however, because that
would require the path to take two interior edges of the (prime) leftmost graph-label.

alternated
path

marker
vertex

interior
edge

star node

clique node

prime node

internal
node

leaf

Figure 2. In this figure, we present a few terms that we use a lot in this article.
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(a) Example of a star-join.
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(b) Example of a clique-join.

Figure 3. The star-join and clique-join operations result in the merging of two internal
nodes of a split-decomposition tree. A split-decomposition tree in which neither one of
these operations may be applied (and in which all non-clique and non-star nodes are
prime nodes) is said to be reduced.

1.3 Split-decomposition

We first introduce the notion of graph-labeled tree, due to Gioan and Paul [19], then
define the split-decomposition and finally give the characterization of a reduced split-
decomposition tree, described as a graph-labeled tree.

Definition 3. A graph-labeled tree (T,F) is a tree T in which every internal node v of
degree k is labeled by a graph Gv ∈ F on k vertices, called marker vertices, such that
there is a bijection ρv from the edges of T incident to v to the vertices of Gv.

For convenience, we refer to the graph Gv as the graph-label of vertex v. It is important
to distinguish these graph-labels, from traditional labels.

For example, in Figure 1 the internal nodes of the tree T are represented as large
circles, the marker vertices are represented with small hollow circles, the leaves of T are
represented with small solid circles, and the bijection ρv is denoted by each edge that
crosses the boundary of an internal node and ends at a marker vertex.

Importantly, the graph-labels of these internal nodes are a visual tool for convenience
alone—indeed the split-decomposition tree itself does not have these graph-labels. How-
ever, as we will see in this paper, these graph-labeled trees are a powerful tool by which to
look at the structure of the original graph they describe. Some elements of terminology
have been summarized in Figure 2, as these are frequently referenced in the proofs of
Section 2.

Definition 4. Let (T,F) be a graph-labeled tree and let `, `′ ∈ V (T ) be leaves of T .
We say that there is an alternated path between ` and `′, if there exists a path from
` to `′ in T such that for any adjacent edges e = (u, v) and e′ = (v, w) on the path,
(ρv(e), ρv(e

′)) ∈ E(Gv).

Definition 5. The original graph, also called accessibility graph, of a graph-labeled tree
(T,F) is the graph G = G(T,F) where V (G) is the leaf set of T and, for x, y ∈ V (G),
(x, y) ∈ E(G) iff x and y are accessible1 in (T,F).

1That is, there is a path from the leaf representing x to the leaf representing y in the graph-labeled
tree (T,F).
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Figures 1 and 2 illustrate the concept of alternated path: it is, more informally, a path
that only ever uses at most one interior edge of each graph-label.

Definition 6. A split [10] of a graph G with vertex set V is a bipartition (V1, V2) of V
(i.e., V = V1 ∪ V2, V1 ∩ V2 = ∅) such that

(a) |V1| > 2 and |V2| > 2;
(b) every vertex of N(V1) is adjacent to every of N(V2).

A graph without any split is called a prime graph. A graph is degenerate if any partition
of its vertices without a singleton part is a split: cliques and stars are the only such
graphs.

Informally, the split-decomposition of a graph G consists in finding a split (V1, V2) in
G, followed by decomposing G into two graphs G1 = G[V1 ∪ {x1}] where x1 ∈ N(V1) and
G2 = G[V2 ∪ {x2}] where x2 ∈ N(V2) and then recursively decomposing G1 and G2. This
decomposition naturally defines an unrooted tree structure of which the internal vertices
are labeled by degenerate or prime graphs and whose leaves are in bijection with the
vertices of G, called a split-decomposition tree. A split-decomposition tree (T,F) with F

containing only cliques with at least three vertices and stars with at least three vertices
is called a clique-star tree2.

It can be shown that the split-decomposition tree of a graph might not be unique
(i.e., several sequences of decompositions of a given graph can lead to different split-
decomposition trees), but following Cunningham [10], we obtain the following uniqueness
result, reformulated in terms of graph-labeled trees by Gioan and Paul [19].

Theorem 7 (Cunningham [10]). For every connected graph G, there exists a unique
split-decomposition tree such that:

(a) every non-leaf node has degree at least three;
(b) no tree edge links two vertices with clique labels;
(c) no tree edge links the center of a star-node to the extremity of another star-node.

Such a tree is called reduced, and this theorem establishes a one-to-one correspondence
between graphs and their reduced split-decomposition trees. So enumerating the split-
decomposition trees of a graph class provides an enumeration for the corresponding graph
class, and we rely on this property in the following sections.

Figure 3 demonstrates the star-join and clique-join operations which respectively allow
trees that do not satisfy conditions (b) and (c) to be further reduced—in terms of number
of internal nodes.

Definition 8. A graph is said to be totally decomposable [with respect to the split-
decomposition], if and only if its split-decomposition tree is a clique-star tree, which by
definition contains no prime nodes.

2In this paper, we only consider split-decomposition trees which are clique-star trees. As such the
family F, to which our graph-labels belong, is understood to only contain cliques and stars. We thus
omit F, and simply refer to clique-star trees as T .
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Lemma 9 (Split-decomposition tree characterization of distance-hereditary graphs [10,
19]). A graph is distance-hereditary if and only if its split-decomposition tree is a clique-
star tree.

For this reason, distance-hereditary graphs are known as the largest graph class that is
totally decomposable with respect to the split-decomposition.

1.4 Decomposable structures

In order to enumerate classes of split-decomposition trees, we use the framework of de-
composable structures, described by Flajolet and Sedgewick [15]. We refer the reader to
this book for details and outline below the basic idea.

We denote by Z the combinatorial family composed of a single object of size 1, usually
called atom (in our case, these refer to a leaf of a split-decomposition tree, i.e., a vertex
of the corresponding graph).

Given two disjoint families A and B of combinatorial objects, we denote by A+B the
disjoint union of the two families and by A×B the Cartesian product of the two families.

Finally, we denote by Set (A) (resp. Set>k (A), Setk (A)) the family defined as
all sets (resp. sets of size at least k, sets of size exactly k) of objects from A, and by
Seq>k (A), the family defined as all sequences of at least k objects from A.

1.5 Split-decomposition trees expressed symbolically

While approaching graph enumeration from the perspective of tree decomposition is not
a new idea (the recursively decomposable nature of trees makes them well suited to enu-
meration), Chauve et al. [8] brought specific focus to Cunningham’s split-decomposition.

Their description of constrained split-decomposition trees using decomposable gram-
mars is the starting point of this paper, so we briefly outline their method here.

Example. Let us consider the split-decomposition tree of Figure 1a, and illustrate how
this tree3 can be expressed recursively as a rooted tree.

Suppose the tree is rooted at vertex 5. Assigning a root immediately defines a direction
for all tree edges, which can be thought of as oriented away from the root. Starting from
the root, we can set out to traverse the tree in the direction of the edges, one internal
node at a time.

We start at the root, vertex 5. The first internal node we encounter is a star-node,
and since we are entering it from the star’s center, we have to describe what is on each of
its two remaining extremities. On one of the extremities there is a leaf, 6; on the other,
there is another split-decomposition subtree, of which the first internal node we encounter
happens to be another star-node.

This time, we enter the star-node through one of its extremity. So we must describe
what is connected to its center and its remaining extremities (of which there is only one).

3Figure 1a is not a clique-star tree because it contains a prime node—the leftmost internal node that
does not have any splits. We illustrate the method for this more general split-decomposition tree, noting
that the process would be identical in the case of a clique-star tree.
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Both of these are connected to smaller split-decomposition trees: the extremity is
connected itself to a clique-node, which we enter through one of its undistinguished edges
(leaving the two other to go to leaves, 7 and 8); the center of the star-node is connected
to a prime node, and so on.

Grammar description. Now, to describe this tree symbolically, let’s consider the rule
for star-nodes (assuming we are, unlike in the tree of Figure 1a, in a clique-star tree that
has no prime internal nodes). First assume like at the beginning of our example, that
we enter a star-node through its center: we have to describe what the extremities can be
connected to.

According to Cunningham’s Theorem: we know that there are at least two extremities
(since every non-leaf node has degree at least three); and we know that the star-node’s
extremities cannot be connected to the center of another star-node. We call SC a split-
decomposition tree that is traversed starting at a star-node entered through its center.
We have

SC = Set>2 (Z + K + SX)

because indeed, we have at least two extremities, which are not ordered—so Set>2 (. . .)—
and each of these extremities can either lead to a leaf, Z, a clique-node entered through
any edge, K, and a star-node entered through one of its extremities, SX .

For a star-node entered through its extremity, we have a similar definition, with a
twist,

SX = (Z + K + SC)× Set>1 (Z + K + SX)

because the center—which can lead to a leaf, Z, a clique-node, K, or a star-node entered
through its center, SC—is distinct from the extremities (which, from the perspective of the
star-node itself, are undistinguishable). We thus express the subtree connected through
the center as separate from those connected through the extremities: this is the reason
for the Cartesian product (rather than strictly using non-ordered constructions such as
Set).

Conventions. As explained above, we use rather similar notations to describe the com-
binatorial classes that arise from decomposing split-decomposition trees. These notations
are summarized in Table 2, and the most frequently used are:

• K is a clique-node entered through one of its edges;
• SC is a star-node entered through its center;
• SX is a star-node entered through one of its extremities.

Furthermore because we provide grammars for tree classes that are both rooted and
unrooted, we use some notation for clarity. In particular, we use Z• to denote the rooted
vertex, although this object does not differ in any way from any other atom Z.

Terminology. In the rest of this paper, we describe the combinatorial class SX as
representing “a star-node entered through an extremity”, but others may have alternate
descriptions, such as “a star-node linked to its parent by an extremity”; or such as Iriza [25],
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“a star-node with the subtree incident to one of its extremities having been removed”—all
these descriptions are equivalent (but follow different viewpoints).

1.6 The dissymmetry theorem

All the grammars produced by this methodology are rooted grammars: the trees are
described as starting at a root, and branching out to leaves—yet the split-decomposition
trees are not rooted, since they decompose graphs which are themselves not rooted.

If we were limiting ourselves to labeled objects4, it would be simple to move from a
rooted object to an unrooted one, because there are exactly n ways to root a tree with
n labeled leaves. But because we allow the graphs (and associated split-decomposition
trees) to be unlabeled, some symmetries make the transition to unrooted objects less
straightforward.

While this problem has received considerable attention since Pólya [30, 31], Otter [28]
and others [23], we choose to follow the lead of Chauve et al. [8], and appeal to a more
recent result, the dissymmetry theorem. This theorem was introduced by Bergeron et al. [2]
in terms of ordered and unordered pairs of trees, and was eventually reformulated in
a more elegant manner, for instance by Flajolet and Sedgewick [15, VII.26 p. 481] or
Chapuy et al. [7, §3]. It states

A + A◦→◦ ' A◦ + A◦−◦ (1)

where A is the unrooted class of trees, and A◦, A◦−◦, A◦→◦ are the rooted classes of trees
respectively where a root-vertex is distinguished, a root-edge is distinguished, and a di-
rected, outgoing root-edge is distinguished. The proof is straightforward, see Drmota [11,
§4.3.3, p. 293], and involves the notion of center of a tree.

For more details on the dissymmetry theorem, see Chauve et al. [8, §2.2 and §3]. We
will content ourselves with some summary remarks:

• The process of applying the dissymmetry theorem involves rerooting the trees de-
scribed by a grammar in every possible way. Indeed, the trees obtained from our
methodology will initially be rooted at their leaves. For the dissymmetry theorem,
we re-express the grammar of the tree in all possible ways it can be rooted.

• In terms of notation, we systematically refer to Tω as trees re-rooted at a node (or
edge) of type ω. Often these rerooted trees present the distinct characteristic that,
unlike the trees described in the rooted grammars, they are not “missing a subtree.”
Thus the combinatorial class TS refers to a split-decomposition tree (of some graph
family) which has been rerooted at a star-node; in this context, we must account
both for the center, and at least two extremities. See an unrooted grammar, e.g.,
Theorem 26, for an example of how this notation is used: TK refers to trees re-rooted
at a clique-node K, while TS−S refers to trees re-rooted at a star-star edge, S − S.

4Labeled objects are composed of atoms (think of atoms as being vertices in a graph, or leaves in a
tree) that are each uniquely distinguished by an integer between 1 and n, the size of the object; each of
these integer is called a label.
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(a) A C4 (cycle with 4
vertices).

(b) A diamond.

(c) Cliques (C4,
C5,. . . ).

...

(d) A pendant vertex.

......

(e) A bridge.

Figure 4. These are the induced forbidden subgraphs that we investigate in this paper.
In Section 2, we introduce a series of lemmas that characterize the split-decomposition
tree of a (totally decomposable) graph which avoids one or some of these induced sub-
graphs.

• A particularity of the dissymmetry theorem is that we can ignore any term Tω, in
which ω involves a leaf (e.g., we don’t need to consider re-rooting the trees at edges
which connect a star-node to a leaf). These terms algebraically cancel each-other
out [8, Lemma 1] in the subtraction of Eq. (1):

Lemma 10 (Dissymmetry theorem leaf-invariance [8]). In the dissymmetry theorem
for trees, when rerooting at the nodes (or atoms) of a combinatorial tree-like class
A, leaves do not need to be considered.

• This is a relatively simple theorem to apply; the downside is that it only yields an
equality of the coefficient, but it loses the symbolic meaning of a grammar. This is
a problem when using the tools of analytic combinatorics [15], in particular those
having to do with random generation [16, 12, 14].

• An alternate tool to unroot combinatorial classes, cycle-pointing [3], does not have
this issue: it is a combinatorial operation (rather than algebraic one), and it allows
for the creation of random samplers for a class. However it is more complex to use,
though Iriza [25] has already applied it to the distance-hereditary and 3-leaf power
grammars of Chauve et al. [8].

2 Characterization & Forbidden Subgraphs

In this section, we provide a set of bijective lemmas that characterize the split-decompo-
sition tree of a graph that avoids any of the forbidden induced subgraphs of Figure 4.
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2.1 Elementary lemmas

We first provide three simple lemmas, which essentially have to do with the fact that the
split-decomposition tree is a tree. Their proofs are provided in Appendix B, and notably
are still valid in the presence of prime nodes (i.e., these elementary lemmas would still
apply to a split-decomposition tree that while reduced, is not purely a clique-star tree—
even though those are the only trees that we work with in the context of this paper).

Recall also that the notion of totally decomposable graph is introduced in Definition 8.

Lemma 11. Let G be a totally decomposable graph with the reduced clique-star split-
decomposition tree T , any maximal5 alternated path starting from any node in V (T ) ends
in a leaf.

Lemma 12. Let G be a totally decomposable graph with the reduced clique-star split-
decomposition tree T and let u ∈ V (T ) be an internal node. Any two maximal alternated
paths P and Q that start at distinct marker vertices of u but contain no interior edges
from Gu end at distinct leaves.

Lemma 13. Let G be a totally decomposable graph with the reduced clique-star split-
decomposition tree T . If T has a clique-node of degree n, then G has a corresponding
induced clique on (at least) n vertices.

2.2 Forbidden subgraphs lemmas

Definition 14. Let G be a totally decomposable graph with the reduced clique-star
split-decomposition tree T . A center-center path in T is an alternated path P , such that
the endpoints of P are centers of star-nodes (u, v) ∈ V (T )2 and P does not contain any
interior edge of either star-node.

Lemma 15 (Split-decomposition tree characterization of C4-free graphs). Let G be a
totally decomposable graph with the reduced clique-star split-decomposition tree T . G does
not have any induced C4 if and only if T does not have any center-center paths.

Proof. [⇒] Let T be a clique-star tree with a center-center path P between the centers
of two star-nodes u, v ∈ V (T ); we will show that the accessibility graph G(T ) has an
induced C4.

Let cu ∈ Gu and cv ∈ Gv be the endpoints of P . Since T is assumed to be a reduced
split-decomposition tree (Theorem 7), u and v have degree at least three and thus Gu and
Gv have at least two extremities. Therefore, there are at least two maximal alternated
paths out of u (resp. v), each beginning at an extremity of Gu (resp. Gv) and not using
any interior edges of Gu (resp. Gv). By Lemma 12, these paths end at distinct leaves
a, b ∈ V (T ) (resp. c, d ∈ V (T )), as shown in Figure 5.

5A maximal alternated path is one that cannot be extended to include more edges while remaining
alternated.
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Figure 5. A center-center path in a split-decomposition tree translates to an induced
C4 in the corresponding accessibility graph, see Lemma 15.

Now consider the accessibility graph G of T . First, we observe that the pairs6 (a, c),
(a, d), (b, c), (b, d) all belong to the edge set of G. We will show this for the edge (a, c) by
extending P into an alternated path in T from a to c. The argument extends symmetrically
to the other three edges.

Let Pa be the alternated path between a and an extremity of Gu, and let Pc be the
alternated path between c and an extremity of Gv. To show (a, c) ∈ E(G), we extend P
into the following alternated path:

Pa, cu, P, cv, Pc

We next observe that (a, b) and symmetrically (c, d) cannot belong to the edge set of G.
Since T is a tree, there is a unique path in T between a and b, which passes through u. This
unique path must use two interior edges within Gu and therefore cannot be alternated.
Consequently, (a, b) 6∈ E(G). It can be shown by a similar argument that (c, d) 6∈ E(G).
Therefore, the induced subgraph of G consisting of a, b, c, d is a C4 illustrated in Figure 5.

[⇐] Let G be a totally decomposable graph with an induced C4 with its vertices arbi-
trarily labeled (a, c, b, d) ∈ V (G) as in Figure 5. We will show that the reduced split-
decomposition tree T of G has a center-center path.

First, we will show that there is a star-node v ∈ V (T ) that has alternated paths out of
its extremities ending in c and d. Since (a, c), (a, d) ∈ E(G), there must exist alternated
paths Pa,c and Pa,d, which begin at the leaf a and end at the leaf c or d respectively. Let
v ∈ V (T ) be the internal node that both Pa,c and Pa,d enter via the same edge ρcv but
exit via different edges ρxc and ρxd

respectively. We claim that v must be a star-node,
such that cv is its center and xc and xd are two of its extremities. It is sufficient to
show (xc, xd) 6∈ E(Gv), which is indeed true because otherwise, we could use that edge
and the disjoint parts of Pa,c and Pa,d to construct the alternated path between c and d,
contradicting the fact that (c, d) 6∈ E(G).

Next, we will show that there is a star-node u ∈ V (T ) that has alternated paths out
of its extremities ending in a and b and forms a center-center path with v. Consider this

6Out of what is, perhaps, notational abuse, we refer to both vertices of the accessibility graph, and
leaves of the split-decomposition tree as the same objects.
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Figure 6. A graph that has an induced C4 subgraph on vertices a, c, b, d must have a
center-center path. In this figure, the star u is where Pa,c and Pb,c branch apart, and the
star-node v is where Pa,c and Pa,d branch apart. If u and v do not form a center-center
path, b and d cannot be adjacent in the accessibility graph G.

time the alternated path Pb,c between leaves b and c, as well as Pa,c defined above. Similar
to the argument above, let u ∈ V (T ) be the internal node that both Pa,c and Pb,c enter
via the same edge ρcu but exit via different edges ρxa and ρxb

respectively. With the same
argument outlined above, u must be a star-node, such that cu is its center and xa and xb
are two of its extremities. It remains to show that u and v form a center-center path.

Suppose u and v do not form a center-center path. Then u must be on the common
part of Pa,c and Pb,c between xc and c. However, in this case, both u and v lie on the
unique path Pb,d in T between b and d, in such a way that Pb,d must use two interior edges
of both Gu and Gv, which is a contradiction since (b, d) ∈ E(G) (see Figure 6).

Remark 16. Importantly, a center-center path is defined as being an alternated path
between the centers of two star-nodes, as reflected in Figure 6. In this manner, the defi-
nition excludes the possibility that, somewhere on the path between the cu and cv marker
vertices, there is a star (or for that matter a prime node) which breaks the alternating
path—in the sense that it requires taking at least two interior edges.

But while the definition excludes it, it is a very real possibility to keep in mind when
decomposing the grammar of the tree. As we will see in Section 4 on ptolemaic graphs,
specifically for the case of the clique-node K, we may need to engineer the grammar in
such a way that it keeps track of whether a path between two nodes is alternated (or not).

Definition 17. Let G be a totally decomposable graph with the reduced clique-star split-
decomposition tree T . A clique-center path in T is an alternated path P , such that the
endpoints of P are the center of a star-node u ∈ V (T ) and a marker vertex of a clique-node
v ∈ V (T ) and P does not contain any interior edge of the clique-node or the star-node.

Lemma 18 (Split-decomposition tree characterization of diamond-free graphs). Let G
be a totally decomposable graph with the reduced clique-star split-decomposition tree T . G
does not have any induced diamonds if and only if T does not have any induced clique-
center paths.
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Figure 7. A clique-center path in a split-decomposition tree translates to an induced
diamond in the accessibility graph.

Proof. [⇒] Let T be a clique-star tree containing a clique-center path P between the
center of a star-node u ∈ V (T ) and a marker vertex of a clique-node v ∈ V (T ). We will
show that the accessibility graph G(T ) has an induced diamond.

Let cu ∈ Gu and cv ∈ Gv be the endpoints of P . By an argument similar to the one in
the proof of Lemma 15, it follows from Lemma 12 that there must be at least two disjoint
maximal alternated paths out of u, each beginning at an extremity of Gu and ending
at leaves a, b ∈ V (T ). Similarly, there must be at least two disjoint maximal alternated
paths out of the clique-node v ending at leaves c, d ∈ V (T ) (Figure 7).

We can now show that this clique-center path translates to an induced diamond in
the accessibility graph G of T . Given this established labeling of the leaves a, b, c, d and
internal nodes u, v, the exact same argument outlined in the proof of Lemma 15 directly
applies here, showing that (a, c), (a, d), (b, c), (b, d) ∈ E(G). Similarly, it can be shown
that (a, b) 6∈ E(G).

Where this proof diverges from the proof of Lemma 15 is in the existence of the edge
(c, d) ∈ E(G). This is easy to show: Let xc, xd ∈ V (Gv) be the marker vertices of
the clique-node v that mark the end points of the paths out of v to the leaves c and d
respectively7. We have (c, d) ∈ E(G) by tracing the following alternated path: c, xc, xd, d
(see Figure 7).

[⇐] Let G be a totally decomposable graph with an induced diamond on vertices
(a, c, b, d) ∈ V (G) labeled as illustrated in Figure 7. We need to show that the reduced
split-decomposition tree T of G has a clique-center path.

It can be shown by a similar argument to the proof of Lemma 15 that there must exist
a star node u ∈ V (T ) that has alternated paths Pa,c and Pb,c out of its extremities ending
in a and b respectively. Let cu ∈ Gu be the center of this star-node.

Similarly, we can show that there is a clique-node out of which maximal alternated
paths lead to c and d. Let Pa,d be the unique path in T between leaves a and d, and

7We chose here to use the same notation as the proof of Lemma 15 in referring to marker vertices of
the clique-node v by names that might be reminiscent of the center and extremities of a star-node. This
notation is not meant to imply that v is a star-node, but rather aims to highlight the parallelism between
the two proofs, hinting at the ease by which our methods can be generalized to derive split-decomposition
tree characterizations for different classes of graphs defined in terms of forbidden subgraphs.
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consider the node v ∈ V (T ) where Pa,c and Pa,d branch apart. Let cv ∈ V (Gv) denote the
marker vertex in common between the two paths, and let xc, xd ∈ V (Gv) be the marker
vertices out of which Pa,c and Pa,d exit v respectively. Since (c, d) ∈ E(G), there must be
an alternated path in T between c and d that uses at most one interior edge from Gv, so
we must have (xc, xd) ∈ E(Gv). Therefore, Gv has an induced K3 on the marker vertices
xc, xd, and cv. Since T is a clique-star tree and v cannot be a star-node, it has to be a
clique node.

Finally, we need to show that u and v form a clique-center path. This is indeed the
case since, if the path P between u and v connected to either extremity of Gu, one of the
following cases would occur:
• P connects to the extremity of u ending in a, which implies (b, c), (b, d) 6∈ E(G);
• P connects to the extremity of u ending in b, which implies (a, c), (a, d) 6∈ E(G);
• P connects to another extremity of u (if one exists), which implies (a, c), (a, d),

(b, c), (b, d) 6∈ E(G).
Since all the above cases contradict the fact that {a, b, c, d} induces a diamond in G, P
must be a clique-center path between u and v.

Lemma 19 (Split-decomposition tree characterization of graphs without induced cliques
on 4 (or more) vertices). Let G be a totally decomposable graph with the reduced clique-star
split-decomposition tree T . G does not contain any induced K>4 subgraphs if and only if
T does not have:
• any clique-nodes of degree 4 or more;
• any alternated paths between different clique-nodes.

Proof. [⇒] We will show that for any clique-star tree T breaking either of the conditions
of this lemma, the accessibility graph G(T ) must have an induced clique on at least 4
vertices as a subgraph.

First, suppose T has a clique-node of degree 4 or more. It follows from Lemma 13
that G(T ) must have an induced K>4 subgraph.

Second, suppose there are two clique-nodes u, v ∈ V (T ) connected via an alternated
path P . Each of Gu and Gv must have at least three marker vertices, one of which belongs
to P . Therefore, u and v each have at least two marker vertices with outgoing maximal
alternated paths that end in two distinct leaves by Lemma 12. The four leaves at the end
of these alternated paths are pairwise adjacent in G, thus inducing a K4.

[⇐] Let G be a totally decomposable graph with an induced clique subgraph on 4 or more
vertices, including a, b, c, d ∈ V (G). We will show that the split-decomposition tree T of
G breaks at least one the conditions listed in this lemma, i.e. either T has a clique-node
of degree 4 or more, or it has two clique-nodes (of degree 3) connected via an alternated
path.

Consider the alternated paths Pa,b, Pa,c, and Pa,d between the pairs of leaves {a, b},
{a, c}, and {a, d} respectively. Let ub,c ∈ Pa,b ∩ Pa,c be the closest internal node to a in
common between Pa,b and Pa,c.

We observe that ub,c must be a clique-node. This is the case because if ub,c were a
star-node, at least two of the alternated paths would have to enter ub,c at two extremities
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Figure 8. In a clique-star tree, a star-node with both its center and one of its extrem-
ities adjacent to leaves translates to a pendant edge in the accessibility graph.

and use two interior edges of the graph-label gub,c
. In this case, the leaves at the end of

those two paths could not be adjacent in G.
By a symmetric argument, it can be shown that ub,d, the closest internal node to a in

common between Pa,b and Pa,c, must also be a clique-node.
Depending on whether or not ub,c and ub,d are distinct nodes, one of the conditions of

the lemma is contradicted:
• if ub,c and ub,d are the same clique node, there are four disjoint outgoing alternated

paths out it, implying that it must have a degree of at least four, contradiction the
first condition of the lemma;
• if ub,c and ub,d are distinct clique nodes, they are connected by an alternated path

that is a part of Pa,b between them, contradicting the second condition of the lemma.

Lemma 20 (Split-decomposition tree characterization of graphs without pendant edges).
Let G be a totally decomposable graph with the reduced clique-star split-decomposition tree
T . G does not have any pendant edges if and only if T does not have any star-node with
its center and an extremity adjacent to leaves.

Proof. [⇒] Let T be a clique-star tree, and let u ∈ V (T ) be a star-node, such that its
center cu is adjacent to a leaf a ∈ V (T ) and one of its extremities xb is adjacent to a leaf
b ∈ V (T ). We will show that b does not have any neighbors beside a in the accessibility
graph G(T ) and thus, the edge (a, b) is a pendant edge of G(T ).

Suppose, on the contrary, that b has a neighbor c ∈ V (G(T )), c 6= a. Then there must
be an alternated path P in T that connects b and c. Note that P must go through u,
entering it at an extremity xc ∈ V (Gu). The path P must thus use two interior edges
(xb, cu) and (cu, xc) and cannot be alternated (Figure 8).

[⇐] Let G be a totally decomposable graph with a pendant edge (a, b) ∈ E(G) such that
b has degree 1 (Figure 8). We will show that the corresponding leaves a and b in the
reduced clique-star tree T of G are attached to a star-node u, with its center adjacent to
a and one of its extremities adjacent to b. Let u ∈ V (T ) be the internal node to which b
is attached, and let xb ∈ V (Gu) be the marker vertex adjacent to b.
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First, we will show that u is indeed a star-node and xb is one of its extremities. To do
so, it suffices to show that xb has degree 1 in Gu. Suppose, on the contrary, that there
are two marker vertices y, z ∈ V (Gu) that are adjacent to xb, and consider two maximal
alternated paths out of y and z. By Lemma 12, these paths end at two distinct leaves of
T , both of which much be adjacent to b in G, contradicting the assumption that b has
degree 1.

Next, we will show that a must be attached to the center cu of Gu. Otherwise, one of
the following cases will occur:
• cu is adjacent to a leaf c ∈ V (T ). In this case, we have the alternated path b, xb, cu, c,

implying (b, c) ∈ E(G), contradicting the assumption that b has degree 1.
• cu is adjacent to a clique-node v ∈ V (T ). With an argument similar to the previous

case, it can be shown that in this case, there must exist at least two alternated paths
out of v that lead to leaves, all of which must be adjacent to b.
• cu is adjacent to the center of a star-node v ∈ V (T ). Similar to the previous case,

there must exist at least two alternated paths out extremities of v that lead to
leaves, all of which must be adjacent to b.
• cu is adjacent to an extremity of a star-node v ∈ V (T ). This case never happens,

since T is assumed to be a reduced clique-star tree.
Therefore, a must be attached to the center of Gu, so u is a star-node with a adjacent to
its center and b adjacent to one of its extremities.

Lemma 21 (Split-decomposition tree characterization of graphs without bridges). Let G
be a totally decomposable graph with the reduced clique-star split-decomposition tree T . G
does not have any bridges if and only if T does not have:
• any star-node with its center and an extremity adjacent to leaves;
• any two star-nodes adjacent via their extremities, with their centers adjacent to

leaves.

Proof. We distinguish between two kinds of bridges: pendant edges and other bridges,
which we will call internal bridges. Lemma 20 states that a star-node with its center and
an extremity adjacent to leaves in T corresponds to a pendant edge in G. Therefore, it
suffices to show G has no internal bridges if and only if the second condition holds in T .

[⇒] Let T be a clique-star tree, and let u, v ∈ V (T ) be two star-nodes, with the center
cu ∈ Gu adjacent to a leaf a ∈ V (T ), the center cv ∈ Gv adjacent to a leaf b ∈ V (T ), and
two of their extremities xu ∈ Gu and xv ∈ Gv adjacent to each other. We will show that
(a, b) is an internal bridge in G(T ).

First, let us define the following partition of the leaves of T into two sets: Since every
edge in a tree is a bridge, removing (u, v) from T breaks T into two connected components.
Let Vu, Vv ∈ V (T ) be the leaves of these components respectively, and note that a ∈ Vu
and b ∈ Vv (Figure 9).

Next, note that (a, b) ∈ E(G(T )) by tracing the alternated path a, cu, xu, xv, cv, b. To
show that (a, b) must be an internal bridge, we will show that the edge (a, b) is a bridge
in G(T ) by showing it does not belong to any cycles. We will then confirm that (a, b)
must be an internal bridge.
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Figure 9. In a clique-star tree, a structure consisting of two star-nodes adjacent via
their extremities, with their centers adjacent to leaves, translates to an internal bridge
in the accessibility graph.

Suppose, on the contrary, that G(T ) has a cycle C of vertices (x1 = a, x2, . . . , xk−1,
xk = b) ∈ V (G(T ))k for some k > 3. Clearly, x1 = a ∈ Vu. Additionally, for every edge
(xi, xi+1) ∈ E(G(T )), i = 1 . . . k − 1, there must be an alternated path Pi in T between
leaves xi and xi+1. Furthermore, if xi ∈ Vu, we must also have xi+1 ∈ Vu, since otherwise,
Pi must use the only edge crossing the cut Vu, Vv; this requires Pi to enter and exit u
via two extremities of Gu, which requires using two interior edges from Gu. Applying a
similar argument for every edge (xi, xi+1) of C up to b implies that b ∈ Vu. Therefore, we
must have b ∈ Vu ∩ Vv, contradicting the fact that Vu and Vv are disjoint.

Finally, we can show via Lemma 12 that (a, b) must be an internal bridge, by showing
that a and b must have neighbors besides each other in G(T )). We will confirm this for
a, and the argument applies symmetrically to b. Since T is reduced, u has degree at least
three, so there is at least one alternating path out of an extremity of Gu other than xu
ending in a leaf of T other than b, implying that a must be adjacent to that leaf in G(T ).
Similarly, b must have a neighbor in G(T ) other than a. Therefore, (a, b) cannot be a
pendant edge and must be an internal bridge.

[⇐] Let G be a totally decomposable graph with an internal bridge (a, b) ∈ E(G) (Fig-
ure 9). We show that the corresponding leaves a and b in the reduced clique-star tree
T of G are respectively attached to centers of two star-node u and v adjacent via their
extremities.

Let u ∈ V (T ) be the internal node to which a is attached, and let cu ∈ V (Gu) be the
marker vertex adjacent to a. Similarly, let v ∈ V (T ) be the internal node to which b is
attached, and let cv ∈ V (Gv) be the marker vertex adjacent to b.

Now, we show that u and v are star-nodes. Suppose, on the contrary, that u is a clique-
node, and note that Gu must have at least two other marker vertices besides cu. Consider
the two maximal alternated paths Px and Py out of these two marker vertices, respectively
ending in leaves x, y ∈ V (T ) by Lemma 12. We first observe that (a, x) ∈ E(G) by the
union of the alternated path Px and the interior edge of Gu between cu and the marker
vertex at the end of Px. Similarly, we have (a, y) ∈ E(G). Furthermore, (x, y) ∈ E(G) by
the union of the two alternated paths Px and Py and the interior edge of Gu between the
ends of these paths.The trio of vertices a, x, y ∈ V (G) thus induces a C3 inG, contradicting
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Figure 10. All block graphs on four vertices or less.
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(a) A diamond.
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(b) A C4.

Figure 11. The class of weakly geodetic graphs can be characterized in terms of
forbidden subgraphs as (C4, diamond)-free. This is the case because, while in a weakly
geodetic graph, a pair of vertices of distance 2 has a unique common neighbor, in an
induced C4 or diamond subgraph, the highlighted vertices a and b are of distance 2
while having at least two common neighbors c and d.

the assumption that (a, b) is a bridge.
Next, we will show that u and v are adjacent to each other via their extremities xu

and xv. Otherwise, since no star centers are adjacent to extremities of other star-nodes in
a reduced split-decomposition tree, u and v would have to be adjacent via their centers.
This would constitute a center-center path, which would, by Lemma 15, imply that (a, b)
belongs to a C4 and cannot be a bridge.

Finally, we confirm that cu and cv, the marker vertices to which a and b are attached,
are the centers of Gu and Gv respectively. It suffices to show this claim for a, as the
argument symmetrically applies to b as well. If, on the contrary, a were attached to an
extremity of Gu, the only path in T between a and b would have to use two interior edges
of Gu, one from cu to the center of Gu and one from the center to xu. This would imply
(a, b) 6∈ E(G), a contradiction.

3 Block graphs

In this section, we analyze a class of graphs called block graphs. After providing a
general definition of this class, we present its well-known forbidden induced subgraph
characterization, and using a lemma we proved in Section 2, we deduce a characterization
of the split-decomposition tree of graphs in this class.

Block graphs are the (weakly geodetic, as defined a few paragraphs below) subset of
ptolemaic graphs—themselves the (chordal) subset of distance-hereditary graphs. Thus,
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their split-decomposition tree is a more constrained version of that of ptolemaic graphs.
As such, we use block graphs as a case study to prepare for ptolemaic graphs, for which
the grammar is a bit more complicated.

3.1 Characterization

For any graph G, a vertex v is a cut vertex if the number of connected components is
increased after removing v, and a block is a maximal connected subgraph without any cut
vertex.

A graph is then called a block graph [21] if and only if its blocks are complete graphs
(or cliques) and the intersection of two blocks is either empty or a cut vertex. Block
graphs are the intersection of ptolemaic graphs and weakly geodetic graphs, as was shown
by Kay and Chartrand [26].

Definition 22 (Kay and Chartrand [26, §2]). A graph is weakly geodetic if for every pair
of vertices of distance 2 there is a unique common neighbor of them.

It is relatively intuitive to figure out from this definition, that weakly geodetic graphs are
exactly (C4, diamond)-free graphs, but surprisingly we were only able to find this result
mentioned relatively recently [13].

Lemma 23. A graph is weakly geodetic if and only if it contains no induced C4 or diamond
subgraphs.

Proof. [⇒] We show a weakly geodetic graph is (C4, diamond)-free by arguing that graphs
with induced C4 subgraphs and diamonds as induced subgraphs are not weakly geodetic.
This is illustrated in Figure 11, in which the highlighted pairs of vertices in a C4 and a
diamond are of distance 2 and have more than one neighbor in common.
[⇐] Let G be a (C4, diamond)-free, and let a, b ∈ V (G) be vertices of distance 2 with two
neighbors c, d ∈ V (G) in common. Since a, b have distance 2, (a, b) 6∈ E(G). Depending
on whether or not (c, d) belongs to the edge set of G, we have {a, b, c, d} inducing a
diamond (Figure 11a) or a C4 (Figure 11b) respectively.

Since we have established that block graphs are the subset of totally decomposable
(distance-hereditary) graphs which are also (C4, diamond)-free, we can now characterize
their split-decomposition tree by applying our two lemmas from Section 2 and deducing
the overall constraint on the split-decomposition trees that these imply.

Theorem 24 (Split-decomposition tree characterization of block graphs). A graph G with
the reduced split-decomposition tree (T,F) is a block graph if and only if

(a) T is a clique-star tree;
(b) the centers of all star-nodes are attached to leaves.

Proof. We have introduced block graphs as being the intersection class of ptolemaic graphs
and weakly geodetic graphs. As we will see again in Section 4, Howorka [24, §2] has shown
that ptolemaic graphs are the intersection class of distance-hereditary graphs and chordal
(triangulated) graphs.
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A chordal graph is a graph in which any cycle of size larger than 3 has a chord;
because distance-hereditary graphs are themselves C>5-free, chordal distance-hereditary
(ptolemaic) graphs are the C4-free distance-hereditary graphs. The additional constraint
that comes with being weakly geodetic, implies that block graphs are the (C4, diamond)-
free distance-hereditary graphs8.

The first condition in this theorem is due to the total decomposability of block graphs
as a subset of distance-hereditary graphs. The second condition forbids having any center-
center or clique-center paths, which, by Lemma 15 and Lemma 18 respectively, ensures
that G does not have any induced C4 or diamond.

3.2 Rooted grammar

Using the split-decomposition tree characterization derived above, we can provide a
symbolic grammar that can be used to enumerate labeled and unlabeled block graphs.
This provides a new comprehensive approach for this class, previously enumerated by
Harary [22, §3.4.14].

Theorem 25. The class BG• of block graphs rooted at a vertex is specified by

BG• = Z• × (SC + SX + K) (2)

K = Set>2 (Z + SX) (3)

SC = Set>2 (Z + K + SX) (4)

SX = Z× Set>1 (Z + K + SX) . (5)

This grammar is similar to that of distance-hereditary graphs [8]. The constraint that
the centers of all star-nodes are attached to leaves means essentially that the rule SC can
only be reached as a starting point when we are describing what the root vertex might
be connected to (from the initial rule, BG•).

For the sake of comprehensiveness, we give this proof in full detail. However since the
following proofs are fairly similar, we will tend to abbreviate them.

Proof. We begin with the class of split-decomposition trees for block graphs, rooted at a
star-node entered by its center,

SC = Set>2 (Z + K + SX) .

This equation specifies that a subtree rooted at a star-node, linked to its parent by its
center, has at least 2 unordered children attached to the extremities of the star-node: each
extremity can either lead to a leaf, a regular clique-node, or another star-node entered
through an extremity (but not another star-node entered through its center since the
tree is reduced). The lower bound of 2 children is due to the fact that in a reduced

8Alternatively block graphs can be characterized as the class of (C>4, diamond)-free graphs. Since
block graphs are also distance-hereditary, and since distance-hereditary graphs do not have any induced
C>5, we conclude again that block graphs can be thought of as (C4, diamond)-free distance-hereditary
graphs.
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split-decomposition tree, every internal node has degree at least 3, one of which is the
star-node’s center.

Next, we consider:
SX = Z× Set>1 (Z + K + SX) ,

corresponding to a subtree rooted at a star-node, linked to its parent by an extremity.
This star-node can be be exited either via its center and lead to a leaf Z (the only type of
element the center of a star-node can be connected to, following Theorem 24), or via some
extremity and lead to a leaf, a regular clique-node, or another star-node entered through
an extremity (but not another star-node entered through its center, as that is forbidden
in reduced trees).

Next, we have the equation corresponding to a clique-node,

K = Set>2 (Z + SX) .

A clique-node has a degree of at least three, so a clique-rooted subtree can be exited from
a set of at least two children and reach a leaf or a star-node through its extremity. It
cannot reach another clique-node since the tree is reduced, and it cannot enter a star-node
through its center since, again according to Theorem 24, star centers are only adjacent to
leaves.

Finally, this equation
BG• = Z• × (SC + SX + K),

combines the previously introduced terms into a specification for rooted split-decompo-
sition trees of block graphs, which are combinatorially equivalent to the class of rooted
block graphs. It states that a rooted split-decomposition tree of a block graph consists of
a distinguished leaf Z•, which is attached to an internal node. The internal node could
be a clique-node, or a star-node entered through either its center or an extremity.

With this symbolic specification, and a computer algebra system, we may extract an
arbitrarily long enumeration (we have easily extracted 10 000 terms).

3.3 Unrooted grammar

Applying the dissymmetry theorem to the internal nodes and edges of split-decomposition
trees for block graphs gives the following grammar.

Theorem 26. The class BG of unrooted block graphs is specified by

BG = TK + TS + TS−S − TS→S − TS−K (6)

TK = Set>3 (Z + SX) (7)

TS = Z× SC (8)

TS−S = Set=2 (SX) (9)

TS→S = SX × SX (10)

TS−K = K × SX (11)
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SC = Set>2 (Z + K + SX) (12)

SX = Z× Set>1 (Z + K + SX) (13)

K = Set>2 (Z + SX) (14)

As noted in Subsection 1.6, in the unrooted specification, the classes denoted by T...

correspond to trees introduced by the dissymmetry theorem, whereas the specification of
all other classes is identical to the rooted grammar for block graph split-decomposition
trees given in Theorem 25.

Proof. From the dissymmetry theorem, we have the following bijection linking rooted and
unrooted split-decomposition trees of block graphs,

BG = BG◦ + BG◦−◦ −BG◦→◦.

Lemma 10 allows us to consider only internal nodes for the rooted terms. Since block
graphs are totally decomposable into star-nodes and clique-nodes, we have the following
symbolic equation for split-decomposition trees of block graphs rooted at an internal node,

BG◦ = TK + TS.

Additionally, when rooting split-decomposition trees of block graphs at an undirected edge
between internal nodes, the edge could either connect two star-nodes or a star-node and a
clique-node (recall that clique-nodes cannot be adjacent in reduced trees by Theorem 7),
which yields the following symbolic equation for block graph split-decomposition trees
rooted at an internal undirected edge,

BG◦−◦ = TS−S + TS−K .

Finally, when rooting split-decomposition trees of block graphs at a directed edge between
internal nodes, the edge could either go from a star-node to a clique-node, a clique-node
to a star-node, or a star-node to another star-node (again, there are no adjacent clique-
nodes by Theorem 7 of reduced trees), giving the following symbolic equation for block
graph split-decomposition trees rooted at an internal directed edge,

BG◦→◦ = TS→K + TK→S + TS→S.

Combining the above equations with the dissymmetry theorem, as stated in Equation 1,
yields

BG = TK + TS

+ TS−S + TS−K

− TS→K − TK→S − TS→S.

We next observe the following bijection between split-decomposition trees rooted at an
edge between a clique-node and a star-node, TS→K ' TK→S ' TS−K . This is due to the
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Figure 12. Small (unrooted, unlabeled) ptolemaic graphs.

fact that star- and clique-nodes are distinguishable, so an edge connecting a star-node
and a clique-node bears an implicit direction. (One can, for example, define the direction
to always be out of the clique-node into the star-node.) Simplifying accordingly, we arrive
at Equation (6),

PG = TK + TS + TS−S − TS→S − TS−K

We will now discuss the symbolic equations for rooted split-decomposition trees of
block graphs, starting with the following equation,

TK = Set>3 (Z + SX) .

This equation states that the split-decomposition tree of a block graph rooted at a clique-
node can be specified as a set of at least three subtrees (since internal nodes in reduced
split-decomposition trees have degree > 3), each of which can lead to either a leaf or a
star-node entered through its center; they cannot lead to clique-nodes as there are no
adjacent clique-nodes in reduced split-decomposition trees, and they cannot lead to star-
nodes through their centers, as centers of star-nodes in block graph split-decomposition
trees only connect to leaves.

Next, we will consider the equation,

TS = Z× SC .

which specifies a block graph split-decomposition tree rooted at a star-node. The specifica-
tion of the subtrees of the distinguished star-node depends on whether they are connected
to the center or an extremity of the root. The center of the root can only be attached to
a leaf, while the subtrees connected to the extremities of the distinguished star-node are
exactly those specified by an SC .

The other three rooted tree equations follow from with the same logic.

4 Ptolemaic graphs

Ptolemaic graphs were introduced by Kay and Chartrand [26] as the class of graph that
satisfied the same properties as a ptolemaic space. Later, it was shown by Howorka [24]
that these graphs are exactly the intersection of distance-hereditary graphs and chordal
graphs; beyond that, relatively little is known about ptolemaic graphs [37], and in partic-
ular, their enumeration was hitherto unknown.
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4.1 Characterization

Definition 27. A graph G is ptolemaic if any four vertices u, v, w, x in the same
connected component satisfy the ptolemaic inequality [26]:

dG(u, v) · dG(w, x) 6 dG(u,w) · dG(v, x)

+ dG(u, x) · dG(v, w).

Equivalently, ptolemaic graphs are graphs that are both chordal and distance-heredit-
ary [24, §2].

This second characterization is the one that we will use: indeed, by a reasoning similar
to that provided in the proof of Theorem 24, we have that distance-hereditary graphs do
not contain any C>5, and chordal graphs do not contain any C>4; by virtue of being a
distance-hereditary graph (described by a clique-star tree), we thus need only worry about
the forbidden C4 induced subgraphs. As it so happens, we already have a characterization
of a split-decomposition tree which avoids such cycles.

Theorem 28 (Split-decomposition tree characterization of ptolemaic graphs9). A graph
G with the reduced split-decomposition tree (T,F) is ptolemaic if and only if

(a) T is a clique-star tree;
(b) there are no center-center paths in T .

Proof. Ptolemaic graphs are exactly the intersection of distance-hereditary graphs and
chordal graphs. The first condition in this theorem addresses the fact that distance-
hereditary graphs are exactly the class of totally decomposable with respect to the split-
decomposition, and the second condition reflects the fact that, by Lemma 15, center-center
paths correspond to induced C4 subgraphs, the defining forbidden subgraphs for chordal
graphs.

4.2 Rooted grammar

Equipped with the characterization of a bijective split-decomposition tree representation
of ptolemaic graphs, we are now ready to enumerate ptolemaic graphs. In this subsection,
we begin by providing a grammar for rooted split-decomposition trees of ptolemaic graphs,
which can be used to enumerate labeled ptolemaic graphs. Next, we derive the unlabeled
enumeration.

Theorem 29. The class PG• of ptolemaic graphs rooted at a vertex is specified by

PG• = Z• × (SC + SX + K) (15)

SC = Set>2 (Z + K + SX) (16)

SX = (Z + K)× Set>1 (Z + K + SX) (17)

K = SC × Set>1 (Z + SX) + Set>2 (Z + SX) (18)

K = Set>2 (Z + SX) (19)
9This characterization was given, but not proven, by Paul [29, p. 4] in an enlightening encyclopedia

article related to split-decomposition.
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Proof. The interesting part of this grammar is that, to impose the restriction on center-
center paths (condition (b) of Theorem 28), we must distinguish between two classes of
clique-nodes, depending on the path through which we have reached them in the rooted
tree:
• K: these are clique-nodes for which the most recent star-node on their ancestorial

path has been exited through its center; we call these clique-nodes prohibitive to
indicate that they cannot be connected to the center of a star-node;
• K: all other clique-nodes, which we by contrast call regular.

Recall that the split-decomposition tree of ptolemaic graphs must, overall, satisfy the
following constraints:

(a) center-center paths are forbidden (Theorem 28);
(b) internal nodes must have degree at least 3 (Thm. 7);
(c) the center of a star-node cannot be incident to the extremity of another star-node

(Theorem 7);
(d) two clique-nodes cannot be adjacent (Theorem 7).

We can now prove the correctness of the grammar. We begin with the following equation

SC = Set>2 (Z + K + SX)

which specifies that a subtree rooted at a star-node, linked to its parent by its center, has
at least 2 unordered children as the extremities of the star-node: each extremity can either
lead to a leaf, a regular clique-node, or another star-node entered through an extremity.
The children subtrees cannot be star-nodes entered through their center, since the tree is
reduced. The lower bound of two children is due to the first condition of reduced split-
decomposition trees (Theorem 7), which specifies that every internal node has degree at
least 3.

We now consider the next equation

SX = (Z + K)× Set>1 (Z + K + SX)

The ordered pair in this equation indicates that a subtree rooted at a star-node, linked
to its parent by an extremity, can be exited in two ways, either through the center, which
yields the term (Z + K), or through another extremity, which yields the non-empty Set.

If the star-node is exited through its center, it can either enter a leaf or a prohibitive
clique-node. It cannot enter a SX by the third condition of reduced split-decomposition
trees (Theorem 7), and it cannot enter a SC as that would be a center-center path.
Furthermore, it has to enter a prohibitive clique-node K rather than a regular clique-
node K to keep track of the fact that a star-node has been exited from its center on the
current path and ensure that no another star-node will not be entered through its center.

If the star-node entered from an extremity is exited through an extremity, it has a
set of at least one other extremity to choose from. Each of those extremities can lead to
a either a leaf, a clique-node, or another star-node entered through its center. It cannot
lead to an SC , as that would be a center-center path.

We next discuss the equation

K = SC × Set>1 (Z + SX) + Set>2 (Z + SX)
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The disjoint union specifies that a subtree rooted at a regular clique-node can have exactly
zero or one SC as a child. First, a regular-clique-rooted subtree is allowed to have a SC

as a child, since regular clique-nodes are by definition not on potential center-center
paths. However, a regular-clique-rooted subtree cannot have more than one SC child,
since otherwise there would be a center-center path between the SC children through the
clique-node.

The first summand corresponds to the case where the regular clique-node has exactly
one SC as a child, which can be used to exit the tree. Additionally, the clique-node
can be exited via any of the other children besides SC and reach either a leaf or a star-
node entered through an extremity. Note that the clique-node cannot be exited into
another clique-node of any kind by the second condition of reduced split-decomposition
trees (Theorem 7), which indicates that no two clique-nodes are adjacent in a reduced
split-decomposition tree.

The second summand corresponds to the case where the regular clique-node has no
SC children. In this case, the regular clique-node can be exited via any of the remaining
two or more subtrees that have not been used to enter it. After exiting the clique-node,
one arrives at either a leaf or a star-node entered through its extremity. As explained
above, is not possible to arrive at a clique-node, since there are no adjacent clique-nodes
in reduced split-decomposition trees.

We now take a look at the equation specifying subtrees rooted at prohibitive clique-
nodes

K = Set>2 (Z + SX)

A subtree rooted at a prohibitive clique-node can be exited via any of its set of at least
two children and either enter a leaf or enter a star-node through its extremity. Since a
prohibitive clique-nodes lies on a path from the center of a star-node, it cannot enter a SC .
Additionally, it cannot enter another clique-node of any kind since reduced clique-nodes
cannot be adjacent.

Finally, the following equation

PG• = Z• × (SX + SC + K)

combines all pieces into a symbolic specification for rooted ptolemaic graphs. It states
that a rooted ptolemaic graph consists of a distinguished leaf Z•, which is attached to an
internal node. The internal node could be star-node entered through either its center or
an extremity, or it could be a regular clique-node.

Given this grammar for ptolemaic graphs, we can produce the exact enumeration for
rooted labeled ptolemaic graphs using a computer algebraic system. Furthermore, we
can derive the enumeration of unrooted labeled ptolemaic graphs by normalizing the
counting sequence by the number of possible ways to distinguish a vertex as the root.
This normalization is easy for labeled graphs, since the labels prevent the formation of
symmetries. Therefore, since each vertex is equally likely to be chosen as the root, the
number of unrooted labeled graphs of size n is simply the number of rooted labeled graphs
divided by n.
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4.3 Unrooted grammar

Theorem 30. The class PG of unrooted ptolemaic graphs is specified by

PG = TK + TS + TS−S − TS→S − TS−K (20)

TK = SC × Set>2 (Z + SX) + Set>3 (Z + SX) (21)

TS = SC × (Z + K) (22)

TS−S = Set=2 (SX) (23)

TS→S = SX × SX (24)

TS−K = K × SX + K × SC (25)

SC = Set>2 (Z + K + SX) (26)

SX = (Z + K)× Set>1 (Z + K + SX) (27)

K = SC × Set>1 (Z + SX) + Set>2 (Z + SX) (28)

K = Set>2 (Z + SX) (29)

Proof. Applying the dissymmetry theorem in a similar manner to the proof of the un-
rooted grammar of block graphs, we obtain the following formal equation:

PG = TK + TS + TS−S + TS−K

− TS→K − TK→S − TS→S.

Notably, even though we distinguish between prohibitive K and regular K clique-nodes in
the rooted grammar, this distinction disappears when rerooting the trees for the dissym-
metry theorem. This is because the prohibitive or regular nature of a clique-node depends
on an implicitly directed path leading to it from the root; however when rerooting the
tree, the clique-node in question becomes the new root, and all (implicitly directed) paths
originate from it10.

We can then simplify the dissymmetry theorem equation above in the same manner
as for block graphs:

PG = TK + TS + TS−S − TS→S − TS−K .

We then discuss the rerooted terms of the grammar, starting with the following equation,

TK = SC × Set>2 (Z + SX) + Set>3 (Z + SX) .

The disjoint union translates the fact that in a ptolemaic tree rerooted at a clique-node,
the root can have either zero or one SC as a subtree. (A clique-node having more than
one SC subtree would induce a center-center path, which cannot exist in ptolemaic split-
decomposition trees by Theorem 28.)

10This notion is implicitly used in the unrooted grammar for block graphs—and previously by
Chauve et al. [8], for distance-hereditary and 3-leaf power graphs—in which we only reroot at a star-node
S without distinguishing whether it was entered by its center or an extremity, precisely because it is the
new root, and therefore all paths lead away from it.
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The first summand corresponds to the case where the clique-node at which the split-
decomposition tree is rooted has one SC as a subtree. The clique-node root can have a
set of at least two other subtrees, each of which can lead to either a leaf or a star-node
entered from an extremity.

The second summand corresponds to the case where the clique-node at which the
split-decomposition tree is rooted has no SC subtrees, in which case it can have a set of
at least three other subtrees leading to leaves or SX nodes, but not clique-nodes or SC as
explained.

Next, we will consider the equation,

TS = SC × (Z + K)

which specifies a ptolemaic split-decomposition tree rooted at a star-node. The specifica-
tion of the subtrees of the distinguished star-node depends on whether they are connected
to the center or an extremity of the star-node. The subtrees connected to the extremities
of the distinguished star-node are exactly those specified by an SC , and the subtree at-
tached to the center of the distinguished star-node can lead to either a leaf or a prohibitive
clique-node.

The other three rooted tree equations follow from with the same logic.

The first few terms of the enumeration of unlabeled, unrooted ptolemaic graphs (among
others) are available in the Table 3 at the end of this paper.

5 2,3-Cactus and 3-Cactus

The definition of cactus graphs is similar to that of block graphs. Yet whereas in block
graphs (discussed in Section 3), each block11 is a clique, in a cactus graph each block is
an edge or a simple cycle. Thus, just as block graphs can be called clique trees, cacti can
be seen as “cycle trees”12. An alternate definition:

Definition 31. A cactus is a connected graph in which every edge belongs to at most
one simple cycle [22].

We can also conjure further variations on this definition, with cactus graphs having as
blocks, cycles that have size constrained to a set of positive integers; thus given a set
of integers Ω, an Ω-cactus graph13 is the class of cactus graphs of which the cycles have

11Recall that a block, or biconnected component, is a maximal subgraph in which every edge belongs
to a simple cycle.

12Although cactus graphs have been known by many different names, including Husimi Trees (a term
that grew contentious because the graphs are not in fact trees [22, §3.4]—although this seems not to have
been an issue for k-trees and related classes!), they have not generally been known by the name “cycle
trees”, except in a non-graph theoretical publication, which rediscovered the concept [17].

13Note that it makes no sense for 1 to be in Ω given this definition. We can however have 2 ∈ Ω, in
which case we treat an edge as a cycle of size 2. For example, if 2 6∈ Ω, every vertex must be part of a
cycle.
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Figure 13. Small (unrooted, unlabeled) triangular cacti.

size m ∈ Ω. In this section, we discuss cactus graphs for the sets: Ω = {2, 3}, Ω = {3}
and Ω = {4}, following an article by Harary and Uhlenbeck [23], who use dissimilarity
characteristics derived from Otter’s theorem [28].

5.1 3-Cactus Graphs

In this section, we enumerate the family of cactus graph that is constrained to Ω = {3},
which we refer to as the family as 3-cacti or triangular cacti.

Lemma 32 (Forbidden subgraph characterization of 3-cacti). A graph G is a triangular
cactus if and only if G is a block graph with no bridges or induced K>4.

Proof. [⇒] Given a triangular cactus G, we will show that G is a block graph and does
not have any bridges or induced K>4.

We first note that G is a block graph by showing that it is (C>4, diamond)-free. There
cannot be any induced C>4 in G, because every edge of a 3-cactus is in exactly one triangle
and no other cycle. There cannot be any induced diamonds in a G because diamonds
have an edge in common between two cycles14.

We next observe that G cannot have bridges, as a bridge is by definition not part of
any cycles, including triangles. Furthermore, G cannot have any induced cliques on 4 or
more vertices, as such a clique would involve edges shared between triangles. Therefore,
G must be a block graph and with no pendant edges or induced K>4.
[⇐] Given a block graph G without any bridges or induced K>4, we need to show that
G is a 3-cactus. We do so by showing that every edge (a, b) ∈ E(G) is in exactly one
triangle and no other cycle.

First, since (a, b) cannot be a bridge, it must lie on some cycle C. Since G is a block
graph and thus C>4-free, C must be a triangle.Furthermore, if (a, b) belonged to another
cycle C ′, by the same argument, C ′ would also be a triangle. Let c be the third vertex of
C other than a and b, and let c′ the third vertex of C ′. Depending on the adjacency of c
and c′, we have one of the following two cases:

14Here is another way to see why 3-cacti are a subset of block graphs. Block graphs can be thought of
a set of cliques sharing at most one vertex pairwise, and cactus graphs can be thought of a set of cycles
sharing at most one vertex pairwise. Since triangles are both cycles and cliques, a pairwise edge-disjoint
collection of them is both a cactus graph and block graph.
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• (c, c′) ∈ E(G), in which case {a, c, b, c′} induces a K4, which we assumed G does
not include;
• (c, c′) 6∈ E(G), in which case {a, c, b, c′} induces a diamond, which G, as a block

graph, cannot contain.
Therefore, no such cycle C ′ can exist, implying that (a, b) belongs to one and exactly one
triangle in G and no other cycle. Extending this argument to all edges of G ensures that
G is a 3-cactus.

Theorem 33 (Split-decomposition tree characterization of 3-cacti). A graph G with the
reduced split-decomposition tree (T,F) is a triangular cactus graph if and only if

(a) T is a clique-star tree;
(b) the centers of all star-nodes are attached to leaves;
(c) the extremities of star-nodes are only attached to clique-nodes;
(d) every clique-node has degree 3.

Proof. By Lemma 32, we know that 3-cacti can be described exactly as the class of block
graphs with no bridges or induced K>4.

The first and second conditions of this theorem duplicate the split-decomposition tree
characterization of block graphs outlined in Theorem 24.

The third condition uses Lemma 21 to forbid bridges. Since by the second condition,
all star centers in T are adjacent to leaves, a star extremity adjacent to a leaf of T would
correspond to a bridge in the form of a pendant edge in G, and a star extremity adjacent
to another star extremity would correspond to a non-pendant bridge in G.

Finally, the last condition applies Lemma 19 to disallow K>4, the last set of forbidden
induced subgraphs for 3-cactus.

The split-decomposition tree characterization of 3-cacti derived in the previous section
naturally defines the following symbolic grammar for rooted block graphs.

Theorem 34. The class TCG• of triangular cactus graphs rooted at a vertex is specified
by

TCG• = Z• × (SC + K) (30)

SC = Set>2 (K) (31)

SX = Z× Set>1 (K) (32)

K = Set=2 (Z + SX) (33)

Theorem 35. The class TCG of unrooted triangular cactus graphs is specified by

TCG = TK + TS − TS−K (34)

TK = Set=3 (Z + SX) (35)

TS = Z× SC (36)

TS−K = K × SX (37)

SC = Set>2 (K) (38)

SX = Z× Set>1 (K) (39)

K = Set>2 (Z + SX) (40)
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5.2 2,3-Cactus Graphs

In this section, we now enumerate the family of cactus graphs with Ω = {2, 3}. The
class of 2,3-cactus graphs is equivalent to the intersection of block graphs and of cactus
graphs15, not to be confused with the class of block-cactus graphs (which are the union
of block graphs and cactus graphs [32]).

Theorem 36 (Split-decomposition tree characterization of 2,3-cactus graphs). A graph
G with the reduced split-decomposition tree (T,F) is a 2,3-cactus graph if and only if

(a) T is a clique-star tree;
(b) every clique-node has degree 3;
(c) the centers of all star-nodes are attached to leaves;

Proof. This split-decomposition tree characterization is identical to the characterization
for 3-cactus graphs, except the last condition in the characterization of 3-cacti (stating
that leaves cannot be attached to extremities of star-nodes) is missing here. As we outlined
in the proof of the characterization of 3-cacti, a leaf attached to an extremity of a star-
node corresponds to a vertex of degree 1 in the original graph. Unlike with 3-cacti, which
required that all vertices be in some cycle of size 3, having such a vertex of degree 1 here
corresponds to a C2 and is allowed. Therefore, the correctness of this characterization
follows from the proof of the characterization for 3-cactus graphs.

Remark 37. In the characterizations of 3–cacti (Theorem 33) and 2,3–cacti (Theorem 36),
we do not restrict alternated paths between different clique–nodes, which was a required
condition for forbidding induced cliques of size 4 or larger in Lemma 19. This is because
forcing centers of star–nodes to be attached to leaves prohibits the existence of alternated
paths between different clique–nodes. Indeed, since clique–nodes cannot be directly ad-
jacent in a reduced split–decomposition tree, if two clique–nodes have an alternated path
between them, there must be a star–node on that path. Since star–node centers are as-
sumed to be connected to leaves, the alternated clique–clique path must at some point
connect to two extremities of the same star–node, and thus cannot be alternated.

Theorem 38. The class TTCG• of 2,3-cactus graphs rooted at a vertex is specified by

TTCG• = Z• × (SC + SX + K) (41)

SC = Set>2 (Z + K + SX) (42)

SX = Z× Set>1 (Z + K + SX) (43)

K = Set=2 (Z + SX) (44)

15Block graphs can be thought of as a set of cliques sharing at most one vertex pairwise, and cactus
graphs can be thought of as a set of cycles sharing at most one vertex pairwise. The intersection of cycles
and cliques are those of sizes 1, 2, and 3; however, in the case of one vertex, adding a single vertex in
this manner to a connected block or cactus graph does not change the size of the graph, contradicting
the requirement that in a combinatorial class, there must be a finite number of objects of any fixed size.
Therefore, the intersection of block graphs and cactus graphs is the family of 2,3-cactus graphs.
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Theorem 39. The class TTCG of unrooted 2,3-cactus graphs is specified by

TTCG = TK + TS + TS−S − TS→S − TS−K (45)

TK = Set=3 (Z + SX) (46)

TS = Z× SC (47)

TS−S = Set=2 (SX) (48)

TS→S = SX × SX (49)

TS−K = K × SX (50)

SC = Set>2 (Z + K + SX) (51)

SX = Z× Set>1 (Z + K + SX) (52)

K = Set=2 (Z + SX) (53)

6 Conclusion

In this paper, we follow the ideas of Gioan and Paul [19] and Chauve et al. [8], and
provide full analyses of several important subclasses of distance-hereditary graph. Some
of these analyses have lead us to uncover previously unknown enumerations (ptolemaic
graphs, . . . ), while for other classes for which enumerations were already known (block
graphs, 2,3-cactus and 3-cactus graphs), we have provided symbolic grammars which are
a more powerful starting point for future work: such as parameter analyses, exhaustive
and random generation and the empirical analyses that the latter enables. For instance,
Iriza [25, §7] provided a nice tentative preview of the type of results unlocked by these
grammars, when he empirically observed the linear growth of clique-nodes and star-nodes
in the split-decomposition tree of a random distance-hereditary graph.

Our main idea is encapsulated in Section 2: we think that the split-decomposition, cou-
pled with analytic combinatorics, is a powerful way to analyze classes of graphs specified
by their forbidden induced subgraph. This is remarkably noteworthy, because forbid-
den characterizations are relatively common, and yet they generally are very difficult to
translate to specifications. What we show is that this can be (at least for subclasses of
distance-hereditary graphs which are totally decomposable by the split-decomposition)
fairly automatic, in keeping with the spirit of analytic combinatorics:

(i) identify forbidden induced subgraphs;

(ii) translate each forbidden subgraph into constraints on the (clique-star) split-decomp-
osition tree;

(iii) describe rooted grammar, apply unrooting, etc..

This allows us to systematically derive the grammar of a number of well-studied classes of
graphs, and to compute full enumerations, asymptotic estimates, and so on. In Figure 14,
for instance, we have used the results from this paper to provide some intuition as to
the relative “density” of these graph classes. A fairly attainable goal would be to use the
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asymptotic estimates which can be derived automatically from the grammars, to compute
the asymptotic probability that a random block graph is also a 2,3-cactus graph.

Naturally, this raises a number of interesting questions, but possibly the most natural
one to ask is: can we expand this methodology beyond distance-hereditary graphs, to
classes for which the split-decomposition tree contains prime nodes (which are neither
clique-nodes nor star-nodes).

Beyond distance-hereditary graphs, another perfect (pun intended) candidate is the
class of parity graphs : these are the graphs whose split-decomposition tree has prime
nodes that are bipartite graphs. But while bipartite graphs have been enumerated by
Hanlon [20], and more recently Gainer-Dewar and Gessel [18], it is unclear whether this is
sufficient to derive a grammar for parity graphs. Indeed, the advantage of the degenerate
nodes (clique-nodes and star-nodes) is that their symmetries are fairly uncomplicated (all
the vertices of a clique are undistinguished; all the vertices of a star, save the center, are
undistinguished), as is in fact their enumeration (for each given size, there is only one
clique or one star). An empirical study by Shi [35] showed that lower and upper bounds
can be derived by plugging in the enumeration as an artificial generating function—either
assuming all vertices of a bipartite prime node to be distinguished or undistinguished.

Other classes present a similar challenge, in that the subset of allowable prime nodes
is itself too challenging.

A likely more fruitful direction to pursue this work is to first start with classes of
graphs which have small, predictable subsets of prime nodes. We discovered one such
family of classes in a paper by Harary and Uhlenbeck [23]; in this paper, they discuss
the enumeration of unlabeled and unrooted 3-cactus graphs and 4-cactus graphs (which
we studied and enumerated using a radically different methodology in this paper), while
suggesting that they would have liked to provide some general methodology to obtain the
enumeration of m-cactus graphs, for generalized polygons on m sides16.

There is some evidence to suggest that m-cactus graphs would yield split-decompo-
sition trees with prime nodes that are undirected cycles of size m; likewise the split-de-
composition tree of a general cactus graph (in which the blocks are cycles of any size
larger than 3) would likely have prime nodes that are undirected cycles. In the same
vein, block-cactus graphs (in which each block is a clique, a simple cycle, or an edge i.e.,
the constraints on each block are the union of block graphs enumerated in Section 3,
and of generalized cactus graphs) would likely also have the same type of prime nodes.
All of these are more manageable subset, and it is likely that the various intersection
classes with cactus graphs would be a more promising avenue by which to determine
whether the split-decomposition can be reliably used for the enumeration of supersets of
distance-hereditary graphs. Between the submission and publication of this article, this
is a question we have begun to investigate [1].

16It seems that Harary and Uhlenbeck have never published such a paper; and it appears that the
closest there is in terms of a general enumeration of m-cactus graphs is by Bona et al. [4]—yet they
enumerate graphs which are embedded in the plane, while we seek to enumerate the non-plane, unlabeled
and unrooted m-cactus graphs.
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Graph Class Number

General [36, A000088] 2.86× 10685

General Connected [36, A001349] 2.86× 10685

Distance-Hereditary [8] 3.38× 1056

3-Leaf Power [8] 8.40× 1037

Ptolemaic 3.78× 1050

Block 1.44× 1040

2,3-Cacti 1.55× 1038

3-Cacti 9.13× 1016

4-Cacti 5.73× 1014

Table 1. Number of unlabeled graphs of size n = 73 for different graph classes.

connected

distance
hereditary

(a) Ratio of the size of
distance-hereditary graphs to
general connected graphs on a
logarithmic scale.

ptolemaic
distance hereditary

block
2-3-cactus

3-cactus

(b) Ratios of the size of various subsets of distance-he-
reditary graphs on a logarithmic scale.

Figure 14. Illustration of the ratios of sizes of various graph classes, for n = 73 as
depicted in Table 1. The radii are the square roots of the ratios of the logarithms of the
enumeration for a given class to the logarithm of the enumeration for the base class.
In addition, only strict subsets are displayed on the right. For instance, 3-leaf power
graphs are a subset of ptolemaic graphs, since their characterization [19, §3.3] does not
allow for center-center paths; but they are not a subset of block graphs. Similarly, we
cannot represent 4-cacti as they have no intersection with 3-cacti, and it is not physically
possible to represent them here given our logarithmic scale.
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Symbol Explanation

K a clique-node entered from one of its vertices (and missing the corre-
sponding subtree)

SC a star-node entered through its center (and missing the corresponding
subtree)

SX a star-node entered through one of its (at least two) extremities (and
missing the corresponding subtree)

Z a leaf of the split-decomposition tree (an atom with unit size)

Z• the rooted leaf of the split-decomposition tree (an atom with unit size)

TK a split-decomposition tree rerooted at a clique-node (all subtrees are
present)

TS a split-decomposition tree rerooted at a star-node (all subtrees are
present)

TK−S a split-decomposition tree rerooted at an edge connecting a clique-node
to a star-node (the edge can either connect the clique-node to the star-
node’s center or an extremity; the edge accounts for one subtree of the
clique-node and one subtree of the star-node)

TS−S a split-decomposition tree rerooted at an edge connecting two star-
nodes; in the general case this can either be a center-center edge, or an
extremity-extremity edge; some classes, such as ptolemaic graphs, may
restrict this (and as before the edge accounts for a subtree of each of the
nodes)

TS→S a split-decomposition tree rerooted at a directed edge; similar to TS−S ,
except there is a direction to the edge—and thus an order to the star-
nodes

K a prohibitive clique-node—used in the grammar for ptolemaic graphs—
entered through an edge (and missing the corresponding subtree) that
is on a path that is connected to the center of a star; this clique-node
disallows outgoing connections to a star-node’s center, to avoid the for-
mation of a center-center path, as stated by Lemma 15

QC a “quadrilateral” star-node, as introduced in the grammars for 4-cactus
graphs of Appendix A; this is one half of a group of two star-nodes,
each with two extremities, and linked at their center as illustrated in
Figure 5; here we are entering one such star-node from the center (or
equivalently the center of star-node is the subtree that is missing), which
means the parent node/missing subtree is the other part of the two star-
node group

QX a “quadrilateral” star-node, entered from an extremity (or with a sub-
tree rooted at an extremity missing), which means that we must now
connect the center to a matching “quadralateral” star-node, and the
remaining extremity to something else

Table 2. Main symbols used to define the split-decomposition tree of the classes of
graphs analyzed in this paper. Refer to §1.5 for details on the terminology; and §1.6 for
details on the dissymmetry theorem, from which all the rerooted trees, denoted Tω, come
from. (We omit rerooted trees from the treatment of 4-cactus graphs in Appendix A.)
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[8] Cédric Chauve, Éric Fusy, and Jérémie Lumbroso. An enumeration of distance-
hereditary and 3-leaf power graphs. Preprint presented at ICGT 2014, 2014.
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[31] George Pólya and Ronald C. Read. Combinatorial Enumeration of Groups, Graphs,
and Chemical Compounds. Springer-Verlag New York, Inc., New York, NY, USA,
1987.

[32] Dieter Rautenbach and Lutz Volkmann. The domatic number of block-cactus graphs.
Discrete Mathematics, 187(1-3):185–193, June 1998.
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A 4-Cactus Graphs

While investigating block graphs and the related class of 3-cactus graphs, we found an
article by Harary and Uhlenbeck [23] in which they investigate both 3-cactus graphs and
4-cactus graphs. This prompted us to enumerate 4-cactus graphs.

This enumeration appears in appendix because it does not involve forbidden induced
subgraphs, and so is somewhat of a non-sequitur as far as the point we would like to make
in this paper.

The appeal of this enumeration is that it revisits a trick that is similar to that used to
enumerate ptolemaic graphs. In Section 4, we introduced two symbols to express clique-
nodes, K and K. These two symbols were used to keep track of whether, in the rooted
decomposition of the split-decomposition tree, we were traveling down an alternated path
starting at the center of a star-node or not. This “state” information was essential to
prevent the formation of center-center paths that induce C4.

In this grammar for 4-cacti, we use a similar idea. The quadrilaterals of these graphs
translate to a very specific pattern in the split-decomposition tree: two star-nodes of size
3, connected at their center. We could well translate this in the grammar as a “meta”
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internal node that is just those star-nodes combined. Instead, we define the two symbols
QC and QX to denote these special star-nodes; and because they always come in pairs
connected at their centers, we know that if we encounter QC we are “inside” the pattern,
and if we encounter QX we are entering this pattern from the outside.

Theorem 40. The class FCG• of 4-cactus graphs rooted at a vertex is specified by

FCG• = Z• × (QX + SC) (54)

QC = Set=2 (Z + SX) (55)

QX = QC × (Z + SX) (56)

SC = Set>2 (QX) (57)

SX = Z× Set>1 (QX) (58)

Sketch of proof. We first note that 4-cacti’s property of not having any induced clique-
nodes of 3 or more vertices, by Lemma 19, translates to the split-decomposition tree of
4-cacti having no clique-nodes. Therefore, the only internal nodes to consider are star-
nodes.

Furthermore, by Lemma 15, every C4 in a 4-cactus corresponds to a center-center path
in the split-decomposition tree. Since we already ruled out the existence of clique-nodes,
the only possible center-center paths in the split-decomposition tree of 4-cacti are two star-
nodes adjacent via their centers, corresponding to an induced C4 in the accessibility graph.
Along this line, we distinguish between two types of star-nodes, with Q (for quadrilateral)
representing star-nodes with their center adjacent to another star-node (another Q) and
S representing all other star-nodes, which we refer to as regular star-nodes.

We next observe that the centers of all regular star-nodes must be attached to leaves.
They cannot be attached to extremities of other star nodes as that would allow for a star-
join operation, and they cannot be attached to centers of other star-nodes since otherwise,
they would be considered quadrilateral star-nodes instead of regular ones.

Additionally, we note that extremities of regular star-nodes must be attached to
quadrilateral star-nodes. First, these extremities cannot be attached to centers of other
star-nodes to avoid star-join operations. Furthermore, as we already established that the
centers of these regular star-node are attached to leaves, having their extremities adjacent
to leaves or extremities of other star-nodes would induce bridges in the accessibility graph
by Lemma 21 (a pendant bridge in the former case, and an internal bridge in latter).
However, every edge in a 4-cactus graph belongs to a C4 and thus cannot be a bridge.

Finally, we show that every quadrilateral star-node must have exactly two extremities.
This is because there are no edges in an accessibility graph between the leaves at the ends
of maximal alternated paths out of any star-node, as an alternated path between two
such leaves would require using two interior edges from that star-node. Therefore, if
two adjacent quadrilateral star-nodes respectively have x1 and x2 extremities, then the
corresponding leaves in their subtrees would induce a Kx1,x2 in the accessibility graph.
We have x1, x2 > 2 since the split-decomposition tree is assumed to be reduced. In a
4-cactus graph, the only allowed complete bipartite induced subgraph, where each side
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of the bipartition has size at least 2, is a K2,2, i.e. C4, implying that every quadrilateral
node must have exactly two extremities.

Theorem 41. The class FCG of unrooted 4-cactus graphs is specified by

FCG = TQ + TS + TQ−Q − TQ→Q − TQ−S (59)

TQ = QC × QC (60)

TS = Z× SC (61)

TQ−Q = Set=2 (QC) (62)

TQ→Q = QC × QC (63)

TQ−S = QX × SX (64)

QC = Set=2 (Z + SX) (65)

QX = QC × (Z + SX) (66)

SC = Set>2 (QX) (67)

SX = Z× Set>1 (QX) (68)

The first few terms of the enumeration of unlabeled, unrooted 4-cactus graphs are available
in the Table 4 at the end of this paper.

B Proof of Lemmas 11, 12, and 13

We here restate and provide the full proof of two straight-forward lemmas, which

Lemma 11. Let G be a totally decomposable graph with the reduced clique-star split-
decomposition tree T , any maximal17 alternated path starting from any node in V (T )
ends in a leaf.

Proof. Let P be a maximal alternated path of length ` (edges) originating from a node
u ∈ V (T ), and suppose P does not end in a leaf. Let v be the internal node that P ends
in, and let x ∈ V (Gv) be the marker vertex attached to the edge in P that enters v. Note
that since P is an alternated path, it can include at most one edge from E(Gv), so the
part of P going from u to x has length at least `− 1 edges. Depending on the structure
of Gv, we have the following cases:
• Gv is a clique-node. Since T is reduced, v has degree at least 3. Therefore, x has at

least two neighbors in V (Gv). Let y be one of these neighbors, and let ρy connect y
to z (z is either a leaf or a marker vertex in a different internal node than v). We
can construct a new path P ′ of length `+ 1 from P by cutting off the part of P that
follows x and adding (x, y) and (y, z) to the end of P , contradicting the maximality
of P .

17A maximal alternated path is one that cannot be extended to include more edges while remaining
alternated.
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• Gv is a star-node and x is its center. Similarly to the previous case, Gv has degree at
least 3 and thus at least two extremities. Let y ∈ V (Gv) be one of these extremities
and repeat the same argument in the previous case.
• Gv is a star-node and x is one of its extremities. Let y ∈ V (Gv) be the center of

the star-node v, and the same argument given for the previous two cases applies.

Lemma 12. Let G be a totally decomposable graph with the reduced clique-star split-
decomposition tree T and let u ∈ V (T ) be an internal node. Any two maximal alternated
paths P and Q that start at distinct marker vertices of u but contain no interior edges
from Gu end at distinct leaves.

Proof. Let P and Q be two such maximal alternated paths, starting at marker vertices
p, q ∈ V (Gu) respectively. We will show that P and Q are disjoint, and the result follows.

Note that P and Q are indeed disjoint in Gu, since they begin at different marker
vertices and leave u immediately from there. Suppose P and Q are not disjoint, and let
v ∈ V (T ) be the first such common node encountered when tracing P and Q out of u.
Since P and Q are disjoint before reaching v, the part of P and Q between u and v form
a simple cycle in T , which cannot happen in a tree. Therefore, no such common node v
can exist, implying P ∩Q = {}.

Lemma 13. Let G be a totally decomposable graph with the reduced clique-star split-
decomposition tree T . If T has a clique-node of degree n, then G has a corresponding
induced clique on (at least) n vertices.

Proof. Let u ∈ V (T ) be a clique-node of degree n. For every marker vertex vi ∈ V (Gu),
i = 1 . . . n, fix some maximal alternated path Pvi that starts at the marker vertex vi,
uses no interior edges of Gu, and ends at leaf ai. Note that the ai are all distinct, by
Lemma 12, and pairwise adjacent, since every pair of leaves ai, aj are connected in T via
the alternated path consisting of Pvi , Pvj , and the edge (vi, vj) ∈ E(Gu), thus inducing a
clique of size (at least18) n in G.

18Note that this clique of size n might be part of a larger clique, as illustrated in Figure 15.
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Graph Class Rooted Labeled EIS Enumeration

Block graphs X X A035051 1, 2, 12, 116, 1555, 26682, 558215,
13781448, 392209380, 12641850510,
455198725025, 18109373455164,
788854833679549, . . .

Block graphs X A030019 1, 1, 4, 29, 311, 4447, 79745, 1722681,
43578820, 1264185051, 41381702275,
1509114454597, 60681141052273,. . .

Block graphs X A007563 1, 1, 3, 8, 25, 77, 258, 871, 3049,
10834, 39207, 143609, 532193,
1990163, 7503471, 28486071,
108809503, 417862340,. . .

Block graphs A035053 1, 1, 2, 4, 9, 22, 59, 165, 496,
1540, 4960, 16390, 55408, 190572,
665699, 2354932, 8424025, 30424768,
110823984,. . .

Ptolemaic graphs X X A287885† 1, 2, 12, 140, 2405, 54252, 1512539,
50168456, 1928240622, 84240029730,
4121792058791, 223248397559376, . . .

Ptolemaic graphs X A287886† 1, 1, 4, 35, 481, 9042, 216077,
6271057, 214248958, 8424002973,
374708368981, 18604033129948,
1019915376831963, . . .

Ptolemaic graphs X A287887† 1, 1, 3, 10, 40, 168, 764, 3589, 17460,
86858, 440507, 2267491, 11819232,
62250491, 330794053, 1771283115,
9547905381, . . .

Ptolemaic graphs A287888† 1, 1, 2, 5, 14, 47, 170, 676, 2834,
12471, 56675, 264906,1264851,
6150187, 30357300, 151798497,
767573729, 3919462385, . . .

Table 3. The first few terms of the enumerations of ptolemaic and block graphs. The
dagger † indicates sequences which are new additions to the EIS.
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Graph Class Rooted Labeled EIS Enumeration

3-cactus graphs X X A034940 0, 0, 3, 0, 75, 0, 5145, 0, 688905,
0, 152193195, 0, 50174679555, 0,
23089081640625, 0, . . .

3-cactus graphs X A034941 0, 0, 1, 0, 15, 0, 735, 0, 76545,
0, 13835745, 0, 3859590735, 0,
1539272109375, 0, 831766748637825,
0, . . .

3-cactus graphs X A003080 0, 0, 1, 0, 2, 0, 5, 0, 13, 0, 37, 0, 111,
0, 345, 0, 1105, 0, 3624, 0, 12099, 0,
41000, 0, 140647, 0, 487440, 0, 1704115,
0, . . .

3-cactus graphs A003081 0, 0, 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 19, 0,
48, 0, 126, 0, 355, 0, 1037, 0, 3124, 0,
9676, 0, 30604, 0, 98473, 0, 321572, 0,
1063146, 0, . . .

4-cactus graphs X X A287889† 0, 0, 0, 12, 0, 0, 4410, 0, 0, 7560000, 0,
0, 35626991400, 0, 0, 357082280755200,
0, 0, 6536573599765809600, 0, 0, . . .

4-cactus graphs X A287890† 0, 0, 0, 3, 0, 0, 630, 0, 0, 756000, 0, 0,
2740537800, 0, 0, 22317642547200, 0, 0,
344030189461358400, 0, 0, . . .

4-cactus graphs X A287891† 0, 0, 0, 1, 0, 0, 3, 0, 0, 11, 0, 0, 46, 0, 0,
208, 0, 0, 1002, 0, 0, 5012, 0, 0, 25863,
0, 0, 136519, 0, 0, 733902, 0, 0, . . .

4-cactus graphs A287892† 0, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 7, 0, 0,
25, 0, 0, 88, 0, 0, 366, 0, 0, 1583, 0, 0,
7336, 0, 0, 34982, 0, 0, 172384, 0, 0, . . .

Table 4. The first few terms of the enumerations of some subclasses of cactus graphs
studied in this paper. The zero terms in the enumeration of 3-cacti and 4-cacti are
due to the fact that the number of vertices in a 3-cactus graph must be odd, while the
number of vertices in a 4-cactus graph must have a remainder of 1 modulus 3. Note
that the EIS sequence for 3-cacti lists the enumeration for graphs of odd size only, thus
omitting the zero terms; similarly the 4-cacti lists the enumeration of graphs on 3n + 1
vertices, thus also omitting the zero terms. The dagger † indicates sequences which are
new additions to the EIS.
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Figure 15. While the two clique-nodes of size 3 guarantee the presence of two corre-
sponding induced cliques (one involving vertices 1 and 2, the other involving vertices 4
and 5), they do not allow us to rule out the existence of larger clique. This illustrates
that, unlike many of our lemmas, the property presented in Lemma 13 is not bijective,
and only works in one direction.

Graph Class Rooted Labeled EIS Enumeration

2,3-cactus graphs X X A091481 1, 2, 12, 112, 1450, 23976, 482944,
11472896, 314061948, 9734500000,
336998573296,12888244482048, . . .

2,3-cactus graphs X A091485 1, 1, 4, 28, 290, 3996, 68992, 1434112,
34895772, 973450000, 30636233936,
1074020373504, 41510792057176, . . .

2,3-cactus graphs X A091486 1, 1, 3, 7, 21, 60, 190, 600, 1977, 6589,
22408, 77050, 268178, 941599, 3333585,
11882427, 42615480,153653039, . . .

2,3-cactus graphs A091487 1, 1, 2, 3, 7, 16, 41, 106, 304, 880,
2674, 8284, 26347, 85076, 279324,
928043, 3118915, 10580145, 36199094,
124774041, . . .

Table 5. The first few terms of the enumerations of another subclass of cactus graphs
studied in this paper.
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