
Independent sets in the union

of two Hamiltonian cycles

Ron Aharoni ∗

Department of Mathematics
Technion

Haifa, Israel

raharoni@gmail.com

Dániel Soltész †
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Abstract

Motivated by a question on the maximal number of vertex disjoint Schrijver
graphs in the Kneser graph, we investigate the following function, denoted by
f(n, k): the maximal number of Hamiltonian cycles on an n element set, such
that no two cycles share a common independent set of size more than k. We shall
mainly be interested in the behavior of f(n, k) when k is a linear function of n,
namely k = cn. We show a threshold phenomenon: there exists a constant ct such
that for c < ct, f(n, cn) is bounded by a constant depending only on c and not on
n, and for ct < c, f(n, cn) is exponentially large in n (n → ∞). We prove that
0.26 < ct < 0.36, but the exact value of ct is not determined. For the lower bound
we prove a technical lemma, which for graphs that are the union of two Hamiltonian
cycles establishes a relation between the independence number and the number of
K4 subgraphs. A corollary of this lemma is that if a graph G on n > 12 vertices is
the union of two Hamiltonian cycles and α(G) = n/4, then V (G) can be covered by
vertex-disjoint K4 subgraphs.

Mathematics Subject Classifications: 05C35

1 Introduction

In this paper we study a “pigeonhole” phenomenon for Hamiltonian cycles - in a large
enough set of such cycles there are necessarily two that are close, in the sense that their
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union contains a large independent set (meaning that they are similar to each other).
The motivation comes from Schrijver subgraphs of the Kneser graph. The Kneser graph
KG[n, k] has as vertices the k-subsets of [n], two vertices being connected if the sets
are disjoint. A celebrated result of Lovász [7] is that the chromatic number of KG[n, k]
is n − 2k + 2 when k 6 n/2. His proof used topology, and it gave birth to the field of
topological combinatorics. Later Schrijver proved that a relatively small induced subgraph
of KG[n, k] already has the same chromatic number. The vertices of this subgraph are
those k-sets that are independent on a given, fixed, Hamiltonian cycle on [n]. The question
we are interested in is what is the largest size of a set of vertex disjoint Schrijver subgraphs
of KG[n, k]. Two Schrijver subgraphs are vertex disjoint if their Hamiltonian cycles do
not share an independent set of size k, meaning that the union of their Hamiltonian
cycles has independence number less than k. So, the question is on the maximal number
of Hamiltonian cycles with a given bound on the independence number of each pairwise
union.

Throughout the paper, unless otherwise stated the size of the vertex set of any graph
mentioned is denoted by n. As usual, α(G) denotes the maximal size of an independent
set in a graph G. If G and H are graphs on the same ground set V , we write G ∪H for
the graph on V with E(G) ∪ E(H) as edge set. A Hamiltonian cycle on V is a simple
cycle containing all vertices of V .

Definition 1. f(n, k) is the maximal size of a set H of Hamiltonian cycles on n vertices,
such that α(H1 ∪H2) 6 k for every H1 6= H2 ∈ H.

Observe that the maximal number of pairwise vertex disjoint Schrijver subgraphs in
the Kneser graph KG[n, k+ 1] is exactly f(n, k). We study f(n, k) in the case where k is
a linear function of n, namely k = cn. This is very natural as the independence number
of a Hamiltonian cycle grows roughly like a linear function of n. Our main observation is
the following threshold phenomenon.

Theorem 2. There is a constant ct, such that for c < ct the function f(n, cn) is bounded
by a constant (depending on c), and for ct < c there is a constant γ(c) such that γ(c)n 6
f(n, cn).

Theorem 2 can be interpreted as there is a threshold ct, so that when c is smaller than
ct, f(n, cn) is bounded and when c is larger than the threshold, f(n, cn) is exponentially
large. If H is a Hamiltonian cycle, then α(H) = bn

2
c. Given two Hamiltonian cycles

H1 and H2, their common independence number, α(H1 ∪ H2), lies between n
4

(unless
H1∪H2 = K5, this bound follows from Brooks’ theorem) and n

2
. Thus, the trivial bounds

for the threshold are 0.25 6 ct 6 0.5. We improve these as follows.

Theorem 3.

0.26627 ≈ 45

169
6 ct 6

11

30
≈ 0.3666.

Definition 4. A graph is said to be two-miltonian if it is the union of two Hamiltonian
cycles and it is not K5.
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We will soon see why are we excludingK5. Besides the value of ct, we are also interested
in the first non-trivial values of the function f , namely f(n, n/2− 1) and f(n, n/4). We
will show by an easy argument that f(n, n/2 − 1) ∼ 2n, and by a surprisingly hard one
that f(n, n/4) = 2 except for n = 4, 8, where f(4, 1) = f(8, 2) = 3.

Since a two-miltonian graph satisfies ∆ 6 4, the following results will be useful for us:

Theorem 5. [Locke, Lou] [6] If G is a connected K4-free simple graph satisfying ∆(G) 6
4, then α(G) > (7n− 4)/26 ≈ 0.2692n.

Theorem 5 points towards the importance of K4 subgraphs when c is near 1/4. We
excluded K5 from the definition of two-miltonian graphs because the structure of K4s is
different in K5 than in other graphs that are the union of two Hamiltonian cycles.

Claim 6. In a two-miltonian graph G every pair of K4 subgraphs is vertex disjoint unless
the graph is K5

Proof. Two K4s can not share 1 or 2 vertices as the maximum degree in a two miltonian
graph is at most 4. Suppose that there are two K4s, let S be the subset of V (G) covered by
these two K4s. Clearly |S| = 5. Suppose that |V (G)| > 5. Each of the two Hamiltonian
cycles that form G have at least two edges connecting S to V (G) \ S. Therefore the sum
of degrees of the induced subgraph of G on the vertices of S is at most 10− 4 = 6. But
by our assumptions that S contains two K4s that intersect in three vertices this sum of
degrees is 9, a contradiction. It is not hard to see that the graph on 55 vertices that
consists of two K4s that share three vertices (which is actually K5 minus an edge) is not
two-miltonian. Therefore if such a subgraph is contained in a two-miltonian graph it must
contain additional edges thus it must be K5.

Definition 7. Given a two-miltonian graph G, we write ζ(G) for the number of copies
of K4s in G. If ζ(G) = n/4 (namely if the vertices of G can be covered by K4s) then we
say that G is K4-covered.

The most useful tool used in this paper is the following rather technical lemma.

Lemma 8. Let G be a two-miltonian graph on n > 13 vertices. Let G′ be obtained
from G by removing all vertices in all copies of K4. Then there exists a graph H with
V (H) = V (G′) and E(G′) ⊆ E(H), satisfying:

1. H is connected.

2. H is K4-free.

3. dH(v) 6 dG(v) for every vertex v ∈ V (H), with strict inequality at least for one
vertex v if G is not K4-free.

4. For every independent set I of H there exists a set J consisting of a choice of one
vertex from each K4 in G, such that I ∪ J is independent in G.
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Intuitively Lemma 8 states that if G is two miltonian, we can use theorem 5 on the
K4-free part of G to obtain a large independent set and we can further enlarge it by adding
a vertex from each K4 maintaining independence. The authors feel that in Lemma 8 the
assumption that G is two-miltonian can be replaced by different assumptions, see Remark
32. This Lemma is the core of the argument for the lower bound in Theorem 3 and in the
proof of the following theorem.

Theorem 9. Let G be a two-miltonian graph on n > 12 vertices. Then α(G) = n
4

if and
only if G is K4-covered.

Theorem 9 is sharp in the following sense: for n = 8, 12 there exist two-miltonian
graphs with α = n/4 and ζ = n/4 − 1. For general, not necessarily two-miltonian but
∆(G) 6 4 graphs, the statement of Lemma 8 and Theorem 9 are false. There exist non
two-miltonian graphs on arbitrarily large ground sets with α = n/4 and ζ 6 n/8, see
Figure 1.

Figure 1: The strip closes on itself. This is a connected graph that is not the union of two
Hamiltonian cycles and it has independence number n/4 while only half of its vertices
can be covered by K4s.

The paper is organized as follows. In Section 2 we prove the threshold phenomenon in
the behavior of f(n, cn), and using probabilistic arguments we prove upper bounds on the
threshold value ct. In Section 3 we prove Lemma 8. In Section 4 we calculate f(n, n/4)
for all n. In Section 5 we prove lower bounds on ct.

2 A threshold phenomenon

In this section we prove Theorem 2. The core of the proof is the following lemma:

Lemma 10. Let ε > 0 and n0, k0 be integers and c0 6 1/2 a constant. If f(n0, c0n0) > k0

then the function f
(
n,
(

1
k0

1
2

+ k0−1
k0
c0 + 1

2n0
+ ε
)
n
)

grows exponentially in n.

The proof will use a standard concentration result:
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Lemma 11. If the elements of two sequences σ, τ of length N are chosen at random from
a set of size k then for every a,

Pr

(
|{a : σ(a) = τ(a)}| > N

k
+ εN

)
< exp(−2εN).

Proof. : See Theorem A.1.4. in [2].

Proof of Lemma 10. Let S1, . . . , SN be disjoint copies of a set of size n0, where N is an
even number to be specified below. Let V =

⋃
i6N Si, and write n = |V | = Nn0. Let C

be the collection of k0 cycles on n0 vertices where each pairwise union has independence
number at most c0n0. An N-chain is an N -tuple of cycles D = (C1, . . . , CN), where
Ca ∈ C is a Hamiltonian cycle chosen from C on Sa.

Let m = 1
k0

exp(εN) = 1
k0

exp(εn/n0). Choose m random N -chains D1, . . . ,Dm as

follows, for each h 6 m let Dh consists of N random cycles Ch
i (i 6 N) chosen from C on

Si uniformly and independently.
By Lemma 11 the probability that among the m chains there exists a pair Dj,Dh for

which |{i | Cj
i = Ch

i }| > N
k0

+ εN is smaller than
(
m
2

)
k0 exp(−2εN), which is less than 1.

Thus for every N there exist 1
k0

exp(εN) N -chains Dj, such that |{i | Cj
i = Ch

i }| 6 N
k0

+εN
whenever j 6= h therefore

α(Dj ∪ Dh) 6 (N/k0 + εN)n0/2 + (N(k0 − 1)/k0 − εN)c0n0.

Here the first term comes from the cycles for indices i for which Cj
i = Ch

i . The
second term comes from the other cycles, applying the assumption of the theorem, that
for Ca, Cb ∈ C, α(Ca ∪ Cb) 6 c0n0.

The next step is to turn each Dj into a Hamiltonian cycle. Pick a vertex va in each
copy Sa of S, and for each j delete an edge of Dj incident with va. This changes Dj into
the union of N paths, each having a vertex va as one of its endpoints. Put a matching
arbitrarily on the vertices va (this is where we are using the fact that N is even), thus
making Dj to be the union D′j of N/2 disjoint paths. Now form a Hamiltonian cycle Bj

by adding N/2 new edges, to D′j.
Since the vertices va are connected by a matching, for every pair (j, h) of indices an

independent set in Bj ∪Bh contains at most N
2

vertices va, and hence

α(Bj ∪Bh) 6
∑
a6N

α(Cj
ia
∪ Ch

ia) +
N

2
6

(N/k0 + εN)n0/2 + (N(k0 − 1)/k0 − εN)c0n0 +N/2

yielding the independence ratio

(N/k0 + εN)n0/2 + (N(k0 − 1)/k0 − εN)c0n0 +N/2

n
=(

1

k0
+ ε

)
1

2
+

(
k0 − 1

k0
− ε
)
c0 +

1

2n0

6
1

k0

1

2
+
k0 − 1

k0
c0 +

1

2n0

+ ε2.
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This proves the existence of exponentially large systems of Hamiltonian cycles with the
appropriate size of independent sets in each union of two Hamiltonian cycles, for ground
sets divisible by 2n0. The lemma for ground sets of general size follows directly.

To deduce Theorem 2 from Lemma 10, let us first re-formulate the theorem to an
equivalent form:

Theorem 12. (re-formulated) If lim supn→∞ f(n, c0n) = ∞ then for every ε > 0 there
exists γ = γ(ε) > 1 such that for large enough n we have:

f(n, (c0 + ε)n) > γn.

Proof. Let k0 > 3
2ε

and we use ε
3

instead of ε. By the assumption there exists n0 > 3
2ε

for

which f(n0, c0n0) > k0. For large enough k0 we have 1
k0

1
2

+ k0−1
k0
c0 + 1

2n0
+ ε

3
6 c0 + ε, and

thus the theorem follows by Lemma 10.

Lemma 10 can be used to yield not only the existence of the threshold ct, but also an
upper bound. We prove the upper bound in theorem 3.

Claim 13. ct 6 11/30 ≈ 0.3666

Proof. Let n be odd and divisible by 3. Take as ground set the elements of Zn (residue
classes modulo n). We define the edge sets of two cycles and three forests on n vertices
as follows.

E(C1) := {(k, k + 1)|k ∈ Zn} E(C2) := {(k, k + 2)|k ∈ Zn}

E(C ′3) := {(3k, 3k + 2), (3k, 3k + 4)|k ∈ Zn}

E(C ′4) := {(3k + 1, 3k + 3), (3k + 1, 3k + 5)|k ∈ Zn}

E(C ′5) := {(3k + 2, 3k + 4), (3k + 2, 3k + 6)|k ∈ Zn}

Connect the connected components of C ′3, C
′
4, C

′
5 to form Hamiltonian cycles C3, C4, C5

arbitrarily. It is easy to verify that for 1 6 i < j 6 5 the graph Ci ∪ Cj can be covered
by vertex disjoint triangles, thus it has independence number at most n/3. Now we can
use Lemma 10 with k0 = 5, c0 = 1/3 and n0 odd and divisible by three, thus we get that
for every ε

f

(
n,

(
1

k0

1

2
+
k0 − 1

k0
c0 +

1

2n0

+ ε

)
n

)
= f

(
n,

(
11

30
+

1

2n0

+ ε

)
n

)
is exponentially large in n. Since we can choose n0 to be arbitrarily large, we conclude

that ct 6 11/30.
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3 K4-free graphs

A tool we shall use in two contexts is:

Theorem 14. [Locke, Lou] [6] Let G be a connected K4-free simple graph satisfying
∆(G) 6 4, if e = |E(G)| then

e− 9n+ 26α(G) > −4.

Remark 15. Theorem 5 follows from Theorem 14 and the observation that ∆(G) 6 4
implies e 6 2n. Theorem 14 is best possible in the sense that there are infinitely many
graphs for which equality is attained. For a characterisation of these graphs, and a slight
improvement on the constant −4 for other graphs, see [6]. By contrast, it is not known
whether Theorem 5 is best possible for large n.

Now we prove Lemma 8.

Proof. In the proof below, G will always denote a two-miltonian graph.

Definition 16. A connected K4-covered induced subgraph of G is called an archipelago.
An archipelago is said to be cyclic if contains an induced cycle of length at least 4, and
otherwise it is called acyclic. The set of edges in an archipelago K that do not lie in a
K4 is denoted by M(K).

Since G is two-miltonian ∆(G) 6 4, implying that the K4s in K are vertex disjoint, and
that M(K) is a matching, consisting of edges connecting K4s. In an acyclic archipelago
the K4s are connected in a tree-like fashion.

Definition 17. The neighborhood N(S) of a set S of vertices is the set of vertices con-
nected to S and not belonging to S itself.

In other words, N(S) is the open version of “neighborhood”. Since every K4 in G
sends out at least 4 edges, we have:

Claim 18. An acyclic archipelago sends at least four edges to its neighborhood.

We shall remove the K4s from G one archipelago at a time. The next observation and
claim explain why if the archipelago is cyclic we can plainly remove it, without having to
worry about property (4) in Lemma 8.

Observation 19. Let J be a connected graph with ∆(J) 6 4, and let I be a non-empty
independent set in J . Then there is an independent set I ′ of J containing I, of size at
least |I|+ |V (J) \N [I]|/4.

Proof. If N(I) = V (J), then taking I ′ = I does the job. Otherwise, by the assumption of
connectivity, there exists v1 ∈ V (J)\N(I) connected toN(I) by an edge. Let I1 = I∪{v1}.
By the assumption that ∆(J) 6 4 and by the fact that v1 is connected to N(I), we have
|N(I1)| 6 |N(I)|+ 4. If N(I1) = V (J) then we can take I ′ = I1. Otherwise we add to I1
a vertex v2 ∈ V (J) \N(I1) that is connected to N(I1), and continue.
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Claim 20. If K is a cyclic archipelago, then there exists an independent set I ⊆ V (K)
of size |V (K)|/4 (namely, I contains one vertex from each K4) such that N(I) ⊆ V (K).

Proof. Let M = M(K). Since K is cyclic, there exists in K an induced cycle C of length
at least 4. The edges of C alternate between M and E(K)\M , and hence C is even. The
set I0 consisting of the odd vertices in C is then independent, and N(I0) ⊆ V (K).

Let I be the independent set obtained by using Observation 19 starting from I0 in the
graph induced by the vertices of K. Thus |I| > |V (K)|/4, and since K is K4-covered, in
fact |I| = |V (K)|/4. Observe that every vertex added to I in the algorithm of Observation
19 has a neighbor among the previous vertices, which belong to V (K), and three neighbors
in its own K4. Thus the newly vertex cannot have a neighbor outside K.

The same argument yields:

Claim 21. If K is an archipelago then for each vertex v ∈ V (K) having a neighbor in
V (G)\V (K) there is an independent set I ⊆ V (K) containing v, such that |I| = |V (K)|/4
and no vertex in I \ {v} has a neighbor in V (G) \ V (K).

Claim 21 is the main tool we shall use in the proof of the lemma, allowing us to take
care of acyclic archipelagos K that have non-independent neighborhoods. For such K
every independent set J in our future H omits a vertex in its neighborhood, and thus
by Claim 21 there exists an independent set IK ⊆ V (K) of size |V (K)|/4, such that
IK ∪ J is independent. Thus Claims 20 and 21 allow us to remove with no penalty all
cyclic archipelagos and all archipelagos with non-independent neighborhoods, towards the
removal of all K4s. Thus, the problem is posed by acyclic archipelagos with independent
neighborhood. Our strategy in this case is to add an edge inside this neighborhood, taking
care not to generate a new K4.

Remark 22. The set N(K) of vertices in the neighborhood of an archipelago K remains
the same throughout the process, since the edges we add are inside the neighborhood of
a deleted archipelago, and as such they do not belong to K. Edges may be added inside
N(K), but as remarked this is in our favor.

We shall remove the archipelagos in a special order, aimed to preserve useful properties
of G.

Claim 23. If K is an acyclic archipelago with an independent neighborhood of size 2 and
ζ(K) > 1 then V (K) ∪N(K) = V (G).

Proof. Since K is acyclic, |M(K)| = ζ(K) − 1. But there are exactly four edges leaving
every K4. Thus there are 4ζ(K) − 2(ζ(K) − 1) = 2ζ(K) + 2 > 6 edges between K and
N(K). Since |N(K)| 6 2 there is a vertex v ∈ N(K) that receives 3 edges from K,
two of them being from the same Hamiltonian cycle H1. Assume for contradiction that
V (K)∪N(K) 6= V (G). Then deleting the other vertex of N(K), if such exists, disconnects
V (K) ∪ {v} from the rest of V (G) in H1 (remembering that there are no other vertices
in N(K)). This contradicts the fact that H1 is 2-connected.
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By the claim, we may assume that every acyclic archipelago with an independent
neighborhood of size two has only one K4. We call such an archipelago small (see Figure
2).

A B

Figure 2: A small archipelago.

Step 1. Removing small archipelagos.

We delete all small archipelagos one by one, connecting their two neighbors at each
step. Each such deletion+connecting is called below an operation.

Claim 24. No new K4s are formed by this step.

Proof. Consider first the first operation. It could result in a new K4 only if G contains
the graph in Figure 3 as a subgraph. Since n > 13, each of the two Hamiltonian cycles
whose union is G must reach this subgraph from the rest of the graph via C or D, and
leave it from the other vertex in this pair. Thus neither cycle can contain the edge CD,
a contradiction.

A B

C D

Figure 3: Impossible at the first replacement.

Suppose, for contradiction, that in the chain of operations a new K4 is generated. As
before, the graph obtained so far necessarily is as in Figure 3. Since such a subgraph
cannot be present in G, some edges have to come from previous operations on small
archipelagos. Observe that each such operaton reduces the degrees of the vertices of the
newly added edge. Thus the only edge in Figure 3 that could come from a previous
deletion is the edge connecting C to D. In this case, before that deletion our graph had
to look like in figure 4.
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A B

C D

Figure 4: Impossible, unless n = 12.

But in this case every vertex has degree four, thus G consists of just these 12 vertices,
contradicting our assumption that n > 13.

Claim 25. Each operation results in a two-miltonian graph.

Proof. By induction on the number of operations. Assuming that after a deletion the
resulting graph is the union of two Hamiltonian cycles H1 and H2, replace in each of
H1, H2 the detour through the archipelago by the newly added edge.

This concludes Step 1. The resulting graph G1 is two-miltonian by Claim 25, and it
contains no acyclic archipelagos with independent neighborhoods of size two. Note also
that G1 is a supergraph of G′, and hence it is enough to prove Lemma 8 with G1 replacing
G.

Step 2. Taking care of connectedness.

In this step we add edges, so as to make the graph G1 connected. These edges will
remain in the next steps, and so we shall not have to worry about connectedness from
this point on.

Let H1 be one of the two Hamiltonian cycles forming G1. Let G′1 be the graph obtained
from G1 by removing all K4s from it, and let C1, . . . , Cm be the connected components
of G′1. Define an auxiliary graph A on the vertex set V (A) := {C1, . . . , Cm}, two vertices
Ci and Cj being connected if there is a path contained in H1, whose one endpoint is in
Ci and the other in Cj and all the other vertices lie in a single archipelago. Since H1 is
Hamiltonian, the graph A is connected. Choose a spanning tree of A, and let P1, . . . , Pm−1
be subpaths of H1 associated with each edge of the spanning tree. For each path Pi going
through an archipelago Ki connect the endpoints of Pi in the graph G1, and delete all
vertices of the archipelago Ki. The graph G2 obtained this way is connected, it does not
contain any new K4s and ∆(G2) 6 4.

the electronic journal of combinatorics 25(4) (2018), #P4.48 10



Remark 26. If G′1 was not connected then the degree of some vertices decreases. This is
true since removing an archipelago reduces the total degree of the vertices adjacent to it
by at least 4, and the addition of an edge increases it only by 2.

The construction also yields:

Remark 27. Edges added in this process do not belong to a cycle in G2

Claim 28. Let K be an acyclic archipelago in a graph of maximum degree at most four.
Suppose that the neighborhood N(K) is independent and has size 4 or more. Then we
can delete K and connect two vertices in N(K) by an edge, so that the new edge doesn’t
generate a new K4.

Proof. Assuming negation, for every pair p = {x, y} of vertices in N(K) \ V (K) there
exists a pair q(p) = {u, v} ⊆ V (G) \N(K) such that all pairs among x, y, u, v apart from
xy are edges in G. We say that q(p) is a complementary pair of p.

Suppose first that there exist two pairs p1, p2 such that q(p1) 6= q(p2). If p1 ∩ p2 = ∅
let p3 be a pair meeting both. Then q(p3) 6= q(pi) for i = 1 or i = 2 (or both), proving
that there exist non-disjoint pairs p, p′ with q(p) 6= q(p′). Let v∗ be the vertex in p ∩ p′.
If q(p) ∩ q(p′) = ∅, then v∗ is connected to the four vertices in q(p) ∪ q(p′), and since
as a member of I it is also connected to a vertex in K, its degree in G is at least 5, a
contradiction. On the other hand, if there exists a vertex v∗∗ ∈ q(p) ∩ q(p′), then v∗∗ is
connected to the five vertices in q(p) ∪ q(p′) ∪ p ∪ p′ \ {v∗∗}, again a contradiction.

Remark 29. The proof yields a stronger result: it suffices to assume that in the indepen-
dent neighborhood of the acyclic archipelago not all pairs have the same complementary
pair.

Step 3. Deleting acyclic archipelagos with independent neighborhoods of size 3.

Let K be an acyclic archipelago such that N(K) is independent and has size 3, say
N(K) = {A,B,C}. By Remark 29 if no pair in N(K) can be connected without gener-
ating a K4, all pairs must have the same complementary pair, and thus A,B,C are all
connected to two vertices, O1 and O2. In such a case we call K forbidden and the 5-vertex
subgraph showing this forbidding for K.

A B C

O1 O2

A forbidding subgraph

A′ B′ C ′

O′1 O′2

Type 1

A′ B′ C ′

O′1 O′2

Type 2

A′ B′ C ′

O′1 O′2

Type 3

Figure 5: The forbidden subgraph K is invisible in the picture. The Type 1, 2, 3 risk-
ing subgraphs are the three graphs (up to isomorphism) that are one edge short to be
forbidding.

Claim 30. G2 does not contain a forbidden archipelago.
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Proof. Suppose that G2 contains a forbidden archipelago with forbidding subgraph F ,
with vertices denoted as in the figure. Since A,B,C ∈ N(K), they do not belong to
any archipelago J , or else K and J , being connected, would be contained in the same
archipelago. The same is true for O1, O2, since they are of degree 4 in F . By Remark 27
no edges in F were added in Step 2. Also, no edges inside F was added in Step 3, since
the endpoints of any edge that is added in Step 3 have maximum degree three. Thus F
is also a subgraph of G. The archipelago K consists of at most two K4s, since otherwise
the degrees of some of the A,B,C would be larger than four. But then the subgraph
consisting of the union of K and the vertices A,B,C,O1, O2 has at most 13 vertices, and
it is connected to the rest of the graph by at most two edges. Since the endpoints of these
two edges have degree 4, this contradicts the fact that G is two-miltonian on more than
13 vertices.

We next delete archipelagos one by one, taking care not to generate a forbidden
archipelago. The risk is that connecting two neighbors of a deleted archipelago may
create a forbidding subgraph for some other archipelago. Up to isomorphism, there are
three subgraphs that are one edge short of the forbidding subgraph, see the graphs named
Type 1, 2, 3 in Figure 5 (a step that helps in realizing this is noting that in the forbid-
ding subgraph the role of O1, O2 and B,C is symmetric). We will say that an acyclic
archipelago K ′ is risky if it has an independent neighborhood consisting of three vertices
that are connected, besides to vertices in K ′, to vertices O1, O2, forming a graph Y of
one of these three types. We say that the subgraph Y is risking for K. By Claim 18
K sends at least four edges to its neighborhood, and hence at least one of the vertices
A,B,C receives from K two edges. As in the figure, we denote this vertex by A, and
whenever “A” is used in this context we assume that it has degree at least 2 to the risky
archipelago.

Claim 31. Let K ′ be a risky archipelago contained in G2, and denote the vertices in
its risking subgraph as in Figure 5. Then deleting K ′ and connecting A′ to B′ does not
generate a forbidding subgraph for some other archipelago.

Proof. Let Y be the risking subgraph of K ′. Suppose, by negation, that deleting K ′ and
adding the edge e = A′B′ generates a forbidden archipelago K. This was born from a
risking graph Z for K. Denote the vertices of Z by A,B,C,O1, O2, as in the figure. Since
at least two edges were removed from the star of A′ and only one edge was added, the
degree of A′ strictly decreases by the operation. If Z is of type 1, then the edge added is
between O1 and O2, both of which become of degree 4, and thus the one that is identical
to A′ had degree at least 5 before the operation. This is impossible, since throughout the
process degrees of vertices do not increase, and ∆(G) 6 4. A similar argument applies if
Z is of type 3, and the added edge is AO1. Thus we may assume that Z is of type 2, and
that e = B′O′1, see Figure 6.

Since the degree of A′ decreased, and after the addition of e the vertex O′1 has degree
4, it is impossible that A′ = O′1. Hence A′ = B and B′ = O1, see Figure 6. If Y is of Type
1 or 2, then A′ is connected to the two opponents which are not inside any archipelago.
But A′ has already 3 different neighbors in archipelagos (two from Y and at least one from
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Z), implying that A′ has degree at least 5 in G, a contradiction. Thus we may assume
that Y is of type 3.

A B C

O1 O2

A′

=

B′

=

O′2=

Figure 6: C ′ can not be any vertex in this picture, and it must also be connected to O′2,
a contradiction.

Since in a Type 3 subgraph, A′ is connected to O′2, we conclude that O2 = O′2 or else
A′ would have degree 5. Since A′, B′, C ′ are independent, C ′ must be a vertex different
from A,B,C,O1, O2, and since in a Type 3 subgraph C ′ is connected to O′2 which is equal
to O2, this means that O2 has degree 5, again a contradiction.

By the claim it is possible to delete all risky acyclic archipelagos one by one,
We now remove acyclic archipelagos with neighborhoods of size 3, adding an edge

at each stage, as follows. If at the current stage there are no risky acyclic archipelagos
we delete any archipelago with independent neighborhood of size 3 and connect two
of its neighbors, without risking the generation of a K4 (since there are no forbidden
archipelagos), and without generating a forbidden archipelago (since there are no risky
archipelagos). At stages in which there is a risky archipelago we use the claim to remove
such an archipelago, while not generating a risky archipelago, and not generating a K4

(the latter following from the non-existence of a forbidden archipelago).
Let G3 be the graph obtained after these operations. Then G3 is connected, it does

not contain any new K4s, and ∆(G3) 6 4.

Step 4. Removing all remaining archipelagos.

Since G3 does not contain any acyclic archipelagos with independent neighborhoods of
size two or three, by Lemma 28 we can delete every acyclic archipelago with an indepen-
dent neighborhood one by one, and after each deletion we can connect some vertices in
their neighborhood without creating a new K4. After we deleted every acyclic archipelago
with an independent neighborhood, we delete every other acyclic archipelago and every
other cyclic archipelago without adding any additional edges. Let H be the graph ob-
tained from G3 this way.

We claim that H satisfies the requirements of the lemma. Clearly, it is K4-free, and
Step 2 saw to it that it is connected. At each step of our construction degrees of vertices
only went down. If in Steps 1 or 3 any archipelagos were deleted, the degree of some
vertices strictly decreased, since only one edge is added, while at least 4 edges were
removed as the result of the removal of the archipelago. By Remark 26 each deletion of
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archipelagos in Step 2 also decreased the degree of at least one vertex. Condition 4 in the
lemma follows from our construction and Claim 20.

Remark 32. The two-miltonian property of G was used:

• For the property that ∆(G) 6 4.

• For the property that the K4s in G are vertex disjoint.

• For the property that an acyclic archipelago sends a certain number of edges to its
neighbourhood. This can be avoided since if it would send less, we could treat it as
if it is a cyclic archipelago.

• In Step 1 to forbid subgraphs like in figure 3. This is important since we have to
forbid graphs like 1 as Lemma 8 can not be applied to such graphs.

• In Step 2 to guarantee connectedness. This could be avoided by paying attention to
the connectedness of the K4-free part at each deletion. (Although this would make
the proof even more unpleasant to read.)

Thus the authors feel that results similar to Lemma 8 should hold with assumptions on
G that can replace the role of two-miltonicity at the above mentioned parts of the proof.

Corollary 33. In a two-miltonian graph G on n vertices

α(G) > ζ(G) +
7

26
(n− 4ζ(G))−O(1).

Proof. Let H be the graph obtained from G as in Lemma 8. By Theorem 5 α(H) >
7
26
|V (H)| −O(1) = 7

26
(n− 4ζ(G))−O(1), and by part (4) in the conclusion of the lemma

α(G) > α(H) + ζ(G).

4 Calculating f(n, n/4)

We will use a theorem that was proved by Albertson, Bollobás and Tucker. We state it
in a simplified form, tailored to our needs. For the more general version see [1].

Theorem 34 (M. Albertson, B. Bollobás, S. Tucker). If G is K4-free, ∆(G) 6 4 and G
is not 4-regular, then α(G) > n

4
.

The value of f(n, n/4) can be determined for all n.

Theorem 35.

1. If 4 - n and n 6= 5 then f(n, n/4) = 1.

2. f(4, 1) = f(8, 2) = 3.

3. f(4k, k) = 2 for k > 3.
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Figure 7: The two strips eventually close on themselves.

Proof. Part (1) follows from Brooks’ theorem. The following figure shows that for every
k there exists a two-miltonian graph G with n = 4k and α(G) = ζ(G) = k. This means
that f(4k, k) > 2.

Since there are only three distinct Hamiltonian cycles on 4 vertices, the fact that
f(4, 1) = 3 is easy. Figure 8 is an example of three Hamiltonian cycles on the same
vertex set of size 8, having each pairwise union K4 -covered, thus α(Ci ∪ Cj) = 2 for
1 6 i < j 6 3, showing that f(8, 2) > 3.

Figure 8: The vertices are identified by horizontal shifting, showing that f(8, 2) > 3

Each pair of dangling edges in the two extreme cycles are meant to join to form one
edge. For our next arguments we will need the following lemma.

Lemma 36. If 4 | n and n > 12 then there do not exist three Hamiltonian cycles C1, C2, C3

such that Ci ∪ Cj is K4-covered for all pairs 1 6 i < j 6 3.

Proof. Assume for contradiction that we do have three such cycles. Enumerate the vertices
1, . . . , 12 so that i(i + 1) ∈ E(C1) for all i 6 12 (cyclical counting), and 1, 2, 3, 4 form a
K4 in C1 ∪ C2. Then the edges of C2 inside the three K4s forming C1 ∪ C2 must be as in
Figure 9.

1 2 3 4 5 6 7 8 9 10 11 12

Figure 9: The edges of C2 that form the K4s in C1 ∪ C2 on the twelve vertices that we
focus on.

Degree considerations and the fact that C2 is Hamiltonian yield that it is necessarily
edge disjoint from C1. In general, all three cycles are edge disjoint.
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Since C1 ∪C3 is also K4-covered, we can also draw the edges of C3 that form the K4s
in C1∪C3 on the same vertex set: {1, . . . , 12}. This must be very similar to Figure 9, but
it might be shifted as we cannot assume that the vertices 1, 2, 3, 4 form a K4 in C1 ∪ C3.
Moreover, since we already know that the cycles are edge disjoint, it should be shifted by
exactly two vertices. Figure 10 describes the union of the edges of C2 and C3 that form
the K4s in their union with C1. This is also a subgraph of C2 ∪ C3.

1

2 3

4 5

6 7

8 9

10 11

12

Figure 10: A subgraph of C2 ∪ C3.

The edges in Figure 10 form a 3-regular subgraph of C2 ∪ C3, thus every vertex has
an additional neighbor (since C2 is edge disjoint from C3). Observe that if the vertices
labeled 5, 6, 9 form an independent set, their neighborhood is of size at most 9 in C2 ∪C3

and by Observation 19 we can enlarge it to an independent set of size more than n/4 in
C2 ∪ C3, a contradiction. Thus there must be an edge connecting some of the vertices
labeled 5, 6, 9. In Figure 10 the vertices 5, 9 already have two edges from C2, and the
vertex 6 has two edges from C3, so no edge can connect 6 to 5 or 9. Thus 5 and 9 must
be connected (by an edge in C3). But then by shifting the whole argument to the left by
four, we get that 1 should be also connected to 5 in C3, which contradicts the fact that
C3 is a cycle.

The proof that f(8, 2) 6 3 and f(12, 3) 6 2 can be done by computer. It remains
to be shown that f(n, n/4) 6 2 when n is divisible by four and n > 16. Assume for
contradiction that f(n, n/4) > 3 thus there exist three Hamiltonian cycles C1, C2, C3 on
n = 4k vertices, such that α(Ci ∪ Cj) = n

4
whenever 1 6 i < j 6 3. Then each union

Ci ∪Cj contains a copy of K4, since otherwise by Theorem 5 there exists an independent
set of size (7n− 4)/26, which is strictly larger than n/4 when n > 16. We next show that
Ci ∪Cj not only contains a single K4, but it is K4-covered. Assuming that this is not the
case, since there is at least one K4 in G, by Lemma 8 there exists a K4-free nonempty
subgraph H that has at least one vertex of degree at most three. But then Theorem 34
yields an independent set in H strictly larger than |V (H)|/4, and by Lemma 8 we can
enlarge it to an independent set of size more than n/4 in Ci ∪ Cj. Thus Ci ∪ Cj must be
K4-covered, but this contradicts Lemma 36 and the proof is complete.

Remark 37. Suppose that we are interested in the maximal number of Hamiltonian paths
(instead of Hamiltonian cycles) with the property that the union of any two has indepen-
dence number at most n/4. It can be proven that when n is divisible by four we can have
at most two Hamiltonian paths (and we can have two, see Figure 7 without the strips
closing on themselves) and otherwise we can only have a single one by the usual Brooks
reasoning. In this context, n = 8, 12 are exceptional only because we are interested in
Hamiltonian cycles instead of paths.
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5 A lower bound on ct

We will use the following observation.

Claim 38. [4] Let y be a vertex of G with exactly two neighbors x and z such that x
and z are not connected. Let G′ be a graph defined by V (G′) = V (G) \ {x, y, z} ∪ {v}
where v is a new vertex connected to all remaining neighbors of x and z. Thus deg(v) =
deg(x)+deg(z)−2. Then for any independent set I ′ of G′, we can construct an independent
set I of G of such that |I| = |I ′|+ 1.

Proof. If v ∈ I ′ then I = I ′ \ {v} ∪ {x, z}. If v /∈ I ′ then I = I ′ ∪ {y}.

Definition 39. We call a subgraph of G good if it is an induced path of length three.
We write ψ(G) for the maximal number of vertex disjoint good subgraphs in G.

In a two-miltonian graph all copies of K4 are vertex disjoint, so ζ is the number of
disjoint copies of K4.

Observation 40. Let C,D1, D2 be Hamiltonian cycles, and let m be the number of K4s
that are contained in both C ∪D1 and C ∪D2. Then ψ(D1 ∪D2) > m.

Proof. In every K4 contained in both C ∪ D1 and C ∪ D2 the edges that do not belong
to C form a path of length 3 in both D1 and D2.

Lemma 41. If G is 2-miltonian then

α(G) >
7

26
n− 1

13
ζ +

1

2
ψ −O(1)

Proof. Let e = |E(G)|. By Theorem 14 e− 9n+ 26α(G) > −4.
Let G1 := C1 ∪ C2. Let T be a set of disjoint good subgraphs of size ψ. For each

path Pi ∈ T , using the notation of Figure 11 below, we apply the operation described
in Claim 38, of removing x, y, z and adding a vertex v = vi connected to the remaining
neighbors of x, z. Let G2 be the graph obtained by combining all these ψ operations.
Then |V (G2)| = n− 2ψ.

x y z

Figure 11: A good subgraph in C1 ∪ C2.

Observe that G2 is still two-miltonian and that ζ(G2) = ζ(G). Let H be the graph
obtained from G2 using Lemma 8. Then H is a subgraph of G2, it is simple, connected,
and K4-free. We have |V (H)| = n− 4ζ − 2ψ, and since every vertex vi, and its unnamed
neighbor in Figure 11 has degree at most 3 in H, we have

2|E(H)| 6 4((n− 4ζ − 2ψ)− 2ψ) + 6ψ = 4n− 16ζ − 10ψ.
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Thus using the inequality in the second remark of Theorem 14 we get that

α(H) >
9|V (H)| − |E(H)| − 4

26
>

9(n− 4ζ − 2ψ)− (2n− 8ζ − 5φ)

26
− 4

26
=

=
7

26
n− 28

26
ζ − 13

26
ψ −O(1) =

7

26
n− 14

13
ζ − 1

2
ψ −O(1).

By Lemma 8 we can enlarge this independent set to an independent set of G2 of size

α(G2) >
7

26
n− 1

13
ζ − 1

2
ψ −O(1).

By Claim 38 we have an independent set in G1 of size

α(G1) >
7

26
n− 1

13
ζ +

1

2
ψ −O(1)

finishing the proof.

Lemma 42. Let ε > 0 be fixed and S = {S1, . . . , Sm} be a set system on a ground set of
size n with the following properties.

• ∀i : |Si| > xn

• ∀i 6= j : (1− ε)x2n > |Si ∩ Sj|

Then m is bounded by a number independent of n:

m 6 q(x, ε) =
1− x(1− ε)

xε
.

Proof. Let z = xm. Let {X1, X2} be an unordered pair of different sets from S, chosen
uniformly from the

(
m
2

)
possible pairs. Let us denote by li the number of sets in S which

contain the element i. Now we have

E(|X1 ∩X2|) =
n∑
i=1

P(i ∈ X1 ∩X2) =
n∑
i=1

(
li
2

)(
m
2

)
Since the average of the li is at least z, and the function x(x−1)

2
is convex, by Jensen’s

inequality we have the following

n∑
i=1

(
li
2

)(
m
2

) > n

(
z
2

)(
m
2

) = n
z(z − 1)
z
x

(
z
x
− 1
) = n

z − 1
z
x2
− 1

x

= nx2
z − 1

z − x
.

Elementary calculation yields that the inequality

z − 1

z − x
6 (1− ε)

holds if and only if m = z
x
6 1−x(1−ε)

xε
, finishing the proof.
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Remark 43. If in Lemma 42 we replace (1 − ε)x2n by (1 + ε)x2n, we can construct set
systems of exponential size by a uniform random construction.

For 0 < x 6 1 and ε > 0 let

δ(x, ε) =
(
q
(x

4
, ε
)

+ 1
)−1

=

(
4− x(1− ε)

xε
+ 1

)−1
.

Lemma 44. For every 0 < x 6 1 and ε > 0 there exists a number θ(x, ε) such that
if k > θ(x, ε) and X = {C1, . . . , Ck} is a collection of Hamiltonian cycles satisfying
xn
4
6 ζ(Ci ∪ Cj) whenever 1 6 i < j 6 k then there exists a subcollection X2 ⊆ X of size

at least |X|δ(x,ε), such that (1−ε)x2n
16

6 ψ(Ck ∪ Cl) for every pair of cycles Ck, Cl ∈ X2.

Proof. Let A be a graph whose vertex set is X, and two cycles Ci and Cj are connected

by an edge if and only if (1−ε)x2n
16

6 ψ(Ci ∪ Cj). Our aim is to show that |X|δ(x,ε) 6 ω(A)
(the latter denoting the largest size of a clique in A). This will follow from Ramsey’s
theorem and an upper bound we shall obtain on α(A).

Claim 45. α(A) 6 q(x
4
, ε) + 1 = 4−x(1−ε)

xε
+ 1.

Proof. Suppose to the contrary that there exists an independent set D1, D2, . . . Dp in A,
where p = dq(x

4
, ε)e + 2. By relabeling the vertices, we can assume that D1 is the cycle

(1, 2, . . . , n). For every 1 < j 6 p let Sj be the set of those 1 6 i 6 n for which D1 ∪Dj

contains a K4 on the vertices i, i+ 1, i+ 2, i+ 3(modn).
By the assumption of the lemma ζ(D1 ∪Dj) > xn

4
, and hence |Sj| > xn

4
for all j 6 p.

Since the cycles Dj are independent in A, ψ(Di ∪ Dj) <
(1−ε)x2

16
whenever i 6= j. By

Observation 40 this implies that |Si ∩ Sj| < (1−ε)x2
16

n.
These combined yield a contradiction to Lemma 42.

By a result of Ajtai, Komlos and Szemeredi [3], for fixed s and t large enough we have
the following bound on the Ramsey numbers:

R(s, t) 6 cs
ts−1

log(t)s−2
,

implying R(s + 1, t) 6 ts for fixed s and large enough t. Thus for fixed s and large

enough n if G is a graph on n vertices with α(G) 6 s then ω(G) > n
1
s . Applying this to

the graph A, and using Claim 45, we obtain that ω(A) > |X|(q(
x
4
,ε)+1)

−1

= |X|δ(x,ε) and
the proof is complete.

For a family X of Hamiltonian cycles let m(X) = minC 6=D∈X
ζ(C∪D)

n
∈ [0, 1]. For the

sake of readability, we will often write m for m(X).

Lemma 46. Let X be a set of Hamiltonian cycles, if ψ(C∪D)
n

< (1 − ε)
(
ζ(C∪D)

n

)2
− ε

for every pair C 6= D of cycles in X then there exists a subset Y of X of size at least
|X|δ(4m,ε) such that

m(Y )2 > m(X)2 +
ε

(1− ε)
.
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Proof. By Lemma 41 and the fact that d is positive m > 0. Applying Lemma 44 with
x = 4m, we obtain Y ⊆ X of size at least |X|δ(4m,ε), such that every pair of cycles

C,D ∈ Y satisfies ψ(C∪D)
n

> (1 − ε)m2. Let C,D ∈ Y be such that ζ(C∪D)
n

= m(Y ). By
the assumption of the lemma

(1− ε)m(Y )2 − ε = (1− ε)
(
ζ(C ∪D)

n

)2

− ε > ψ(C ∪D)

n
> (1− ε)m2,

which yields the desired result.

Corollary 47. If X is a set of Hamiltonian cycles satisfying

|X|
(
δ(4m,ε)

1−ε
ε

)
> θ(m, ε)

then there exists a pair C 6= D of cycles in X such that

ψ(C ∪D)

n
> (1− ε)

(
ζ(C ∪D)

n

)2

− ε.

Proof. Assume negation. Applying Lemma 46 repeatedly, we obtain then a sequence X =
X1 ⊇ X2 ⊇ . . . ⊇ Xp of sets of Hamiltonian cycles, such that m(Xi+1)

2 > m(Xi)
2 + ε

(1−ε)
and |Xi+1| > |X|δ(4m(Xi),ε) for all i < p. Since δ(x, ε) is increasing in x and the sequence
m(Xi) is increasing, the assumption on the size of X thus leads to the conclusion that for
p as large as 1−ε

ε
+ 1 we still have Xp 6= ∅. But this yields m(Xp) > 1, which is impossible

since by definition m ∈ [0, 1].

We can now obtain our goal - a lower bound on the threshold constant ct. Remember
that ct is a real number such that for c < ct the value of f(n, cn) is bounded by a constant
independently of n, and for c > cn this value is exponential in n.

Theorem 48. ct > 45
169
≈ 0.26627.

Proof. Let ε > 0 be fixed, and let d be positive such that ct <
7
26
− d. Let n be large and

X be a large collection of Hamiltonian cycles on n vertices such that for every pair C 6= D
of cycles in X we have α(C ∪D) 6 ( 7

26
− d)n. Here “large” is dictated by Corollary 47

By Corollary 47 there exist cycles C 6= D ∈ X for which ψ(C∪D)
n

> (1−ε)
(
ζ(C∪D)

n

)2
−ε.

By Lemma 41(
7

26
− d
)
n > α(C ∪D) >

7

26
n− 1

13
ζ(C ∪D) +

1

2
ψ(C ∪D)−O(1)

and thus

−d > − 1

13

ζ(C ∪D)

n
+

1

2

ψ(C ∪D)

n
− O(1)

n

−d > − 1

13

ζ(C ∪D)

n
+

1

2
((1 + ε)

(
ζ(C ∪D)

n

)2

− ε)−O(1)
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Since we can choose n arbitrarily large and ε arbitrarily small, it follows that

−d > − 1

13

ζ(C ∪D)

n
+

1

2

(
ζ(C ∪D)

n

)2

by taking the minimum of the right hand side we get that

d 6
1

338
≈ 0.002958

for every choice of d where 7
26
− d > ct, thus ct > 7

26
− 1

338
= 45

169
≈ 0.266272
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