
Boxicity, poset dimension, and excluded minors

Louis Esperet∗

Laboratoire G-SCOP
CNRS, Univ. Grenoble Alpes

Grenoble, France

louis.esperet@grenoble-inp.fr

Veit Wiechert
Institut für Mathematik

Technische Universität Berlin
Berlin, Germany

Submitted: Apr 12, 2018; Accepted: Nov 27, 2018; Published: Dec 21, 2018

c©The authors.

Abstract

In this short note, we relate the boxicity of graphs (and the dimension of posets)
with their generalized coloring parameters. In particular, together with known
estimates, our results imply that any graph with no Kt-minor can be represented
as the intersection of O(t2 log t) interval graphs (improving the previous bound of
O(t4)), and as the intersection of 15

2 t2 circular-arc graphs.

Mathematics Subject Classifications: 05C15, 05C83, 06A07

1 Introduction

The intersection G1∩· · ·∩Gk of k graphs G1, . . . , Gk defined on the same vertex set V , is
the graph (V,E1∩ . . .∩Ek), where Ei (1 6 i 6 k) denotes the edge set of Gi. The boxicity
box(G) of a graph G, introduced by Roberts [19], is defined as the smallest k such that
G is the intersection of k interval graphs.

Scheinerman proved that outerplanar graphs have boxicity at most two [20] and
Thomassen proved that planar graphs have boxicity at most three [24]. Outerplanar
graphs have no K4-minor and planar graphs have no K5-minor, so a natural question is
how these two results extend to graphs with no Kt-minor for t > 6.

It was proved in [6] that if a graph has acyclic chromatic number at most k, then
its boxicity is at most k(k − 1). Using the fact that Kt-minor-free graphs have acyclic
chromatic number at most O(t2) [10], it implies that graphs with no Kt-minor have
boxicity O(t4). On the other hand, it was noted in [5] that a result of Adiga, Bhowmick
and Chandran [1] (deduced from a result of Erdős, Kierstead and Trotter [4]) implies the
existence of graphs with no Kt-minor and with boxicity Ω(t

√
log t).

∗Partially supported by ANR Project GATO (anr-16-ce40-0009-01), and LabEx PERSYVAL-Lab
(anr-11-labx-0025).
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In this note, we relate the boxicity of graphs with their generalized coloring numbers
(see the next section for a precise definition). Using this connection together with earlier
results, we prove the following result.

Theorem 1. There is a constant C > 0 such that every Kt-minor-free graph has boxicity
at most Ct2 log t.

Our technique can be slightly refined (and the bound can be slightly improved) if
instead of considering boxicity we consider a variant, in which we seek to represent graphs
as the intersection of circular-arc graphs (instead of interval graphs as in the definition of
boxicity).

Theorem 2. If G has no Kt-minor, then G can be represented as the intersection of at
most 15

2
t2 circular-arc graphs.

The dimension of a poset P , denoted by dim(P), is the minimum number of linear
orders whose intersection is exactly P . Adiga, Bhowmick and Chandran [1] discovered a
nice connection between the boxicity of graphs and the dimension of posets, which has
the following consequence: for any poset P with comparability graph GP , dim(P) 6
2box(GP). In particular, our main result implies the following.

Theorem 3. There is a constant C > 0 such that if P is a poset whose comparability
graph GP has no Kt-minor, then dim(P) 6 Ct2 log t.

It should be noted that while Theorem 1 directly implies Theorem 3 (using the result
of [1] mentioned above), deducing Theorem 1 from Theorem 3 does not look as straight-
forward. Note also that a direct proof of Theorem 3 can be obtained along the same lines
as that of Theorem 1 (see [25]).

Our result is based on a connection between the boxicity of graphs and their weak
2-coloring number (defined in the next section). Thus our result can also be seen as
a connection between the dimension of posets and the weak 2-coloring number of their
comparability graphs. Interestingly, similar connections between the dimension of posets
and weak colorings of their cover graphs have recently been discovered. The cover graph
of a poset P can be seen as a minimal spanning subgraph of the comparability graph
GP of P , from which GP can be recovered via transitivity. In particular, the cover graph
of P can be much sparser than the comparability graph of P (for a chain, the first is
a path while the second is a complete graph). However, for posets of height two, the
comparability graph and the cover graph coincide.

It was proved by Joret, Micek, Ossona de Mendez and Wiechert [12] that if P is a
poset of height at most h, and the cover graph of P has weak (3h−3)-coloring number at
most k, then dim(P ) 6 4k. For posets P of height h = 2, this implies that the dimension
is at most 4k, where k is the weak 3-coloring number of the comparability graph of P .
This will be significantly improved in Section 2 (see Theorem 4).

The adjacency poset of a graph G = (V,E), introduced by Felsner and Trotter [9], is
the poset (W,6) with W = V ∪V ′, where V ′ is a disjoint copy of V , and such that u 6 v
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if and only if u = v, or u ∈ V and v ∈ V ′ and u, v correspond to adjacent vertices of G.
It was proved in [6] that for any graph G, the dimension of the adjacency poset of G is at
most 2 box(G) + χ(G) + 4, where χ(G) is the chromatic number of G. Since graphs with
no Kt minor have chromatic number O(t

√
log t) [15, 23], this implies that the dimension

of the adjacency poset of any graph with no Kt-minor is O(t2 log t).

2 Weak coloring

Let G be a graph and let Π(G) denote the set of linear orders on V (G). Fix some linear
order π ∈ Π(G) for the moment. We write x <π y if x is smaller than y in π, and we
write x 6π y if x = y or x <π y. For a set S of vertices, x 6π S means that x 6π y for
every vertex y ∈ S. When π is clear from the context, we omit the subscript π and write
< and 6 instead of <π and 6π.

For an integer r > 0, we say that a vertex u is weakly r-reachable from v in G if there
is a path P of length (number of edges) at most r between u and v, such that u 6π P .
In particular, u is weakly 2-reachable from v if u 6π v, and either u = v, or u and v are
adjacent, or u and v have a common neighbor w with u <π w.

The weak r-coloring number of a graph G, denoted by wcolr(G), is the minimum (over
all linear orders π ∈ Π(G)) of the maximum (over all vertices v of G) of the number of
vertices that are weakly r-reachable from v with respect to π. For more background on
weak coloring numbers, the reader is referred to [18].

In this section we will consider the following slight variant of weak coloring: let
wcol∗r(G) be the minimum k such that for some linear order π ∈ Π(G), there exists a
coloring of the vertices of G such that for any vertex v of G, all the vertices distinct
from v that are weakly r-reachable from v have a color that is distinct from that of v.
Note that the greedy algorithm trivially shows that for any graph G and integer r > 0,
wcol∗r(G) 6 wcolr(G).

There is an interesting connection between wcol∗2(G) and the star-chromatic number
χs(G) of G, which is defined as the minimum number of colors in a proper coloring of
the vertices of G, such that any 4-vertex path contains at least 3 distinct colors. It was
observed in [17] that χs(G) can be equivalently defined as the minimum number of colors
in a coloring of some orientation of G, such that any two vertices are required to have
distinct colors if they are connected by an edge, a directed 2-edge path, or a 2-edge-
path where the two edges are directed toward the ends of the paths. An anonymous
referee observed that if we add the constraint that the orientation of G is acyclic, the
corresponding graph parameter is precisely wcol∗2(G).

It is known that there exist graphs G of unbounded boxicity with wcol1(G) 6 2 [1].
We now prove that the boxicity is bounded by a linear function of the weak 2-coloring
number.

Theorem 4. For any graph G, box(G) 6 2 wcol∗2(G).

Proof. Let G be a graph on n vertices and let c := wcol∗2(G). By definition, there exist a
linear order π on V (G) and a vertex coloring φ with colors from the set {1, . . . , c}, such
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that whenever a vertex u is weakly 2-reachable from another vertex v with respect to π,
then φ(u) 6= φ(v).

We aim to show that G is the intersection of 2c interval graphs I1, . . . , I2c. We associate
to each color i ∈ [c] the two interval graphs Ii and Ii+c. Fix color i for the moment. We
explicitly define the intervals representing the vertices of V (G) in Ii and Ii+c, respectively.
Consider the vertices v1, . . . , v` that received color i by φ. By relabelling the vertices if
needed, we may assume that v1 < · · · < v` holds in π.

We start with Ii. Here, we map vj (1 6 j 6 `) to the point {j}; and for every vertex
u that is not colored with i, we consider two cases: if u has no neighbor colored i we map
u to the point {n}, and otherwise we consider the minimal k (1 6 k 6 `) such that u is
adjacent to vk, and then we map u to the interval [k, n]. Notice that Ii is a supergraph of
G.

We now proceed with Ii+c. Here, we reverse the order of the vertices with color i, that
is, we map vj (1 6 j 6 `) to the point {` − j + 1}; and for every vertex u not colored
with i, we again map u to the point {n} if u has no neighbor colored i, and otherwise we
consider the maximal k′ (1 6 k′ 6 `) such that u is adjacent to vk′ , and then we map
u to the interval [` − k′ + 1, n]. Notice that Ii+c is also a supergraph of G. In Figure 1
the two interval graphs Ii and Ii+c are illustrated by their induced box representation in
dimensions i and i+ c.

uv1

vk

vk′

v`

`

1

1 k k′ ` n

n

Ii+c

Ii

Figure 1: Illustration of Ii and Ii+c as the corresponding box representation. Vertices with
color i are mapped to the red points. Projections onto the two axis yield the intervals
representing the vertices.

Next, we show that G is the intersection of I1, . . . , I2c. Since all involved interval
graphs are supergraphs of G, we only need to show that for each pair of distinct non-
adjacent vertices u, v ∈ V (G) there is an interval graph Ij (1 6 j 6 2c) in which the
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two vertices are mapped to disjoint intervals. We may assume without loss of generality
that u < v in π. If u and v have the same color i, then their intervals are distinct points
in Ii (and also in Ii+c) and thus disjoint. So suppose that u and v have distinct colors i
and j, respectively. We assume for a contradiction that the intervals of u and v intersect
in every interval graph I1, . . . , I2c. This holds in particular in Ii and Ii+c (where u is
mapped to a point and v to an interval containing point {n}); and from this we deduce
that there are distinct vertices x and y with color i such that v is adjacent to both of
them and x < u < y in π. However, since we assumed that u < v in π, this implies that
x < u < y < v or x < u < v < y. It follows that x is weakly 2-reachable from y with
respect to π, as is witnessed by the path x, v, y. This is a contradiction to the properties
of the coloring φ.

We conclude that G is indeed the intersection of I1, . . . , I2c, and thus box(G) 6 2c.

It is known that planar graphs have weak 2-coloring number (and thus wcol∗2) at most
30 [10], so this implies that their boxicity is at most 60 (this is significantly worse than
the result of Thomassen [24], who proved that planar graphs have boxicity at most 3).
Given two integers s and t, let K∗s,t denote the complete join of Ks and Kt. Using recent
bounds on weak 2-coloring numbers by Van den Heuvel and Wood (Proposition 28 in [11]),
Theorem 4 directly implies the following.

Theorem 5. If G does not contain K∗s,t as a minor, then box(G) 6 5s3(t− 1).

In particular, when s is a constant, the boxicity is linear in t. The result also directly
implies that the boxicity of Kt-minor-free graphs is O(t3). This is also the order of
magnitude of the best known bound on the weak 2-coloring number of Kt-minor-free
graphs. To improve the bound on the boxicity of Kt-minor-free graphs, we will now use
wcol∗2 as an alternative to wcol2. We believe that considering wcol∗r instead of wcolr might
yield to significant improvements in other problems as well.

It is proven in [17] that if every minor of a graph G has average degree at most d, then
the star-chromatic number χs(G) is O(d2). A closer look at the proof contained in the
paper reveals that this bound also holds for wcol∗2(G). We will indeed prove that a slightly
stronger statement holds. Given a graph H, a subdivision of H is a graph obtained from
H by subdividing some of the edges of H (i.e. replacing them by paths). The subdivision
is said to be an (6 `)-subdivision if each edge is subdivided at most ` times (i.e. replaced

by a path on at most ` + 1 edges). Given a half-integer r > 0, we denote by ∇̃r(G) the
maximum average degree of a graph H such that G contains an (6 2r)-subdivision of H
as a subgraph. Given an integer r > 0, let ∇r(G) be the maximum average degree of a
graph that can be obtained from G by contracting disjoint balls of radius at most r. For
more on these notions and their connections with generalized coloring parameters, the
reader is referred to the monograph [18].

We now prove the following (the first part of the result is a simple rewriting of the
original argument of [17], while the second part was suggested to us by Sebastian Siebertz).

Theorem 6. For any graph G,

wcol∗2(G) 6 3∇0(G)2 + 1 + min(∇0(G)∇1(G),∇0(G)2∇̃1/2(G)).
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Proof. Any subgraph of G has average degree at most k = ∇0(G) and in particular
wcol1(G) 6 k (i.e. G is k-degenerate). Let π ∈ Π(G) be an order such that for any
vertex u, at most k neighbors v of u are such that v <π u (in the remainder of the proof,
we write < instead of <π whenever there is no risk of confusion). Let H be obtained
from G by adding an edge between u and w, for each u < v < w such that uv and
vw are edges of G, and by adding an edge between x and y for each x < y < z such
that xz and yz are edges of G. Observe that wcol∗2(G) 6 χ(H), where χ(H) denotes
the chromatic number of H. Thus, it is sufficient to prove that H is c-colorable, with
c = 3k2 + 1 + min(k∇1(G), k2∇̃1/2(G)). In order to do so, we will indeed prove that any
subgraph of H has average degree at most c−1, which implies that H is (c−1)-degenerate
and thus c-colorable. Consider a subset A of vertices of G. Each edge uv of H[A], with
u < v, corresponds to (at least) one of these cases:

• uv is an edge of G (there are at most k|A|/2 such edges, since all subgraphs of G
have average degree at most k).

• there is a vertex x in G (not necessarily in A) with u < x < v, such that ux and xv
are edges of G (there are at most k2|A| such edges, by definition of π).

• there is a vertex w ∈ A with u < v < w such that uw and vw are edges of G
(there are at most |A|k(k− 1)/2 such edges, since for each w in A there are at most
k(k − 1)/2 pairs of neighbors of w in G preceding it in π).

• there is a vertex w /∈ A with u < v < w such that uw and vw are edges of G (in
this case let us say that the edge uv of H[A] is special).

It follows from the observations above that there are at most 3k2|A|/2 non-special
edges in H[A]. We now bound the number of special edges uv of H[A] in two different
ways. For each vertex x 6∈ A, consider the (at most k) edges yx of G with y ∈ A and
y < x, and label them with distinct integers from the set {1, . . . , k}. For each 1 6 i 6 k,
observe that the edges labelled i form disjoint unions of stars, centered in vertices of A.
For 1 6 i 6 k, let Gi be the graph obtained from G by contracting each of these stars
labelled i into a single vertex. Note that each special edge of H[A] corresponds to an edge
in at least one of the graphs Gi[A]. Since each Gi[A] was obtained from G by contracting
disjoint balls of radius at most 1, each Gi[A] contains at most ∇1(G)|A|/2 edges, and
thus H[A] has at most k∇1(G)|A|/2 special edges. It follows that H has average degree
at most 3k2 + k∇1(G), as desired.

For each pair i, j with 1 6 i < j 6 k, consider the graph Gij with vertex set A, such
that any two vertices u, v ∈ A are connected by an edge if in G, u and v are connected by
a path on 2 edges, one labelled i and the other labelled j. Observe that each special edge
of H[A] is an edge of some Gij, and G contains a 1-subdivision of each Gij. It follows

that H[A] has at most k2∇̃1/2(G)|A|/2 special edges, and thus average degree at most

3k2 + k2∇̃1/2(G), as desired.
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Since graphs with no Kt-minor have average degree O(t
√

log t) [15, 23], it follows
that these graphs have wcol∗2(G) = O(t2 log t). We thus obtain Theorem 1 as a direct
consequence of Theorem 4.

A classic result [3, 14] states that graphs with no subdivision of Kt have average degree

O(t2). So, for these graphs ∇0 and ∇̃1/2 are of order O(t2). An immediate consequence
is the following.

Corollary 7. There is a constant C > 0 such that if G has no subdivision of Kt, then
box(G) 6 Ct6.

3 Strong coloring and circular-arc graphs

The purpose of this section is to prove that if we consider a slightly larger class of graphs
(circular-arc graphs instead of interval graphs), we can gain a multiplicative factor of log t
in Theorem 1.

A circular interval is an interval of the unit circle, and a circular-arc graph is the
intersection graph of a family of circular intervals. Equivalently, we can define a circular
interval of R as being either an interval of R, or the (closed) complement of an interval
of R. Note that this defines the same intersection graphs, and we will use whatever
formulation is the most convenient, depending on the situation.

The circular dimension of a graph G, denoted by dim◦(G), is the minimum integer
k such that G can be represented as the intersection of k circular-arc graphs. This
parameter was introduced by Feinberg [7]. Since every interval graph is a circular-arc
graph, dim◦(G) 6 box(G) for any graph G.

Let G be a graph, let π ∈ Π(G), and let r > 0 be an integer. Following [13], we
say that a vertex u is strongly r-reachable from v if there is a path P of length at most
r between u and v, such that u 6π P and v 6π P − u. In particular, u is strongly
2-reachable from v if u 6π v, and either u = v, or u and v are adjacent, or u and v have
a common neighbor w with u <π v <π w.

The strong r-coloring number of a graph G, introduced in [13] and denoted by colr(G),
is the minimum (over all linear orders π ∈ Π(G)) of the maximum (over all vertices v of
G) of the number of vertices that are strongly r-reachable from v.

Theorem 8. For any graph G, dim◦(G) 6 3col2(G).

Proof. The proof proceeds similarly as the proof of Theorem 4. Let n be the number of
vertices in G. We consider a total order π ∈ Π(G) on the vertices of G such that for any
v, at most c = col2(G) vertices are strongly 2-reachable from v. Again, any notion of
order between the vertices of G in this proof will implicitly refer to π. As before, we start
by greedily coloring G, with at most c colors, such that for any v and any vertex u 6= v
that is strongly 2-reachable from v, the colors of u and v are distinct. For each color class
1 6 i 6 c, we consider the two interval graphs Ii and Ii+c of the proof of Theorem 4, and
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a circular-arc graph Ii+2c defined as follows. Let v1 < . . . < v` be the vertices colored i
in G. Again, each vertex vj (1 6 j 6 `) is mapped to the point {j}. Each vertex v not
colored i is mapped (1) to the point {n} if v has no neighbor colored i, (2) to the interval
[j, n] if vj is the unique neighbor of v colored i, and otherwise (3) to the complement of
the open interval (j, k), where vj and vk are the smallest and second smallest neighbors
of v colored i (with respect to π). An example of construction of Ii+2c is illustrated in
Figure 2.

w

v1 vj vk v`

1 j k ` n

v

u

v1 vk v`vj

u v w

Figure 2: Left: A graph, with the vertices colored i depicted in red; Right: The corre-
sponding circular-arc graph Ii+2c.

We now prove that G is precisely the intersection of the graphs Ii for 1 6 i 6 3c,
which will show that G is the intersection of at most 3c = 3col2(G) circular-arc graphs.
We already proved in the previous section that for each 1 6 i 6 2c, the graphs Ii are
supergraphs of G. We prove that it is also the case for the graphs Ii+2c with 1 6 i 6 c.
Observe that in the graph Ii+2c, any vertex v not colored i is adjacent to all the vertices
not colored i, and to all its neighbors in G that are colored i. Since there is no egde
between two vertices colored i in G, it follows that every edge uv in G is also an edge of
Ii+2c.

Hence, in order to prove that G is precisely the intersection of the graphs Ii for
1 6 i 6 3c, it is sufficient to prove that each non-edge uv of G is also a non-edge in a
graph Ii for some 1 6 i 6 3c. Consider two non-adjacent vertices u < v in G. We can
assume that u and v have distinct colors i and j, respectively (otherwise uv is a non-edge
in the three graphs Ii, Ii+c, and Ii+2c corresponding to their common color class). If v
has no neighbor colored i in G, then v has no neighbor colored i in each of the three
graphs Ii, Ii+c, and Ii+2c, and thus u and v are non-adjacent in each of these graphs. If v
has a unique neighbor colored i in G, call it w (it is different from u, since u and v are
non-adjacent), then it follows from the construction of Ii and Ii+c that w is the unique
neighbor of v colored i in Ii∩Ii+c, and thus u and v are non-adjacent in Ii∩Ii+c. So we can
assume that v has at least two neighbors colored i. As in the proof of Theorem 4 (using
the definition of Ii and Ii+c) we can assume that v has two neighbors x and y colored i,
such that x < u < y. Take x and y minimal (with respect to π) with this property.

By the definition of the strong 2-coloring number, we can assume that at most one
neighbor of v colored i precedes v in π (since otherwise the smaller neighbor would be
strongly 2-reachable from the larger neighbor, via v, which would contradict the fact that
the two neighbors have the same color). Hence, it follows that x and y are respectively
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the smallest and second smallest neighbors of v colored i. But since x < u < y and u is
colored i, it follows from the definition of Ii+3c that u and v are non-adjacent in Ii+3c, as
desired.

The following result was recently proved by Van den Heuvel, Ossona de Mendez,
Quiroz, Rabinovich and Siebertz [10].

Theorem 9. If G has no Kt-minor, then col2(G) 6 5
2
(t− 1)(t− 2).

Together with Theorem 8, this immediately implies Theorem 2.

The log t factor between Theorems 1 and 2 raises some interesting questions about
the parameter dim◦. It is known that every n-vertex graph has boxicity at most n/2,
and equality holds only for the complete graph Kn (n even) minus a perfect matching.
However this graph is a circular-arc graph (see Figure 3) and thus has circular dimension
equal to 1.

Figure 3: A circular-arc graph representation of the complete graph K10 minus a perfect
matching.

Question 10. What is the maximum circular dimension of a graph on n vertices?

It was observed in [22] that there are 2Θ(bn logn) n-vertex graphs of circular dimension
at most b, and thus almost all n-vertex graphs have circular dimension Ω(n/ log n).

It is known that every graph of maximum degree ∆ has boxicity O(∆ log1+o(1) ∆) [21],
while there are graphs of maximum degree ∆ with boxicity Ω(∆ log ∆) [1].

Question 11. What is the maximum circular dimension of a graph of maximum degree
∆?

Since there are 2Θ(∆n logn) n-vertex graphs of maximum degree ∆, it follows that almost
all graphs of maximum degree ∆ have circular dimension Ω(∆). On the other hand, it
was proved by Aravind and Subramanian [2] that every graph of maximum degree ∆ has
circular dimension O(∆ log ∆/ log log ∆).
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