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Abstract

Let n, k, b be integers with 1 6 k − 1 6 b 6 n and let Gn,k,b be the graph whose
vertices are the k-element subsets X of {0, . . . , n} with max(X)−min(X) 6 b and
where two such vertices X,Y are joined by an edge if max(X∪Y )−min(X∪Y ) 6 b.
These graphs are generated by applying a transformation to maximal k-uniform
hypergraphs of bandwidth b that is used to reduce the (weak) edge clique covering
problem to a vertex clique covering problem. The bandwidth of Gn,k,b is thus the
largest possible bandwidth of any transformed k-uniform hypergraph of bandwidth
b. For b > n+k−1

2 , the exact bandwidth of these graphs is determined. Moreover,
the bandwidth is determined asymptotically for b = o(n) and for b growing linearly
in n with a factor β ∈ (0, 1], where for one case only bounds could be found. It is
conjectured that the upper bound of this open case is the right asymptotic value.
Mathematics Subject Classifications: 05C78, 05C69, 05C85

1 Introduction

The bandwidth problem for graphs is to find a labelling of the vertices with different
integers, such that the maximum absolut value of the difference of the labels of two
adjacent vertices is minimal. There are many applications such as efficient storage of
sparsely populated symmetric matrices, which arise e.g. from discretization of partial
differential equations, cf. [21]. Several other applications, including the placement prob-
lem for modules of a VLSI design, the binary constraint satisfaction problem and the
minimization of effects of noise in the multichannel communication of data are discussed
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e.g. in [3, 5, 8]. The bandwidth problem was shown to be NP-hard [19] and even an
approximation with a ratio better than 2 is NP-hard [10], so several heuristics such as the
Cuthill-McKee-Algorithm [9] or some similar approaches, cf. [12], are very popular in ap-
plications. However, for some graph classes the exact bandwidth is known. These include
the path, the cycle, the complete graph, the complete bipartite graph [6], the hypercube
[14], the grid graph [7], special Hamming graphs [17] and several others, cf. [5]. However,
there are still many graphs, where the exact bandwidth is unknown, such as the general
Hamming graphs, cf. [2, 16]. In this paper, we consider graphs Gn,k,b, 1 6 k− 1 6 b 6 n,
whose vertices are those k-element subsets of {0, . . . , n}, for which the difference of the
maximum and the minimum is at most b. There is an edge between two vertices if the
difference of the maximum and the minimum of the union of the corresponding sets is
at most b. We start by introducing the necessary notation and a motivation in Section
2 and study some basic properties in Section 3. Based on that, we determine the exact
bandwidth for these graphs in the case of b > n+k−1

2 in Section 4. In Section 5, we present
some asymptotic results for n→∞ in the case of b = o(n). The results of Sections 4 and
5 are summarized by the following theorem:

Theorem 1. Let k be a fixed positive integer and 1 6 k − 1 6 b 6 n.

a) If b > n+k−1
2 , then

B(Gn,k,b) =


(n+ 1)
(

b
k−1

)
− (k − 1)

(
b+1
k

)
+
(

2b−n+1
k

)
− 2

2

 .
b) If b = o(n

1
k+1 ), then for sufficiently large n

B(Gn,k,b) = k

(
b

k

)
.

If b = o(n), then

B(Gn,k,b) ∼ k

(
b

k

)
as n→∞ .

Sections 6 to 10 discuss the case b ∼ βn with β ∈ (0, 1]. Of course, in view of Theorem
1 a) it would be enough to consider only β 6 1

2 . But the main results given by the next
theorem are also true for β > 1

2 .

Theorem 2. Let k > 2 be a fixed positive integer, but n → ∞. Let b ∼ βn and let
1 = qβ + r, where q is a positive integer and 0 6 r < β. Let

c1(β, k) = βk

k!

(
k − k − 1

q

)
,

c2(β, k) = βk−1

(q + 1)k! (k − (k − 1)β) ,

c3(β, k) = (β − r)k
(q + 1)k!q

k−1 .
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a) If r 6 q−1
q2+q−1 , then B(Gn,k,b) ∼ c1(β, k)nk.

b) If r > q−1
q2+q−1 , then max{c1(β, k), c2(β, k)+ 1

qk−1 c3(β, k)}nk . B(Gn,k,b) . (c2(β, k)+
c3(β, k))nk.

The part b) gives only bounds instead of an exact asymptotic value if q > 1, i.e., β 6 1
2 .

We strongly conjecture that the RHS bound is the right value. The bounds are not too
far away from each other because

c2(β, k)
c3(β, k) =

(
β

qβ − qr

)k
q

β
(k − (k − 1)β) >

(
β

qβ − qr

)k
k(q − 1) + 1

β
> 6

since β > qβ − qr iff r > q−1
q2+q−1 and k > 2, q > 2, β 6 1

2 .
Let U = {β ∈ (0, 1

2 ] : r > q−1
q2+q−1} be the set of numbers β for which part b) applies and

thus the exact asymptotic value is still unknown. Note that r > q−1
q2+q−1 iff 1

q+1 < β <
q

q2+q−1 . Thus the Lebesgue measure of U is equal to ∑∞q=2( q
q2+q−1 −

1
q+1) = 0.119 . . . , i.e.,

for the “majority” of numbers β ∈ (0, 1
2 ] the exact value is known.

The corresponding asymptotically optimal labellings change dynamically with β in a
nontrivial way. In Section 10, this is described in detail. This unexpected behavior makes
the study interesting and challenging.
The proof of Theorem 2 is based on a reduction to a continuous problem on the unit square
[0, 1]2. Riemann integrals and elementary geometric arguments suffice. The embedding
into a more difficult continuous problem on the unit cube was used by Harper [15] to
obtain bounds for the bandwidth of Hamming graphs. Also for the edge-bandwidth of
multidimensional grids and Hamming graphs (the bandwidth of the line graph of these
graphs) Harper’s reduction to the unit cube was applied in [1]. Asymptotic bounds for
the bandwidth of the d-ary de Bruijn graph were obtained in [20] by an approach based
on the use of a continuous domain.

2 Notation and motivation

Let [n] = {1, . . . , n} and [i, j] = {i, i + 1, . . . , j − 1, j} with i, j ∈ Z, i 6 j. In particular,
[0, n] = {0, 1, . . . , n}. For a graph G = (V,E) with |V | = n vertices, a proper numbering
of G is a bijection f : V → [n]. For two vertices u, v ∈ V , we call df (u, v) = |f(u) −
f(v)| the f -distance of u and v. Let f be a proper numbering of a graph G. The
bandwidth of f , denoted Bf (G), is given by Bf (G) = max{|f(u) − f(v)| : {u, v} ∈ E},
i.e., the maximal f -distance. The bandwidth of G is defined by B(G) = min{Bf (G) :
f is a proper numbering of G}. A bandwidth numbering of G is a numbering f such that
B(G) = Bf (G). This definition can be easily generalized to hypergraphs H = (V,E).
There we have Bf (H) = max{|f(u)− f(v)| : ∃e ∈ E with u, v ∈ e}.
Now we formally define the subject of our study. Let k and b be positive integers with
b > k − 1. For A ⊆ [0, n] let A = min(A) and A = max(A). Further let

(
[0,n]
k

)
= {X ⊆
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[0, n] : |X| = k}. Then Gn,k,b is the graph with vertex set

Vn,k,b =
{
X ∈

(
[0, n]
k

)
: X −X 6 b

}

and edge set
En,k,b =

{
{X, Y } ∈ Vn,k,b : X ∪ Y −X ∪ Y 6 b

}
.

These graphs arise in the following context: Let G = (V,E) be a graph. A clique is a
subset of V that induces a complete subgraph of G. Consider the following transformation,
which was used in the NP-completeness proof of the edge clique covering problem in [18]
by reducing it to the vertex clique covering problem. Let V = [n]. Then G̃ = (Ṽ , Ẽ) is
constructed by setting Ṽ = E and {{i, j}, {i′, j′}} ∈ Ẽ if there is a clique C ⊆ V with
i, j, i′, j′ ∈ C. Let χv(G) (resp. χe(G)) be the vertex clique covering number (resp. edge
clique covering number) of the graph G = (V,E), i.e., the minimal number of cliques
whose induced subgraphs cover all vertices (resp. edges) of G. It can be shown, that
χe(G) = χv(G̃), which is the essential part of the NP-completeness proof for the edge
clique covering problem, since the transformation can be done in polynomial time. Here
we want to generalize this result for hypergraphs H = (V,E). We consider the 2-section
graph of H, i.e., the graph GH = (V,EH) on the vertex set of H where {u, v} ∈ EH if
there is an edge of H containing u and v. A subset C of V is called a weak clique of H if
C is a clique in GH . A weak edge clique covering of H is a family C of weak cliques of H
such that for all e ∈ E there is some C ∈ C with e ⊆ C. The weak edge clique covering
number of H is the smallest size χe(H) of a weak edge clique covering of H. It will turn
out that the computation of χe(H) can be simplified by the following transformation. The
weak edge clique graph of H is the graph G̃H = (Ṽ , Ẽ) where Ṽ = E and two vertices of
G̃H , i.e., edges e, e′ of H, are adjacent if there is a weak clique C of H containing e and
e′ as subsets. With these definitions we prove the following proposition.

Proposition 3. Let H = (V,E) be a hypergraph. Then

χe(H) = χv(G̃H) .

Proof. Let C be a weak edge clique covering of H of size χe(H). For each C ∈ C let
C̃ = {e ∈ E : e ⊆ C}. Then C̃ is a clique in G̃H and C̃ = {C̃ : C ∈ C} is a vertex clique
covering of G̃H . Consequently χe(H) > χv(G̃H). Now let C̃ be a vertex clique covering of
G̃H of size χv(G̃H). For each C̃ ∈ C̃ let C = ⋃

e∈C̃ e. Then C is a weak clique in H. To
verify this fact, we pick two arbitrary vertices x, y ∈ C and show that they are adjacent
in GH . First we consider the case that there is an edge e ∈ C̃ with x, y ∈ e. Then, by
construction of GH , {x, y} ∈ EH . The alternative is, that there are 2 edges e, e′ ∈ C̃ with
x ∈ e and y ∈ e′. Since e and e′ are adjacent in G̃H there is a weak clique of H containing
both edges, which implies the adjacency of x and y. Moreover, C̃ is a weak edge clique
covering of H. Consequently, χv(G̃H) > χe(H).

Thus, from an algorithmic point of view, it is enough to study the vertex clique covering
problem. For bounded bandwidth, and more generally for bounded treewidth, there is
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a linear time dynamic programming algorithm for the solution [4]. In an application,
which will be described below, we were lead to the weak edge covering problem on a
hypergraph whose bandwidth is small (and thus, theoretically, considered as bounded).
This implies the following question: Given a hypergraph H of bandwidth b, how large
can be the bandwidth of the weak edge clique graph G̃H of H? Here we discuss only
k-uniform hypergraphs though many results can be simply generalized to hypergraphs
whose edges have size at most k. For later computations, it is more suitable to take [0, n]
as the vertex set of H instead of [1, n]. If, without loss of generality, f(i) = i is the
bandwidth numbering of H, then, obviously, G̃H has maximal bandwidth if H contains
all k-element subsets X of [0, n] with X −X 6 b. In this case, G̃H is exactly the graph
Gn,k,b, which motivates the study of Gn,k,b.
We came to these questions in the study of multielectrode recordings of neuronal signals,
so-called spikes. Such recordings are carried out on multielectrode arrays, which can be
used in-vivo or in-vitro. The denser the electrodes are placed the more likely it is for the
neurons to be simultaneously recorded at different electrodes. The resulting similarities
in the recordings of the electrodes can provide useful information. In [11] we developed an
algorithm to estimate the (unknown) neighborhood of a neuron, i.e., the set of electrodes
which record the signals of this neuron. Such neighborhood information is also used as
an additional tool in [22] for the so called spike sorting, which is an estimated assignment
of the recorded signals to the neurons.
Fix a short time interval in which several electrodes record signals. We consider these
electrodes as vertices of a graph, which we call similarity-graph for the fixed time interval.
First we mention that some neurons may always spike simultaneously. We combine such a
set of neurons to one (artificial) new neuron. It might be an accident that two electrodes
record a signal at almost the same time, but the simultaneous recording can also be
caused by the fact that one spiking neuron has contact to both electrodes. Thus we do
not test only one short time interval but several such intervals. If there are sufficiently
many simultaneous recordings of two (or k) fixed electrodes, one may expect that these
recordings are indeed caused by only one neuron and thus we draw an edge (hyperedge)
between the corresponding vertices in the similarity-graph.
By algorithmic reasons, it is easier to check only pairs of electrodes, see [11]. But, with
some more effort, also k-element subsets of electrodes could be checked for similarities if k
is small. This leads to edges and hyperedges of electrodes. If a spiking neuron has contact
to an unknown set S of electrodes, all edges between any two vertices of S (all hyperedges
of any k vertices of S) are drawn in the similarity-graph. Though these edges may also be
caused by different simultaneously spiking neurons having contact in each case to two (or
k) neurons, it is more likely that only one neuron is the source. Such a neuron yields the
edges of a weak clique in the similarity-graph. Once the similarity-graph is constructed,
it remains the question what is the basic cause for this graph. A reasonable answer is that
as few as possible neurons yield the graph. Consequently, a minimum weak edge clique
covering has to be determined. Because of the bounded length of the axons, only nearby
electrodes, which are placed in form of a two-dimensional bounded grid (or some similar
variants), may have contact to the same neuron. Hence the similarity-graph is a relatively
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sparse graph and edges are only drawn between electrodes which have a small Euclidean
distance. Thus it is reasonable to expect that also this graph has a small bandwidth.
For more information and more detailed explanations, we refer to the dissertation of the
second author [13].

3 Some basic properties

Let k − 1 6 b′ 6 b. It is easy to see that Gn,k,b′ is a subgraph of Gn,k,b. For asymptotic
estimates, we need the auxiliary graph Gn,k,b′,b that is defined as the subgraph of Gn,k,b

induced by the vertex set of Gn,k,b′ , i.e., the vertices are the k-element subsets X of [0, n]
with X−X 6 b′ and {X, Y } is an edge iff X ∪ Y −X ∪ Y 6 b. Note that Gn,k,b,b = Gn,k,b.
From the definition of the bandwidth it follows immediately that

B(Gn,k,b′) 6 B(Gn,k,b) and B(Gn,k,b′,b) 6 B(Gn,k,b) . (1)

Lemma 4. Let X and Y be two distinct vertices of Gn,k,b′,b. They are adjacent iff X−Y 6
b and Y −X 6 b.

Proof. Let X and Y be adjacent. Then X − Y 6 X ∪ Y −X ∪ Y 6 b and, analogously,
Y −X 6 b.
Now let X −Y 6 b and Y −X 6 b. Then X ∪ Y −X ∪ Y = max{X,Y }−min{X, Y } =
max{X −X,X − Y , Y −X, Y − Y } 6 b.

Note that [i, i+k−1] ∈ Vn,k,b iff 0 6 i 6 n−(k−1). Moreover, for 0 6 i < j 6 n−(k−1),
the vertices [i, i+ k − 1] and [j, j + k − 1] are adjacent iff j 6 i+ b− (k − 1).

Lemma 5. Let 0 6 i < j 6 n− (k− 1). The vertices [i, i+ k− 1] and [j, j + k− 1] have
distance d j−i

b−k+1e in Gn,k,b′,b.

Proof. Let j − i = q(b − k + 1) + r where q is an integer and 1 6 r 6 b − k + 1. Then
d j−i
b−k+1e = q + 1. Obviously, the vertices [i, i + (k − 1)], [i + b − (k − 1), i + b], [i + 2b −

2(k − 1), i + 2b − (k − 1)], . . . , [i + qb − q(k − 1), i + qb − (q − 1)(k − 1)], [j, j + (k − 1)]
form a path in Gn,k,b′,b of length q + 1. Thus the distance is at most q + 1.
If the vertices X0 = [i, i + (k − 1)], X1, . . . , Xl−1, [j, j + (k − 1)] = Xl form any path of
length l in Gn,k,b′,b, then, for t = 1, . . . , l, X t − X t−1 6 b and X t − X t > k − 1, which
implies

X t −X t−1 6 b− (k − 1) . (2)

Summing up the inequalities (2) for t = 1, . . . , l yields j − i 6 l(b − k + 1). Since
j − i > q(b− k + 1) we have l > q + 1 and thus the distance is at least q + 1.

Lemma 6. Let X, Y be two vertices of Gn,k,b′,b and let X < Y or X = Y as well as
X < Y . Then X and Y have distance at most dY−X−b

b−k+1 e+ 1.

the electronic journal of combinatorics 25(4) (2018), #P4.49 6



Proof. Let i = X and j = Y .
Case 1. j − i 6 b. Then Y − X 6 b and X − Y 6 X − X 6 b′ 6 b. Consequently, X
and Y are adjacent by Lemma 4 and their distance is 1. Indeed, from the conditions on
X and Y it follows that Y − X > k − 1 and thus Y − X − b > (−1)(b − k + 1), which
implies dY−X−b

b−k+1 e+ 1 = 1.
Case 2. j− i > b. Obviously, X is adjacent to X1 = [i+ b−k+1, i+ b] and Y is adjacent
to Y1 = [j − b, j − b+ k − 1].
Case 2.1. i+ b− k+ 1 > j− b. Then X1 and Y are adjacent since X1−Y = i+ b−Y =
X − Y + b 6 b and Y −X1 = j − i− b+ k− 1 6 b. Thus X and Y have distance at most
2. Indeed, 2 6 dY−X−b

b−k+1 e+ 1 6 d b+(b−k+1)−b
b−k+1 e+ 1 = 2.

Case 2.2. i+ b− k+ 1 < j− b. By Lemma 5, X1 and Y1 have distance d j−b−i−(b−k+1)
b−k+1 e =

dY−X−b
b−k+1 e − 1, and thus X and Y have distance at most dY−X−b

b−k+1 e+ 1.

Lemma 7. Let k − 1 6 b′ 6 b ∼ βn, δ > 0 and let X, Y be two vertices of Gn,k,b′,b with
Y − X . i(1 − δ)βn as well as X − Y . i(1 − δ)βn, where n → ∞ and i is a positive
integer. If n is sufficiently large, then X and Y have distance at most i.

Proof. Without loss of generality, let (X,X) 6lex (Y , Y ), i.e., X < Y or X = Y as
well as X < Y . By Lemma 6, X and Y have distance at most d i(1−δ)βn−b

b−k+1 e + 1 =
d i(1−δ)β−β+o(1)

β+o(1) e+ 1 = di(1− δ)− 1 + o(1)e+ 1 6 i.

Lemma 8. The graph Gn,k,b has the following number of vertices:

|Vn,k,b| = (n− b+ 1)
(

b

k − 1

)
+
(
b

k

)
= (n+ 1)

(
b

k − 1

)
− (k − 1)

(
b+ 1
k

)
.

Proof. The proof follows directly from the partition

Vn,k,b =
n−b
·
⋃
i=0

{
X ∈

(
[i, i+ b]

k

)
: X = i

}
·∪
{
X ∈

(
[n− b+ 1, n]

k

)}
.

4 Bandwidth for b > n+k−1
2

In the following, we often write the elements of Vn,k,b as k-tuples in ascending order,
i.e., X = (i1, . . . , ik) with i1 < · · · < ik. Then X = i1 and X = ik. Furthermore, let
←−
X = (ik, . . . , i1) as well as Xc = (n − ik, . . . , n − i1). We collect all vertices that are
adjacent to all other vertices in the set

C = {X ∈ Vn,k,b : n− b 6 X 6 X 6 b} .

Note that C 6= ∅ iff b > n+k−1
2 and that

|C| =
(

2b− n+ 1
k

)
. (3)
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We denote the set of remaining vertices by R = Vn,k,b \ C and split it into two parts:

R′ = {X ∈ R : X +X 6= n} ,
R′′ = {X ∈ R : X +X = n} .

Let R′′ = R′′0 ·∪R′′1 be a partition of R′′ such that

||R′′0| − |R′′1|| 6 1 . (4)

We call such partitions balanced. We define a partition R′ = R′0 ·∪R′1 of R′ by

R′0 = {X ∈ R′ : X +X < n} ,
R′1 = {X ∈ R′ : X +X > n}

and with R0 = R′0 ·∪R′′0 and R1 = R′1 ·∪R′′1 we have a partition R = R0 ·∪R1.

Lemma 9. We have ||R0| − |R1|| 6 1.

Proof. A bijection between R′0 and R′1 is given by X 7→ Xc. Hence we have |R′0| = |R′1|
and with (4) we obtain the assertion.

Recall the definition of the lexicographic ordering <lex on the set of all k-tuples of integers:

(x1, x2, . . . , xk) <lex (y1, y2, . . . , yk) if ∃i ∈ [k](∀j ∈ [i − 1] : xj = yj) ∧ xi < yi. (5)

We define a proper numbering of Vn,k,b in the form of a total order 6. The minimal
element gets label 1, the next elements get labels 2, 3, . . . and the maximal element gets
label |Vn,k,b|. Each total order will be given in the form of an ordinal sum of suborders: If
Vn,k,b = S1 ·∪ · · · ·∪ Sl and 6i is a total order on Si, i = 1, . . . , l, then Vn,k,b = S1 ⊕ · · · ⊕ Sl
means that the elements of Vn,k,b are totally ordered as follows: X 6 Y if there is some i
with X, Y ∈ Si and X 6i Y or there are some i, j with i < j and X ∈ Si and Y ∈ Sj. Now
we consider an arbitrary balanced partition R′′ = R′′0 ·∪R′′1. We have Vn,k,b = R0 ·∪C ·∪R1,
i.e., l = 3 with S1 = R0, S2 = C and S3 = R1. We define a total order 6spo, which we
call the simple palindrom ordering (SPO), as follows:

Vn,k,b = R0 ⊕ C ⊕R1 ,

with the following suborders:

1. ∀X, Y ∈ R0 = R′0 ·∪R′′0: X 6spo Y , if X 6lex Y .

2. ∀X, Y ∈ C: X 6spo Y , if X 6lex Y .

3. ∀X, Y ∈ R1 = R′1 ·∪R′′1: X 6spo Y , if ←−X 6lex

←−
Y .

Note that 6spo depends on the particular balanced partition R′′ = R′′0 ·∪ R′′1. Let fspo(X)
be the label of X ∈ Vn,k,b in the numbering given by the SPO. Recall that the fspo-distance
of X, Y ∈ Vn,k,b is given by

dfspo(X, Y ) = |fspo(X)− fspo(Y )| .
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Lemma 10. Let X, Y be two adjacent elements of Vn,k,b with X <spo Y and maximal
fspo-distance, where in addition X is minimal or Y is maximal. Then X = [0, k − 1] and
Y = [b− k + 1, b] or X = [n− b, n− b+ k − 1] and Y = [n− k + 1, n].
Proof. If Y ∈ C, then X = [0, k − 1] and Y = [b − k + 1, b] have maximal fspo-distance.
Analogously, if X ∈ C, then X = [n−b, n−b+k−1] and Y = [n−k+1, n] have maximal
fspo-distance. It is not possible that X and Y lie both in R0 or both in R1, because in
these cases Y could be replaced by [b−k+1, b] and X by [n−b, n−b+k−1], respectively.
Thus it remains the case that X ∈ R0 and Y ∈ R1. To reach a maximal fspo-distance,
the form X = (X,X + 1, . . . , X + k − 1) and Y = (Y − k + 1, Y − k + 2, . . . , Y ) with
Y −X = b is necessary. So we have X = [i, i+ k− 1] and Y = [i+ b− k+ 1, i+ b] for an
i ∈ [0, n− b]. To prove the assertion, it is sufficient to show the following:

a) For 1 6 i 6 n−b
2 , we have dspo([i− 1, i+ k− 2], [i+ b− k, i+ b− 1]) > dspo([i, i+ k−

1], [i+ b− k + 1, i+ b]).

b) For n−b
2 < i 6 n − b, we have dspo([i − 1, i + k − 2], [i + b − k, i + b − 1]) 6

dspo([i, i+ k − 1], [i+ b− k + 1, i+ b]).
We note that b) follows from a) by using the bijection X 7→ Xc and applying the same
arguments to the particular SPO 6spoc which is given by the balanced partition R′′ =
{Xc : X ∈ R′′1} ·∪ {Xc : X ∈ R′′0}. This is possible due to

X 6spo X
′ ⇐⇒ X ′c 6spoc X

c .

To show a) we define Ii = {X ∈ Vn,k,b : [i, i+ k− 1] 6spo X 6spo [i+ b− k+ 1, i+ b]}. For
the proof of the inequality it is enough to show that the mapping X = (i1, i2, . . . , ik) 7→
(i1 − 1, i2 − 1, . . . , ik − 1) = X̃ is an injection φ from Ii to Ii−1. The injectivity is clear.
Thus it remains to verify that X̃ = φ(X) ∈ Ii−1 if X ∈ Ii.
Case 1. X̃ ∈ C.
This case is easy, because C ⊆ Ij for all j.
Case 2. X̃ ∈ R0.
Case 2.1. X ∈ R0. Then [i, i + k − 1] 6lex X and thus [i − 1, i + k − 2] 6lex X̃, which
yields X̃ ∈ Ii−1.
Case 2.2. X ∈ C. Then i 6 n−b

2 < n− b 6 X and thus i− 1 < X − 1 = X̃. This implies
that [i− 1, i+ k − 2] <lex X̃, which yields X̃ ∈ Ii−1.
Case 2.3. X ∈ R1. Then X 6 [i+ b− k + 1, i+ b] = i + b because of X 6spo [i + b −
k + 1, i + b] and due to X + X > n we have X > n − i − b. This implies X̃ = X − 1 >
n− i− b− 1 > i− 1 because of i 6 n−b

2 . Hence X̃ ∈ Ii−1.
Case 3. X̃ ∈ R1.
Case 3.1. X ∈ R0. This is not possible because X̃ + X̃ = X + X − 2 < n, which
contradicts X̃ ∈ R1.
Case 3.2. X ∈ C. Then X 6 b, which implies X̃ 6 b−1 6 i+b−2 < [i+ b− k, i+ b− 1]
due to i > 1. Hence

←−̃
X <lex

←−−−−−−−−−−−−−−
[i+ b− k, i+ b− 1], which yields X̃ ∈ Ii−1.

Case 3.3. X ∈ R1. Then X 6 i + b and thus X̃ 6 i + b − 1. This implies
←−̃
X 6lex←−−−−−−−−−−−−−−

[i+ b− k, i+ b− 1] and hence X̃ ∈ Ii−1.
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Now the bandwidth of an arbitrary fspo can be determined:

Lemma 11. We have Bfspo(Gn,k,b) =
⌈ |Vn,k,b|+|C|−2

2

⌉
.

Proof. We have fspo([0, k − 1]) = 1 and fspo([n− k + 1, n]) = |Vn,k,b|. Let u = |R0|. Then
fspo([n− b, n− b + k − 1]) = u + 1 and fspo([b− k + 1, b]) = u + |C|. Because of Lemma
9 we have |u − (|Vn,k,b| − |C| − u)| 6 1 and thus |(u + |C| − 1) − (|Vn,k,b| − u − 1)| 6 1.
Lemma 10 implies that one of the fspo-distances dfspo([0, k−1], [b−k+ 1, b]) = u+ |C|−1
and dfspo([n− b, n− b+k−1], [n−k+1, n]) = |Vn,k,b|−u−1 is the maximal fspo-distance.
As they both differ from each other by at most 1 it follows that

Bfspo(Gn,k,b) =
⌈
u+ |C| − 1 + |Vn,k,b| − u− 1

2

⌉
=
⌈
|Vn,k,b|+ |C| − 2

2

⌉
.

Now we are able to prove the part a) of Theorem 1.

Proof of Theorem 1.a). We know from Lemma 11 that B(Gn,k,b) 6
⌈ |Vn,k,b|+|C|−2

2

⌉
. Let f

be an arbitrary proper numbering of Gn,k,b. Let XV be the vertex with number 1 and
XV the vertex with number |Vn,k,b|. Further let XC be the vertex of C with smallest
number, denoted by α, and XC be the vertex of C with largest number, denoted by β.
Then β − α > |C| − 1. Further XV and XC as well as XC and XV are adjacent with
df (XV , X

C) = β − 1 and df (XC , X
V ) = |Vn,k,b| − α. The sum of them is

s = (β − 1) + (|Vn,k,b| − α) = |Vn,k,b|+ (β − α)− 1 > |Vn,k,b|+ |C| − 2 .

The maximum of both f -distances is therefore at least
⌈ |Vn,k,b|+|C|−2

2

⌉
. From Lemma 8 and

(3) we obtain

B(Gn,k,b) =


(n+ 1)
(

b
k−1

)
− (k − 1)

(
b+1
k

)
+
(

2b−n+1
k

)
− 2

2

 .
5 Asymptotic bandwidth for b = o(n)

In this section, we consider the case, where b grows sublinearly with respect to n. First
we take a simple proper numbering, which provides an upper bound for the bandwidth.

Lemma 12. Let n, k, b be arbitrary integers with 1 6 k − 1 6 b 6 n. Then

B(Gn,k,b) 6 k

(
b

k

)
.

Proof. We order the vertices of Gn,k,b in a lexicographic way, see (5). Let flex(X) be the
label of X ∈ Vn,k,b with respect to this ordering. Now let X and Y be two adjacent
vertices with X <lex Y and let X ′ = [X,X +k− 1] and Y ′ = [X + b−k+ 1, X + b]. Then

X ′ 6lex X <lex Y 6lex Y
′ . (6)
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Moreover, for j ∈ [0, n− b],

|{X ∈ Vn,k,b : X = j}| =
(

b

k − 1

)

and, for j ∈ [n− b+ 1, n],

|{X ∈ Vn,k,b : X = j}| 6
(

b

k − 1

)
.

Since Y ′ is the lexicographically smallest vertex with minimum element X + b− k + 1 it
follows that

|flex(Y ′)− flex(X ′)| 6 (b− k + 1)
(

b

k − 1

)
= k

(
b

k

)
. (7)

Now (6) and (7) imply

|flex(Y )− flex(X)| 6 k

(
b

k

)
,

which proves the assertion.

Chvátal observed in [6] that a lower bound for the bandwidth is given by

B(G) >
⌈
|V | − 1

diam(G)

⌉
. (8)

Here the diameter diam(G) of the graph G = (V,E) is the maximal distance of any two
vertices of G.
By Lemma 6, the distance of any two vertices of Gn,k,b is at most dn−0−b

b−k+1e+ 1 = dn−k+1
b−k+1 e

and by Lemma 5 the vertices [0, k−1] and [n−k+1, n] have distance dn−k+1
b−k+1 e. Accordingly,

diam(Gn,k,b) =
⌈
n− k + 1
b− k + 1

⌉
. (9)

Now we have all preparations to prove Theorem 1 b).

Proof of Theorem 1 b). From Lemma 12 we know that

B(Gn,k,b) 6 k

(
b

k

)
.

For the lower bound, we use the fact that
(
b
k

)
= bk

k! + O(bk−1) as b → ∞. We have by
Lemma 8, (8) and (9) for n→∞:

B(Gn,k,b) >
⌈
|Vn,k,b| − 1

diam(Gn,k,b)

⌉
=

(n− b+ 1)
(

b
k−1

)
+
(
b
k

)
− 1⌈

n−k+1
b−k+1

⌉ =
n
(

b
k−1

)
+O(bk)

n−k+1
b−k+1 +O(1)
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=
nk
(
b
k

)
+O(bk+1)

n+O(b) =
k
(
b
k

)
+O( bk+1

n
)

1 +O( b
n
)

.

In the case b = o(n
1
k+1 ) we have

k
(
b
k

)
+O( bk+1

n
)

1 +O( b
n
)

>

(
k

(
b

k

)
+ o(1)

)(
1−O

(
b

n

))
= k

(
b

k

)
− o(1) .

Thus, B(Gn,k,b) > k
(
b
k

)
for sufficiently large n, which proves the first part of the assertion.

If b = o(n), then
k
(
b
k

)
+O( bk+1

n
)

1 +O( b
n
)
∼ k

(
b

k

)
,

which shows that B(Gn,k,b) & k
(
b
k

)
as n → ∞, which proves the second part of the

assertion.

6 Motivation for the study of polygons

In the following let Ω = {(x, y) ∈ R2 : 0 6 x 6 y 6 1}. For X ∈ Vn,k,b, the point 1
n
(X,X)

belongs to the triangle Ω. Moreover, if b = βn, then 1
n
(X,X) ∈ {(x, y) ∈ Ω : y − x 6 β},

i.e., the associated point 1
n
(X,X) belongs to a trapezoid in Ω.

In Section 9 we prove the lower bounds for the bandwidth by choosing subsets V ′ of Vn,k,b
in such a way that a set X belongs to V ′ if the associated point 1

n
(X,X) belongs to a

well-defined polygon in Ω. A bound of the bandwidth of the subgraph induced by V ′

yields the lower bound for the bandwidth of Gn,k,b. In Section 10 we prove the upper
bounds for the bandwidth by defining proper numberings of Gn,k,b in form of an ordinal
sum of well-defined total orders on subsets V ′ of V whose associated points belong to
polygons in Ω. These total orders can be interpreted as induced orders of total orders on
the whole polygons, but one must take into account that several sets X ∈ Vn,k,b may have
the same associated point 1

n
(X,X).

Thus we need a relationship between the subsets of Vn,k,b and the corresponding polygons
in Ω. This is established in Section 7. In Section 8 the concrete polygons are introduced
and studied.

7 Asymptotic cardinality of sets defined by polygons

Let P be a polygon in Ω and let int(P ) be the interior of P . Let

Vn,k(P ) =
{
X ∈

(
[0, n]
k

)
: 1
n

(X,X) ∈ P
}
, (10)

V o
n,k(P ) =

{
X ∈

(
[0, n]
k

)
: 1
n

(X,X) ∈ int(P )
}
. (11)
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Lemma 13. We have

|V o
n,k(P )| ∼ |Vn,k(P )| ∼

(
1

(k − 2)!

∫∫
P

(y − x)k−2 dx dy

)
nk as n→∞ .

Proof. Let i, j be integers with 0 6 i 6 j 6 n. Obviously,

|{X ∈
(

[0, n]
k

)
: X = i,X = j}| =

(
j − i− 1
k − 2

)
.

Thus
|Vn,k(P )| =

∑
1
n

(i,j)∈P

(
j − i− 1
k − 2

)
=

∑
1
n

(i,j)∈P

(
n(j/n− i/n)− 1

k − 2

)
. (12)

For 0 6 z 6 1, we have (
nz − 1
k − 2

)
6

zk−2

(k − 2)!n
k−2 .

Accordingly,
1
nk
|Vn,k(P )| 6 1

(k − 2)!
∑

1
n

(i,j)∈P

1
n2 (j/n− i/n)k−2 .

The RHS is a Riemann sum for the integral
∫∫
P (y − x)k−2 dx dy, which shows that

|Vn,k(P )| .
(

1
(k − 2)!

∫∫
P

(y − x)k−2 dx dy

)
nk as n→∞ .

For δ > 0 let Pδ = {(x, y) ∈ P : y − x > δ}. Clearly,

Pδ ⊆ P . (13)

Obviously, for any ε > 0 there is some δ > 0 such that∫∫
Pδ

(y − x)k−2 dx dy > (1− ε)
∫∫

P
(y − x)k−2 dx dy . (14)

Moreover, for any z > δ there is some n0 such that for all n > n0

k − 2
nz

6 ε .

This implies

(1− ε)k−2 (nz)k−2

(k − 2)! 6
(

1− k − 2
nz

)k−2 (nz)k−2

(k − 2)! 6
(
nz − 1
k − 2

)
. (15)

From (12), (13), (15) and (14) we obtain (with z = j/n− i/n in (15))

1
nk
|Vn,k(P )| > 1

nk
∑

1
n

(i,j)∈Pδ

(
n(j/n− i/n)− 1

k − 2

)
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> (1− ε)k−2 1
(k − 2)!

∑
1
n

(i,j)∈Pδ

1
n2 (j/n− i/n)k−2

& (1− ε)k−1 1
(k − 2)!

∫∫
P

(y − x)k−2 dx dy .

Now, with ε→ 0 we conclude that

|Vn,k(P )| &
(

1
(k − 2)!

∫∫
P

(y − x)k−2 dx dy

)
nk as n→∞ .

The reasoning for |V o
n,k(P )| is the same.

For the sake of brevity, we define for fixed k the measure of the polygon P ⊆ Ω by

µ(P ) = 1
(k − 2)!

∫∫
P

(y − x)k−2 dx dy .

Corollary 14. If S ⊆
(

[0,n]
k

)
is a family of sets that contains all X ∈

(
[0,n]
k

)
with

1
n
(X,X) ∈ int(P ) and some X ∈

(
[0,n]
k

)
with 1

n
(X,X) on the boundary of P , then

|S| ∼ µ(P )nk as n→∞ .

8 Definition and measure of crucial polygons

Recall that we consider the case b ∼ βn with β ∈ (0, 1] and that we use the representation
1 = qβ + r with a positive integer q and 0 6 r < β. We define in Ω several sets of points.
First let for i = 1, . . . , q

Ai = (ir, ir + q(β − r)) ,
Bi = (r − β + iβ, r − β + iβ) ,
Ci = (iβ, iβ) .

In the following we denote lines given by y = ax+b (or, more generally, by ax+by = c) by
gy=ax+b (or gax+by=c). Note that the points Bi and Ci lie on gy=x. Furthermore, the points
Ai lie above or on the line gy=x+β iff r 6 q−1

q2+q−1 . This is the reason for the distinction
between a) and b) in Theorem 2.
For Case a), i.e., for r 6 q−1

q2+q−1 , we define points Di and Ei as the intersection points of
the segments AiBi resp. AiCi with the line gy=x+β. An easy computation yields with

γ = β(1− 1/q)

that for i = 1, . . . , q

Di = (r + (i− 1)γ, r + (i− 1)γ + β) ,
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Ei = (iγ, iγ + β) .

For Case b), i.e., for r > q−1
q2+q−1 , we define points Fi as those points that provide an

equipartition into q + 1 parts of the segment between (0, 0) and (1, 1) and points Gi as
the intersection points of the segments between Fi and (0, 1) with the line gy=x+β. It is
straightforward that for i = 0, . . . , q + 1

Fi = (i/(q + 1), i/(q + 1)) ,
Gi = (i(1− β)/(q + 1), i(1− β)/(q + 1) + β) .

Like in Case a), let Eq be the intersection point of the lines gy=x+β and gy=qβ. Finally, we
define an auxiliary point H1 = (r, β). For Case a) we also use the points C0 = F0 = (0, 0),
Bq+1 = Fq+1 = (1, 1), E0 = G0 = (0, β) and Dq+1 = Gq+1 = (1− β, 1).
In Figures 1 and 2 the points are illustrated for β = 9/20 (i.e., Case a) with q = 2, r =
1/10 < 1/5) as well as for β = 7/20 (i.e., Case b) with q = 2, r = 3/10 > 1/5).

C0 = F0 = (0, 0) (1, 0)

(0, 1) B3 = F3 = (1, 1)

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

E0 = G0

D3 = G3

Figure 1: Polygons and important points for β = 9/20 (i.e., Case a) with q = 2, r =
1/10 < 1/5).

It is easy to check that the points Ai lie on the segments FiGi (we have −−→FiAi = (1− r(q+
1)/β)−−→FiGi) and that the points F0, B1, F1, C1, . . . , Bq, Fq, Cq, Fq+1 lie in this order on the
line gy=x. It is also easy to see that H1 lies on the segment A1B1.

Lemma 15. Let 0 6 s < t 6 1, let P1 = (ξ1, ξ1 + s), P2 = (ξ2, ξ2 + s) be points on the
line gy=x+s with 0 6 ξ1 6 ξ2 6 1− s and let P3 = (ξ3, ξ3 + t), P4 = (ξ4, ξ4 + t) be points on
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C0 = F0 = (0, 0) (1, 0)

(0, 1) B3 = F3 = (1, 1)

A1

B1
C1
F1

G1

A2

B2
C2

F2

G2

G0

G3

H1

E2

Figure 2: Polygons and important points for β = 7/20 (i.e., Case b) with q = 2, r =
3/10 > 1/5).

the line gy=x+t with 0 6 ξ3 6 ξ4 6 1− t. Let u = ξ2 − ξ1 and v = ξ4 − ξ3. Then

µ(P1P2P4P3) = 1
(k − 2)!

1
t− s

(1
k

(v − u)(tk − sk) + tu− sv
k − 1 (tk−1 − sk−1)

)
.

Proof. The proof follows directly by computing the integrals, using the coordinate trans-
formation x′ = x + y, y′ = y − x. This leads to a domain of integration in form of a
trapezoid whose basis is parallel to the x′-axis.

Since only the difference of the ξ-values has influence we have:

Corollary 16. Let 0 6 s < t 6 1, let P1, P2 and Q1, Q2 be points of Ω on the line gy=x+s

with −−→P1P2 = −−−→Q1Q2 showing to north east and let P3, P4 and Q3, Q4 be points on the line
gy=x+t with −−→P3P4 = −−−→Q3Q4 showing to north east. Then

µ(P1P2P4P3) = µ(Q1Q2Q4Q3) .

By inserting the corresponding values and using the definition of the c-functions in The-
orem 2, we obtain:

Corollary 17. We have for all possible i:

µ(F0Fq+1Gq+1G0) = βk−1

k! (k − (k − 1)β) = (q + 1)c2(β, k) ,
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µ(CiBi+1Di+1Ei) = βk−1

(k − 1)!r = (q + 1)c2(β, k)− qc1(β, k) ,

µ(BiCiEiDi) = βk−1

k!

(
k(β − r)− β(k − 1)

q

)
= (q + 1)(c1(β, k)− c2(β, k)) ,

µ(FiFi+1Gi+1Gi) = 1
q + 1µ(F0Fq+1Gq+1G0) = c2(β, k) ,

µ(AiBiCi) = (β − r)k
k! qk−1 = (q + 1)c3(β, k) ,

µ(AiBiFi) = (1− i

q + 1)µ(AiBiCi) = (q + 1− i)c3(β, k) ,

µ(AiFiCi) = i

q + 1µ(AiBiCi) = ic3(β, k) ,

µ(B1C1H1) = 1
qk−1µ(A1B1C1) = q + 1

qk−1 c3(β, k) .

9 Proof of the lower bounds for the bandwidth in Theorem 2

Though the following result follows also directly from Lemma 8, we prove it as an example
for our polygon-method that will be used in a similar way several times.

Lemma 18. We have

|Vn,k,b| ∼ µ(F0Fq+1Gq+1G0)nk = (q + 1)c2(β, k)nk .

Proof. First let b = bβnc. It is easy to see that Vn,k(F0Fq+1Gq+1G0) = Vn,k,b. By Corol-
laries 14 and 17,

|Vn,k(F0Fq+1Gq+1G0)| ∼ µ(F0Fq+1Gq+1G0)nk = (q + 1)c2(β, k)nk .

Now let ε > 0 and b(β − ε)nc 6 b 6 b(β + ε)nc. Then

Vn,k,b(β−ε)nc ⊆ Vn,k,b ⊆ Vn,k,b(β+ε)nc ,

hence
(q + 1)c2(β − ε, k)nk . |Vn,k,b| . (q + 1)c2(β + ε, k)nk

and the assertion follows with ε→ 0 by the continuity of c2 as a function of β.

Now we prove the first asymptotic lower bound. Note that this applies to both Case a)
and Case b).

Lemma 19. We have

B(Gn,k,b) &
1
q
µ(F0CqEqG0)nk = c1(β, k)nk as n→∞ .
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Proof. Obviously, F0CqEqG0 = F0Fq+1Gq+1G0 \ CqBq+1Dq+1Eq and hence

µ(F0CqEqG0) = µ(F0Fq+1Gq+1G0)− µ(CqBq+1Dq+1Eq) .

By Corollary 17,

µ(F0CqEqG0) = (q + 1)c2(β, k)− ((q + 1)c2(β, k)− qc1(β, k)) = qc1(β, k)

which shows the last equality in the assertion.
Let b ∼ βn. For ε > 0 let β′ = β − ε, b′ = bβ′nc and F ′0C

′
qE
′
qG
′
0 be the polygon

corresponding to F0CqEqG0, but depending on β′ instead of β. We may generally assume
that b > b′ since this is true if n is sufficiently large. Let briefly G′ = Gn,k,b′,b, i.e., the
vertex set of G′ is given by

V ′ =
{
X ∈ Vn,k,b : 1

n
(X,X) ∈ F ′0C ′qE ′qG′0

}
.

Note that 1
n
X 6 qβ′ = qβ(1− δ) with δ = ε

β
for all X ∈ V ′.

Now we show that for sufficiently large n

diam(G′) 6 q . (16)

Let X and Y be any two distinct vertices of G′. Then 0 6 X 6 X 6 qβ(1 − δ)n and
0 6 Y 6 Y 6 qβ(1 − δ)n. By Lemma 7, X and Y have distance at most q if n is
sufficiently large, which proves (16). From the Chvátal bound (8) it follows that

B(G′) > |V
′| − 1
q

&
µ(F ′0C ′qE ′qG′0)

q
nk = c1(β − ε, k)nk .

By (1), we have B(Gn,k,b) > B(G′). Since c1 is a continuous functions of β we obtain with
ε→ 0

B(Gn,k,b) & c1(β, k)nk .

Now we prove the second asymptotic lower bound, which applies only for Case b).

Lemma 20. If r > q−1
q2+q−1 , then

B(Gn,k,b) &
(
µ(F0F1G1G0) + 1

q + 1µ(B1C1H1)
)
nk

=
(
c2(β, k) + 1

qk−1 c3(β, k)
)
nk .

Proof. The last equality follows directly from Corollary 17.
Let b ∼ βn. For 0 < ε < β−r

q+1 let β′ = β − ε, b′ = bβ′nc and let F ′0C ′qE ′qG′0 and
R′ = B′1C

′
1H
′
1 be the polygon corresponding to F0CqEqG0 and R = B1C1H1, respectively,

but depending on β′ instead of β. The vertices of R′ are B′1 = (r+qε, r+qε), C ′1 = (β′, β′)
and H ′1 = (r + qε, β′). As in the preceding case we may generally assume that b > b′.
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Let again G′ = Gn,k,b′,b and V ′ be its vertex set. By (1), we have B(Gn,k,b) > B(G′).
Using a distinction of cases we will show that

B(G′) &
(
c2(β − ε, k) + 1

qk−1 c3(β − ε, k)
)
nk .

Since c2 and c3 are continuous functions of β the assertion follows with ε→ 0.
Let f be a bandwidth numbering of G′. Let XV ′ and XV ′ be those vertices for which
f(XV ′) = 1 and f(XV ′) = |V ′|. Without loss of generality, we may assume that XV ′ 6
XV ′ .
Case 1. XV ′ 6 n(r + qε) and XV ′ 6 n(r + qε) and q > 2.
We have ε < β−r

q+1 , i.e., qε < β′ − r and hence

max{XV ′ , X
V ′} 6 n(r + qε+ β′) 6 2β′n 6 2β(1− ε)n .

Lemma 7 implies that XV ′ and XV ′ have distance at most 2 and by Lemma 18 and a
simple computation, we have

B(G′) > |V
′| − 1
2 &

q + 1
2 c2(β − ε, k)nk &

(
c2(β − ε, k) + 1

qk−1 c3(β − ε, k)
)
nk .

Case 2. XV ′ > n(r + qε) and XV ′ > n(r + qε) and q > 2.
Then

max{XV ′ −XV ′ , XV ′ −XV ′} 6 n− n(r + qε) = (1− r − qε)n = qβ(1− ε

β
)n .

Lemma 7 implies that XV ′ and XV ′ have distance at most q and by Lemma 18 and a
simple computation,

B(G′) > |V
′| − 1
q

&
q + 1
q

c2(β − ε, k)nk &
(
c2(β − ε, k) + 1

qk−1 c3(β − ε, k)
)
nk .

Case 3. XV ′ 6 n(r + qε) and XV ′ > n(r + qε), or q = 1.
Let XR′ = arg min{f(X) : X ∈ Vn,k(R′)} and XR′ = arg max{f(X) : X ∈ Vn,k(R′)}.
Clearly,

f(XR′)− f(XR′) > |Vn,k(R′)| − 1 . (17)
We will show that

f(XR′)− f(XV ′) 6 B(G′) . (18)
and

f(XV ′)− f(XR′) 6 qB(G′) . (19)
Then we obtain from (17), (18) and (19)

f(XV ′)− f(XV ′) 6 (q + 1)B(G′)− (|Vn,k(R′)| − 1)
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and thus by Corollary 17 and Lemma 18,

B(G′) &
(
c2(β − ε, k) + 1

qk−1 c3(β − ε, k)
)
nk .

For the verification of (18) and (19) we distinguish two subcases.
Case 3.1. q = 1. Let X ∈ Vn,k(R′) and Y ∈ V ′. It is sufficient to show that X and
Y are adjacent using Lemma 4. Indeed, we have n(r + ε) 6 X and X 6 n(β − ε)
and consequently, Y − X 6 n(1 − r − ε) = nβ′, i.e., Y − X 6 b′ 6 b, as well as
X − Y 6 n(β − ε− 0) = nβ′, i.e., X − Y 6 b′ 6 b.
Case 3.2. q > 2. Then XV ′ 6 n(r + qε) and XV ′ > n(r + qε). In view of n(r +
qε) 6 XR′ 6 nβ′, XV ′ > 0, XV ′ 6 n(r + qε) + b′ we have XR′ − XV ′ 6 b′ 6 b and
XV ′−XR′ 6 b′ 6 b. Thus, by Lemma 4, XV ′ and XR′ are adjacent which implies (18). In
view of XR′ , X

V ′ > n(r + qε) and analogously to the beginning of Case 2, XR′ and XV ′

have distance at most q which implies (19).

10 Proof of the upper bounds for the bandwidth in Theorem 2

In the following, we present two proper numberings f of Gn,k,b whose bandwidth is asymp-
totically equal to the asserted upper bounds. First we only consider the case b = bβnc
since the vertex set Vn,k,b is projected optimally into the polygon F0Fq+1Gq+1G0 in this
case.
Later we show the general case b ∼ βn by using this special case and limits. As in Section
4, we define a total order Vn,k,b = S1⊕· · ·⊕Sl with suborders given by means of polygons.
In order to avoid intersections on the boundaries we explicitly describe which part of the
boundary is deleted, though the ordering can be given on the whole polygon. For example,
a notation of the form C0B1D1E0 \ B1D1 means that the segment B1D1 is deleted from
the closed quadrangle C0B1D1E0.
Case a) r 6 q−1

q2+q+1 .

Using the definition of Vn,k(P ) in (10) we define the total order 6 as follows:

Vn,k,b = Vn,k(C0B1D1E0 \B1D1)⊕ Vn,k(B1C1E1D1 \ C1E1)
⊕ Vn,k(C1B2D2E1 \B2D2)⊕ . . .

⊕ Vn,k(BqCqEqDq \ CqEq)⊕ Vn,k(CqBq+1Dq+1Eq) .

We still have to define the ordering of the elements of Vn,k(CiBi+1Di+1Ei), i = 0, . . . , q,
and of Vn,k(BiCiEiDi), i = 1, . . . , q (here we may allow the complete boundary).
If (X,X) = (Y , Y ), we set in both cases X 6i Y if X 6lex Y . Thus let (X,X) 6= (Y , Y ).
First we discuss Vn,k(CiBi+1Di+1Ei). We use a new coordinate system with the same
origin and with transformation matrix and inverse transformation matrix

Mi =
(

1 −i/q
1 1− i/q

)
and M−1

i =
(

1− i/q i/q
−1 1

)
.
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Thus the new coordinate axes have direction of −−−−→CiBi+1 and −−→CiEi. The ordering is a
lexicographic ordering of the points 1

n
(X,X) with respect to the new coordinate system,

i.e., for X, Y ∈ Vn,k(CiBi+1Di+1Ei) and (X,X) 6= (Y , Y ) we set

X 6i Y if ((1− i/q)X + iX/q,−X +X) 6lex ((1− i/q)Y + iY /q,−Y + Y ) ,

see Figure 3.

C0 = (0, 0) (1, 0)

(0, 1) B3 = (1, 1)

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

E0

D3

Figure 3: Schematic illustration of the ordering for Case a).

Now we discuss Vn,k(BiCiEiDi). Here we work with polar coordinates in the coordinate
system with origin Ai and x-axis in the direction of −−→AiBi and arbitrary, but fixed unit
length. ForX ∈ Vn,k(BiCiEiDi) let ϕi(X) and ri(X) be the angular and radial coordinates
of 1

n
(X,X) in this coordinate system. The ordering is a lexicographic ordering with respect

to the reflected polar coordinates, i.e., for X, Y ∈ Vn,k(BiCiEiDi) and (X,X) 6= (Y , Y )
we set

X 6i Y if (ϕi(X),−ri(X)) 6lex (ϕi(Y ),−ri(Y )) ,
see Figure 3.
Note that for simpler numerical computations ϕi(X) may be enlarged to an angle such
that one leg is parallel to the y-axis, the size of the angle may be replaced by tan(ϕi(X))
and the Euclidean norm for ri(X) may be replaced by some other norm, e.g. the L1-norm.
It is easy to check that

X 6 Y implies X 6 Y . (20)
Lemma 21. Let fa be the numbering for Case a). Then, for b = bβnc and n→∞,

Bfa(G) . c1(β, k)nk .
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Proof. Let P = (ξ, ξ) be any point on the segment C0Bq+1, i.e., 0 6 ξ 6 1. With P we
associate a new point P̂ as follows: If P ∈ CiBi+1 for some i, then let P̂ be the intersection
point of the line gy=x+β with the line through P that is parallel to CiEi. If P ∈ BiCi for
some i, then let P̂ be the intersection point of the line gy=x+β with the line through P
and Ai, see Figure 4.

C0 = (0, 0) (1, 0)

(0, 1) B3 = (1, 1)

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

E0

D3

P2

P1

P̂2

P̂1

Figure 4: Important points for the upper bound for Case a).

Moreover, for X ∈ Vn,k,b let

PX = 1
n

(X,X) and PX = 1
n

(X,X) . (21)

Let X, Y ∈ Vn,k,b with X 6 Y . By the definition of the ordering and in view of (20),

fa(Y )− fa(X) 6 |Vn,k(PXPY P̂Y P̂X)| .

Thus we have to prove that

|Vn,k(PXPY P̂Y P̂X)| . c1(β, k)nk . (22)

Note that −−−−→
BiBi+1 = −−−−→CiCi+1 = (β, β) . (23)

Since X and Y are adjacent we have by Lemma 4, Y −X 6 b 6 βn. Let

P ′ =
( 1
n
X + β,

1
n
X + β

)
. (24)
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C0 = (0, 0) (1, 0)

(0, 1) B3 = (1, 1)

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

E0

D3

PX

P
′

P̂X

P̂
′

Figure 5: Illustration of (25), where PX ∈ CiBi+1 for some i.

Then
µ(PXPY P̂Y P̂X) 6 µ(PXP ′P̂ ′P̂X) .

By Corollaries 16 and 17 we get for all possible i,

µ(PXP ′P̂ ′P̂X) = µ(BiBi+1Di+1Di) = µ(CiCi+1Ei+1Ei)
= µ(BiCiEiDi) + µ(CiBi+1Di+1Ei)
= c1(β, k) .

(25)

An illustration of this fact can be found in Figures 5 and 6. Both red quadrangles have
the same measure by Corollary 16 and the intercept theorem.
By Corollary 14,

|Vn,k(PXPY P̂Y P̂X)| . (c1(β, k))nk ,

and we get (22).

Case b) r > q−1
q2+q+1 .

For this case, we use an ordering similar to Case a), but with different polygons, due to
the different location of their defining points. Let A0 = (0, q(β− r)), Aq+1 = ((q+ 1)r, 1))
and I = (0, 1). Note that the points Ai, i = 0, . . . , q + 1, lie on the line gy=x+q(β−r). We
define the total order 6 as follows:

Vn,k,b =Vn,k(C0B1A1G1G0A0 \ (A1B1 ∪ A1G1))⊕ Vn,k(A1B1C1 \ A1C1)
⊕ Vn,k(C1B2A2G2G1A1 \ (A2B2 ∪ A2G2))⊕ · · ·

the electronic journal of combinatorics 25(4) (2018), #P4.49 23



C0 = (0, 0) (1, 0)

(0, 1) B3 = (1, 1)

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

E0

D3

PX

P
′P̂X

P̂
′

Figure 6: Illustration of (25), where PX ∈ BiCi for some i.

⊕ Vn,k(Cq−1BqAqGqGq−1Aq−1 \ (AqBq ∪ AqGq))
⊕ Vn,k(AqBqCq \ AqCq)⊕ Vn,k(CqBq+1Gq+1GqAq) .

We still have to define the ordering of the elements of Vn,k(CiBi+1Ai+1Gi+1 GiAi), i =
0, . . . , q, and of Vn,k(AiBiCi), i = 1, . . . , q (again, we may allow the complete boundary).
If (X,X) = (Y , Y ), we set in all cases X 6i Y if X 6lex Y . Thus let (X,X) 6= (Y , Y ).
First we discuss Vn,k(CiBi+1Ai+1Gi+1GiAi). We divide the hexagon CiBi+1 Ai+1Gi+1GiAi
into two quadrangles CiBi+1Ai+1Ai and AiAi+1Gi+1Gi, define the corresponding orderings
for both quadrangles and then explain how they are combined.
The definition of the ordering of Vn,k(CiBi+1Ai+1Ai) is similar to Vn,k(CiBi+1 Di+1Ei) of
Case a), i.e., for X, Y ∈ Vn,k(CiBi+1Ai+1Ai) and (X,X) 6= (Y , Y ) we set

X 6i Y if ((1− i/q)X + iX/q,−X +X) 6lex ((1− i/q)Y + iY /q,−Y + Y ) .

Concerning Vn,k(AiAi+1Gi+1Gi) we work for X ∈ Vn,k(AiAi+1Gi+1Gi) with polar coordi-
nates ϕi(X) and ri(X) of points 1

n
(X,X) in the coordinate system with origin I and x-axis

in the direction of −→IAi and arbitrary, but fixed unit length. Similarly to Vn,k(BiCiEiDi)
in Case a), the ordering is a lexicographic ordering with respect to the reflected polar
coordinates, i.e., for X, Y ∈ Vn,k(AiAi+1Gi+1Gi) and (X,X) 6= (Y , Y ) we set

X 6i Y if (ϕi(X),−ri(X)) 6lex (ϕi(Y ),−ri(Y )) .

For a point P ∈ CiBi+1Ai+1Ai let P̃ be the intersection point of the line gy=x+q(β−r)
with the line through P that is parallel to CiAi. If, in particular, P = 1

n
(X,X) with

the electronic journal of combinatorics 25(4) (2018), #P4.49 24



X ∈ Vn,k(CiBi+1Ai+1Ai), then let ϕ̃(X) be the angular coordinate of P̃ in the coordinate
system introduced for Vn,k(AiAi+1Gi+1Gi).
The combination of the two orderings is as follows: Let X ∈ Vn,k(CiBi+1 Ai+1Ai) and
Y ∈ Vn,k(AiAi+1Gi+1Gi) and (X,X) 6= (Y , Y ). We set

X 6i Y if ϕ̃i(X) 6 ϕi(Y ) .

Finally, we discuss Vn,k(AiBiCi). Here the ordering is a lexicographic ordering of the
reflected polar coordinates in the coordinate system with origin Ai and x-axis in the
direction of −−→AiBi and arbitrary, but fixed unit length.
The whole ordering is illustrated in Figure 7.

C0 = (0, 0) (1, 0)

I = (0, 1)
B3 = (1, 1)

A1

B1

C1

G1

A2

B2

C2

G2

G0

G3

A0

A3

Figure 7: Schematic illustration of the ordering for Case b).

Lemma 22. Let fb be the numbering for Case b). Then

Bfb(Gn,k,b) . (c2(β, k) + c3(β, k))nk ,

with b = bβnc as n→∞.

Proof. Let P = (ξ, ξ) be any point on the segment C0Bq+1, i.e., 0 6 ξ 6 1. With P

we associate a new point P̂ as follows: If P ∈ CiBi+1 for some i, i.e., P belongs to the
quadrangle CiBi+1Ai+1Ai, then we already defined P̃ . The point P̂ is the intersection
point of the line gy=x+β with the line through P̃ and I. If P ∈ BiCi for some i, then let P̂
be the intersection point of the line gy=x+β with the line through I and Ai, see Figure 8.
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C0 = (0, 0) (1, 0)

I = (0, 1)
B3 = (1, 1)

G1 = P̂2

G2

A1

B1

C1

A2

B2

C2

G0

G3

A0

A3

P2

P1

P̃1
P̂1

Figure 8: Important points for the upper bound for Case b).

For X ∈ Vn,k,b we define PX and PX as in (21) and, analogously to Case a), have to prove
that for n→∞

|Vn,k(PXPY P̂Y P̂X)| . (c2(β, k) + c3(β, k))nk . (26)
We define P ′ as in (24). With the same arguments as for Case a) it is sufficient to prove
that

µ(PXP ′P̂ ′P̂X) = c2(β, k) + c3(β, k) .
Using Lemma 17, one can verify that for all possible i,

µ(PXP ′P̂ ′P̂X) = µ(BiBi+1Ai+1Gi+1GiAi) = µ(CiCi+1Ai+1Gi+1GiAi)
= µ(FiFi+1Gi+1Gi) + µ(Ai+1Fi+1Ci+1)− µ(AiFiCi)
= c2(β, k) + c3(β, k) .

(27)

An illustration of this fact can be found in Figures 9 and 10.

Now we prove the upper bounds in the general case b ∼ βn. As a tool, we need the
following relation between c2(β, k) + c3(β, k) and c1(β, k) on the set with the remainder
r = 0, i.e., on

M := {β ∈ (0, 1) : ∃q ∈ N \ {0, 1} such that 1 = qβ} .

Lemma 23. We have for all β ∈M

lim
β′↘β

(c2(β′, k) + c3(β′, k)) = c1(β, k) .
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C0 = F0 = (0, 0) (1, 0)

I = (0, 1)
B3 = F3 = (1, 1)

G1 = P̂2

G2

A1

B1

C1
F1

A2

B2

C2

F2

G0

G3

A0

A3

PX

P
′P̂X

P̂
′

Figure 9: Illustration of (27), where PX ∈ CiBi+1 for some i. Both red and both blue
quadrangles have the same measure by Corollary 16 and the intercept theorem.

Proof. Let β ∈M . Then 1 = qβ for some q > 2. Further let β′ > β with 1 = (q−1)β′+r′

and r′ > (q−1)−1
(q−1)2+(q−1)−1 . We consider r′ = 1− (q − 1)β′ as a function of β′. Then

lim
β′↘β

r′ = β

and hence
lim
β′↘β

c3(β′, k) = lim
β′↘β

(β′ − r′)k
((q − 1) + 1)k! (q − 1)k−1 = 0 .

Moreover

lim
β′↘β

c2(β′, k) = lim
β′↘β

(β′)k−1

((q − 1) + 1)k! (k − (k − 1)β′) = lim
β′↘β

(β′)k
qk!

(
k

β′
− (k − 1)

)

= βk

qk!

(
k

β
− (k − 1)

)
= βk

k!

(
k − k − 1

q

)
= c1(β, k) .

The sum of these limits yields the assertion.

The next corollary settles Case a).

Corollary 24. Let k > 2 be an integer, b ∼ βn for n→∞ and 1 = qβ+r with a positive
integer q and let 0 6 r 6 q−1

q2+q−1 . Then

B(Gn,k,b) . c1(β, k)nk .
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C0 = (0, 0) (1, 0)

I = (0, 1)
B3 = (1, 1)

G1 = P̂X

G2 = P̂
′

A1

B1

C1

A2

B2

C2

G0

G3

A0

A3

PX

P
′

Figure 10: Illustration of (27), where PX ∈ BiCi for some i. Both red quadrangles have
the same measure by Corollary 16.

Proof. First let r > 0. For 0 < ε < r
q

let β′ = β + ε, b′ = bβ′nc. Then r′ = 1 − qβ′ > 0
and with Lemma 21 we get

B(Gn,k,b′) . (c1(β + ε, k))nk .
If n sufficiently large, then b 6 b′ and (1) implies

B(Gn,k,b) 6 B(Gn,k,b′) . (c1(β + ε, k))nk .
With ε→ 0 and the continuity of c1 as a function of β the assertion follows.
Now let r = 0, i.e., 1 = qβ. If q = 1, then β = 1. In this case, the assertion follows from
Lemma 18:

B(Gn,k,b) 6 |Vn,k,b| ∼ 2c2(1, k)nk = c1(1, k)nk .
Thus let q > 2. For 0 < ε < 1

q(q2−q−1) let β′ = β+ε, b′ = bβ′nc. Then r′ = 1−(q−1)β′ > 0
and (q−1)−1

(q−1)2+(q−1)−1 < r′ < β′. Note that this is Case b). Lemma 22 implies

B(Gn,k,b′) . (c2(β + ε, k) + c3(β + ε, k))nk .
If n is sufficiently large, then b 6 b′ and (1) implies

B(Gn,k,b) 6 B(Gn,k,b′) . (c2(β + ε, k) + c3(β + ε, k))nk .
With Lemma 23 and ε→ 0 we get

B(Gn,k,b) . c1(β, k)nk .
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The last corollary settles Case b).

Corollary 25. Let k > 2 be an integer, b ∼ βn for n→∞, let 1 = qβ+ r with a positive
integer q and let q−1

q2+q−1 < r < β. Then

B(Gn,k,b) . (c2(β, k) + c3(β, k))nk .

Proof. For 0 < ε < 1
q
(r − q−1

q2+q−1) let β′ = β + ε, b′ = bβ′nc. Then r′ = 1− qβ′ > q−1
q2+q−1

and from Lemma 22 we get

B(Gn,k,b′) . (c2(β + ε, k) + c3(β + ε, k))nk .

If n is sufficiently large, then b 6 b′ and (1) implies

B(Gn,k,b) 6 B(Gn,k,b′) . (c2(β + ε, k) + c3(β + ε, k))nk .

With ε→ 0 and the continuity of c2 and c3 as functions of β the assertion follows.

11 Open problems

We formulate the following conjecture in form of a problem because we are rather con-
vinced that it is correct.

Problem 26. Prove that the ordering for Case b) presented in Section 10 and illustrated
in Figure 7 defines an asymptotically optimal bandwidth numbering.

A larger program is formulated in the second problem:

Problem 27. Find and study other interesting graph classes that allow a reduction to
the unit square for the asymptotics and lead to interesting and nontrivial orderings on
the unit square.
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