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Abstract

The Kneser graph KGn,k is the graph whose vertices are the k-element subsets
of [n], with two vertices adjacent if and only if the corresponding sets are disjoint.
A famous result due to Lovász states that the chromatic number of KGn,k is equal
to n − 2k + 2. In this paper we discuss the chromatic number of random Kneser
graphs and hypergraphs. It was studied in two recent papers, one due to Kupavskii,
who proposed the problem and studied the graph case, and the more recent one due
to Alishahi and Hajiabolhassan. The authors of the latter paper had extended the
result of Kupavskii to the case of general Kneser hypergraphs. Moreover, they have
improved the bounds of Kupavskii in the graph case for many values of parameters.

In the present paper we present a purely combinatorial approach to the problem
based on blow-ups of graphs, which gives much better bounds on the chromatic
number of random Kneser and Schrijver graphs and Kneser hypergraphs. This
allows us to improve all known results on the topic. The most interesting improve-
ments are obtained in the case of r-uniform Kneser hypergraphs with r > 3, where
we managed to replace certain polynomial dependencies of the parameters by the
logarithmic ones.

Mathematics Subject Classifications: 05D40, 05C80, 05C15

1 Introduction

Kneser graphs and hypergraphs are very popular and well-studied objects in combi-
natorics. Fix some positive integers n, k, r, where r > 2. The set of vertices of the Kneser
r-graph KGr

n,k is the set of all k-element subsets of [n], denoted by
(
[n]
k

)
. The set of edges

of KGr
n,k consists of all r-tuples of pairwise disjoint subsets. Thus, KGr

n,k is non-empty

∗Research supported by the grant RNF 16-11-10014.
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only if n > kr. Substituting k = 1 in the definition gives the complete r-graph on n ver-
tices. When dealing with the graph case r = 2, we omit the superscript in the notation
of Kneser graphs. For a hypergraph H we denote by χ(H) its chromatic number, that is,
the minimum number χ such that there exists a coloring of vertices H into χ colors that
leaves no edge of H monochromatic.

Naturally, Kneser graphs were studied first. They earned their name from M. Kneser,
who investigated them in the paper [22]. He showed that χ(KGn,k) 6 n − 2k + 2 and
conjectured that this bound is tight. This conjecture (or rather its resolution) played a
very important role in combinatorics. It was confirmed by L. Lovász [27], who, in order
to resolve it, introduced tools from algebraic topology to combinatorics.

Once [27] appeared, there was a burst of activity around Kneser graphs. I. Bárány
[5] gave an elegant alternative proof of Lovász’ result, and several authors studied the
chromatic number of Kneser (disjointness) graphs of arbitrary set systems. In particular,
there were results due to V. Dol’nikov [14] and A. Schrijver [34].

In [34], Schrijver studied induced subgraphs SGn,k of KGn,k constructed on the fam-
ily of all k-element stable sets of the cycle Cn. In other words, the underlying family
contains all k-element sets that do not have two cyclically consecutive elements of [n].
Schrijver noticed that a slight modification of Bárány’s proof yields a stronger statement:
χ(SGn,k) = n − 2k + 2. In the harder part of the paper, he also showed that SGn,k is a
vertex-critical subgraph of KGn,k, i.e. that any proper induced subgraph of SGn,k has
strictly smaller chromatic number.

A coloring of KGn,k in n− 2k+ 2 colors is easy to obtain: for each 1 6 i 6 n− 2k+ 1
color the sets with minimum element i into color i, and color the remaining sets, forming
the family

(
[n−2k+2,n]

k

)
, into color 0. A similar coloring for KGr

n,k gives the upper bound

χ(KGr
n,k) 6

⌈n−r(k−1)
r−1

⌉
: for 1 6 i 6 n − kr + 1 color the sets with minimum element in

[(r − 1)(j − 1) + 1, (r − 1)j] into color j, and color the sets from
(
[n−rk+2,n]

k

)
into color

0. P. Erdős [16] conjectured that this bound is sharp for all r > 2. After some partial
progress it was confirmed in full generality by N. Alon, P. Frankl, and L. Lovász [4]. The
proof again used topological tools.

Generalizing both the result of Dolnikov [14] and Alon, Frankl, and Lovasz [4], I. Kř́ıž
[23], [24] obtained the bound on the chromatic number of Kneser hypergraphs of general
set families. Later, an elegant alternative proof was obtained by J. Matoušek [29], and
some more general results with combinatorial proofs were obtained by G. Ziegler [35]. We
also refer to the amazing book written by J. Matoušek on the subject [28].

In [2], N. Alon, L. Drewnowski and T.  Luczak applied results on colorings of Kneser-
type hypergraphs for constructing certain ideals in N. The hypergraphs they considered
are called s-stable Kneser hypergraphs, and they may be seen as a generalization of Schri-
jver graphs. The underlying set family that defines the s-stable Kneser r-hypergraph
KGr, s−stable

n,k consists of all k-element subsets {i1, . . . , ik} ⊂ [n], whose consecutive ele-
ments are sufficiently far apart: if 1 6 i1 < · · · < ik 6 n, then for any j = 0, . . . , k− 1 the
elements satisfy ij+1 − ij > s, as well as i1 + n− ik > s. The case r = s = 2 corresponds
to Schrijver graphs.

In their paper, Alon, Drewnowski and  Luczak proved and applied the following result:
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χ(KGr, r−stable
n,k ) = χ(KGr

n,k) for r = 2t, t ∈ N. They have also stated explicitly the
conjecture tracing back to Ziegler’s paper [35], which says that the same equality holds
for any r. We are going to use this result of [2], and we note that it would have improved
some of the bounds in this paper, shall the conjecture be verified. A more general con-
jecture was made by F. Meunier [30]: χ(KGr, s−stable

n,k ) =
⌈n−s(k−1)

r−1

⌉
for any s > r. It was

verified in some cases, but is still wide open in general.

In fact, Kneser was not the first to ask a question concerning Kneser graphs. P. Erdős,
C. Ko, and R. Rado [17] proved that the size of the largest family of k-element subsets
of [n] with no two disjoint sets is at most

(
n−1
k−1

)
, provided that n > 2k. In terms of

KGn,k, they determined its independence number, that is, the maximum size of a subset
of vertices not containing an edge of the graph. Later, Erdős [15] asked a more general
question: what is the size of the largest family of k-element subsets of [n] with no r pair-
wise disjoint sets? This is obviously a question about the independence number of KGr

n,k,
and, unlike the question on the chromatic number, it does not have a complete solution
yet. However, the question was resolved for a wide range of parameters by P. Frankl [18]
and by Frankl and the author [21]. For some recent progress on the subject see [19], [20].

An r-uniform Kneser hypergraph of any k-uniform set system is an induced subgraph
of KGr

n,k, and thus the results on the chromatic number of induced subgraphs of KGr
n,k

belong to the class of results discussed above. Instead of restricting to a subset of vertices,
in this paper we study, what happens if we restrict to a subset of edges. The most natural
model to study is the binomial model of a random hypergraph. For a hypergraph H and
a real number p, 0 < p < 1, define the random hypergraph H(p) as follows: the set of
vertices of H(p) coincides with that of H, and the set of edges of H(p) is a subset of
the set of edges of H, with each edge from H taken independently and with probability
p. The results on random graphs and hypergraphs, roughly speaking, tell us how does a
typical subgraph of a given (hyper)graph that contains a p-fraction of edges behave with
respect to a given property. Theory of random graphs and hypergraphs is very rich in
both results and open problems, and by no means we are going to give an overview of the
field in this paper. We refer the reader to the books [3], [6] for some classical results on
the subject.

One class of questions that is particularly relevant for this paper deals with transference
results. In general, we speak of transference if a certain combinatorial result holds with
no changes in the random setting. One example of such theorem is due to B. Bollobás,
B. Narayanan and A. Raigorodskii [11]. They studied the size of maximal independent
sets in KGn,k(p), and showed that for a wide range of parameters the independence
number of KGn,k(p) is exactly the same as that of KGn,k, given by the Erdős–Ko–Rado
theorem. Later on, their result was further strengthened by J. Balogh, B. Bollobás, and
B. Narayanan [7], S. Das and T. Tran [12] and P. Devlin and J. Kahn [13].

In the paper [26], the author studied the behaviour of the chromatic number of
KGn,k(p) and SGn,k(p), showing that, compared to χ(KGn,k), it does change at most
by a small additive term in a very wide range of parameters.
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Random subgraphs of more general graphsK(n, k, l) were investigated by L. Bogolyub-
skiy, A. Gusev, M. Pyaderkin and A. Raigorodskii in [9, 10]. The vertices of K(n, k, l) are
the k-element subsets of [n], with two vertices adjacent if the corresponding sets intersect
in exactly l elements. In [8, 9, 10, 31, 32, 33] the authors obtained several results con-
cerning the independence number and the chromatic number of K(n, k, l)(p) and related
results.

In the recent paper [1], which motivated in part the present paper, M. Alishahi and
H. Hajiabolhassan generalized the results of [26] to the case of Kneser hypergraphs of
arbitrary set systems. They have also strengthened the results of [26] in the graph case.
The proofs of Alishahi and Hajiabolhassan are quite technically involved and not easy to
follow. They use topological methods to obtain their results.

In this paper we describe a purely combinatorial approach to the problem, which
allows us to significantly improve all previously known bounds on the chromatic numbers
in the most interesting cases: for random subgraphs of (complete) Kneser and Schrijver
graphs and Kneser hypergraphs. Our method may be extended to more general classes
of Kneser hypergraphs, which we discuss in Section 6. This does not, however, cover all
generalized Kneser hypergraphs, so the result of Alishahi and Hajabolhassan remains best
known in some cases.

2 The old and the new bounds

In this section we discuss both the old and the new quantitative bounds on the chro-
matic number of Kneser and Schrijver graphs and hypergraphs. We do not state the
bounds in full generality as they depend on too many parameters and thus are very diffi-
cult to interpret. We preferred clarity to generality, and instead focused on several most
interesting (in our opinion) cases. These cases were also discussed in [26] and [1], so we
can compare the results. The bounds in their full generality appear in the latter sections.

For the rest of the section, we assume that r > 2, p > 0 are fixed. Note that in the
case r = 2 we formulate our results for Schrijver graphs SGn,k(p). The same bounds hold
for Kneser graphs, since Schrijver graphs are subgraphs of Kneser graphs.

We henceforth use the notation f(n) � g(n) in a slightly unconventional way. This
inequality should be read as: there exists a sufficiently large constant C, where C =
C(r, p, k) if k is fixed, or C = C(r, p, l) if l is fixed, such that f(n) > Cg(n) for all
sufficiently large n. All logarithms with unspecified base have base e. All statements
below hold asymptotically almost surely (a.a.s.) for n→∞, and so we omit writing a.a.s.
in most statements for brevity.

Returning to the results on colorings, the author [26] proved that a.a.s.

(l = 1l = 1l = 1) χ(SGn,k)(p) > χ(KGn,k+1) = χ(KGn,k)− 2 if n− 2k �
√
n; (1)

(fixed lll) χ(SGn,k)(p) > χ(KGn,k+l) = χ(KGn,k)− 2l if l is fixed and k � n
3
2l ; (2)

(fixed kkk) χ(SGn,k)(p) > χ(KGn,k+l) = χ(KGn,k)− 2l if k is fixed and l� n
3
2k . (3)
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Note that in the last two k and l are simply interchanged in the conditions needed for the
inequality to hold. The following bounds were proven by Alishahi and Hajiabolhassan [1]:

(l = 1l = 1l = 1) χ(KGr
n,k)(p) > χ(KGr

n,k+1) if n− rk � n
r−1
r ; (4)

(fixed lll) χ(KGr
n,k)(p) > χ(KGr

n,k+l) if l is fixed and k � n
r

lr−1 log
1

lr−1 n. (5)

We do not express χ(KGr
n,k+l) in terms of χ(KGr

n,k), since the formulas are much uglier
in the hypergraph case. Note that for r = 2 the bound (4) coincides with (1), while (5)
improves on (2).

In this paper we prove the following bounds.

Theorem 1. Let p ∈ (0, 1) and r ∈ N, r > 2, be fixed.
If r = 2q for some q ∈ N then a.a.s.

(l = 1, r = 2ql = 1, r = 2ql = 1, r = 2q) χ(KGr
n,k)(p) > χ(KGr

n,k+1) if n− rk � nr/(r+1) log−1/(r+1) n. (6)

If r = 2 then a.a.s.

(fixed l, r = 2l, r = 2l, r = 2) χ(KGn,k)(p) > χ(KGn,k+l) if l is fixed and k � (n log n)1/l;
(7)

(fixed k, r = 2k, r = 2k, r = 2) χ(KGn,k)(p) > χ(KGn,k+l) if k is fixed and l� (n log n)1/k.
(8)

If r = 3 then a.a.s.

(fixed l, r = 3l, r = 3l, r = 3) χ(KG3
n,k)(p) > χ(KG3

n,k+l) if l is fixed and k � log1/(3l−4) n; (9)

(fixed k, r = 3k, r = 3k, r = 3) χ(KG3
n,k)(p) > χ(KG3

n,k+l) if k is fixed and l� log2/(6k−11) n.

(10)

If r > 3 then a.a.s.

(fixed l, r > 3l, r > 3l, r > 3) χ(KGr
n,k)(p) > χ(KGr

n,k+l) if l is fixed and k � log
1

r(l−2)−1 n; (11)

(fixed k, r > 3k, r > 3k, r > 3) χ(KGr
n,k)(p) > χ(KGr

n,k+l) if k is fixed and l� log
1

r(k−1)− 2r−1
r−1 n.

(12)

We remark that the bounds with r = 2 stated in the theorem hold for Schrijver graphs
and, more generally, for r-stable r-uniform Kneser hypergraphs, when r = 2t for some
t ∈ N.

In the graph case, we see that (6), (7), and (8) improve on (1), (2) and (3), respectively.
Our most interesting results are (9)–(12). They are much stronger than (5) and

guarantee that the chromatic number of KGr
n,k(p) drops by no more than a small additive

term for already for polylogarithmic k (this was known before for polynomial k).
One question that arises in this context is what makes the case r = 2 so different from

the case r > 2? Can one obtain a bound similar to (9)–(12) for the case r = 2?
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In the next section we present the general approach to the problem, and obtain in-
equality (6). The approach, which is more adapted to our particular problem, is presented
in Section 4. The rest of the inequalities from Theorem 1 are obtained there. In Section 5
we prove some simple upper bounds. In Section 6 we discuss some directions for further
research.

3 Basic approach

In this section we discuss the general method, proposed to us by N. Alon, along with
some of its corollaries to the case of Kneser and Schrijver graphs and hypergraphs. We
prove (6) and reprove (4) in this section.

3.1 Coloring random subgraphs of blow-ups of hypergraphs

We start with the following abstract theorem on hypergraph colorings, preceded by the
definition of the class of hypergraphs in question. For an r-uniform hypergraphH = (V,E)
and a positive integer number m consider the m-blow-up H[m] of H: H[m] = (V ′, E ′),
where V ′ := V × [m], and E ′ :=

{
{v1× i1, . . . , vr× ir} : {v1, . . . , vr} ∈ E, i1, . . . , ir ∈ [m]

}
.

Informally speaking, we replace each vertex of the original hypergraph with an m-tuple,
and each edge with a complete r-partite hypergraph with m vertices in each part.

We denote by A(H,m) the class of hypergraphs that can be obtained from H[m] by
identifying some vertices that do not belong to the same edge and do not arise from the
same vertex of H. Formally, consider the class F of functions f : V ′ → [n] for some n,
such that:

1. For any v ∈ V and i 6= j we have f(v × i) 6= f(v × j).
2. For any e ∈ E ′ and v1, v2 ∈ e we have f(v1) 6= f(v2).
3. The function f is surjective.

Then the class of hypergraphs A(H,m) is defined as follows:

A(H,m) :=
{(
f(V ′), Ef

)
: f ∈ F , Ef :=

{
{f(v1), . . . , f(vr)} : {v1, . . . , vr} ∈ E ′

}}
.

We denote by Kr[m] the complete r-partite r-uniform hypergraph with parts of size
m. For any 0 < p < 1 and a hypergraph H we define the random hypergraph H(p), which
has the same set of vertices and in which each edge from G is taken independently and
with probability p.

Theorem 2. LetH = (V,E) be an r-uniform hypergraph with χ(H) = d+1. Fix a number
m ∈ N and consider a hypergraph G ∈ A(H,m). Then for any coloring of G into d colors
there is a subhypergraph Kr[dm

d
e] ⊂ G with all vertices colored in the same color.

Moreover, for any 0 < p < 1 we have

Pr[χ(G(p)) 6 d] 6 |E|
(

m

dm/de

)r
(1− p)dm/der . (13)
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Proof. Consider a coloring of G into d colors. We construct a certain coloring of H based
on the coloring of G. For each vertex v ∈ H take its blow-up {v1, . . . , vm} in G and color
v in the most popular color among v1, . . . , vm. It is clear that at least dm

d
e of vi’s are

colored in this color.
Since χ(H) > d, there is a monochromatic edge of color κ in this coloring. In G this

edge corresponds to an r-uniform r-partite subhypergraph Kr[m]. Choosing out of each
part the vertices colored in color κ, we get the desired subhypergraph.

In view of the argument above, the event “χ(G(p)) 6 d” may occur only if one of the
subhypergraphs Kr[dm

d
e] of the type described above is empty in the random hypergraph

G(p). The number of such subhypergraphs is bounded from above by |E|
(

m
dm/de

)r
, while

the probability for each to be empty in G(p) is (1− p)dm/der . Thus, inequality (13) follows
by applying the union bound.

3.2 Numerical Corollaries for Kneser hypergraphs

For n > (k+l)r the hypergraph KGr
n,k belongs to the family A(KGr

k+l,
(
k+l
k

)
). Indeed,

to each vertex S ∈
(
[n]
k+l

)
of KGr

n,k+l we correspond the family of subsets
(
S
k

)
. Put d :=

χ(KGr
n,k+l)− 1 and

t :=
⌈(k + l

k

)
/d
⌉
. (14)

The following lemma gives the first (but not the strongest) general bound on the chromatic
number of random Kneser hypergraphs.

Lemma 3. For n > (k + l)r we a.a.s. have χ(KGr
n,k(p)) > d+ 1 if

3r
(

(k + l) log
n

k
+ t log d

)
− ptr → −∞ (15)

Proof. Remark that the number of edges in KGr
n,k+l is at most(

n

k + l

)r
6
(ne
k

)(k+l)r
.

Therefore, applying the bound (13), we get that

Pr[χ(G(p)) 6 d] 6 |E(KGr
n,k+l)|

((k+l
k

)
t

)r
(1− p)tr 6

(ne
k

)(k+l)r
(ed)rte−pt

r

6

exp
[
(k + l)r

(
1 + log

n

k

)
+ rt(1 + log d)− ptr

]
6 exp

[
3r
(

(k + l) log
n

k
+ t log d)

)
− ptr

]
.

The last expression tends to 0 by (15), which concludes the proof of the lemma.

The condition in (15) is satisfied for fixed p, r and l, provided tr−1 � log d and tr �
k log n

k
. Substituting the value of t and doing some tedious calculations (see the proofs of

the corollaries in [26] for more details), we get that the following hold a.a.s.:

(l = 1l = 1l = 1) χ(KGr
n,k)(p) > χ(KGr

n,k+1) if n− rk � n
r−1
r ; (16)

(fixed lll) χ(KGr
n,k)(p) > χ(KGr

n,k+l) if k � n
r

lr−1 log
1

lr−1 and l is fixed. (17)
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The first bound is the same as (1) and (4), while the second one is the same as the
bound (5). However, (17) is still a long way from the latter bounds in Theorem 2.

The way to improve the bound for l = 1, r = 2q is to work with r-stable Kneser
hypergraphs. As in the case of (complete) Kneser hypergraphs, we have KGr, r−stable

n,k ∈
A(KGr, r−stable

n,k+l ,
(
k+l
k

)
) and, if n− rk = o(n), it has fewer vertices and edges than KGr

n,k.

Proposition 4. The number of vertices in KGr, r−stable
n,k is at most

(
n−(r−1)(k−1)

k

)
.

Proof. The vertices of KGr, r−stable
n,k are the k-subsets {i1, . . . , ik} of [n] that satisfy ij+1−

ij > r for each j = 0, . . . , k − 1, as well as i1 + n − ik > r, provided that 1 6 i1 < · · · <
ik 6 n. Let us count the number f(n, k) of k-sets satisfying all these restrictions except
i1 + n− ik > r. This number will clearly be an upper bound for |V (KGr, r−stable

n,k )|.
It is easy to see that this quantity satisfies the following recursive formula: f(n, k) =

f(n− 1, k) + f(n− r, k− 1), as well as the condition f(r(k− 1) + 1, k) = 1. The function(
n−(r−1)(k−1)

k

)
satisfies both the recursive formula and the initial condition.

Put d := χ(KGr, r−stable
n,k+1 )− 1. From Proposition 4 we get that the number of edges in

KGr, r−stable
n,k+1 is at most(

n− (r − 1)(k − 1)

k

)r
=

(
k +O(d)

k

)r
=

(
O(n)

O(d)

)r
= eO(d log n

d
).

Thus, instead of (15) it is sufficient to show that (recall that p and r are fixed)

d log
n

d
+ t log d� tr. (18)

We have t = Θ(n
d
) (see (14)) and d = O(n − rk). Doing some routine calculations

again, we get that a.a.s.

(l = 1l = 1l = 1) χ(KGr, r−stable
n,k )(p) > χ(KGr, r−stable

n,k+1 ) if n− rk � nr/(r+1) log−1/(r+1) n.

Since for q ∈ N and r = 2q we have χ(KGr, r−stable
n,k+1 ) = χ(KGr

n,k+1), we get (6).

4 The approach refined

The crucial step in the proof of Threorem 2 is to get a monochromatic edge of KGr
n,k+l,

induced by the coloring of KGr
n,k. The main limitation of the method from the previous

section is related to this step. We have to assume that (in the worst case) among the
vertices of the m-blow-up of the monochromatic edge all colors are represented in approx-
imately the same proportion. This is why we can only guarantee the majority color class
to have size at least m

d
. On the other hand, in order to get a good bound on the probabil-

ity, we need to work with color classes of growing size. Therefore, the approach from the
previous section is bound to work only for m � d, or, in terms of Kneser hypergraphs,
for
(
k+l
k

)
� χ(KGr

n,k+l).
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In this section we are going to partially overcome the aforementioned difficulty. We
assume that n� k + l and that r > 2 is fixed for the rest of the section. Put

d := χ(KGr
n,k+l)− 1.

Note that d = n − 2k − 2l + 1 for r = 2. Fix a coloring κ of
(
[n]
k

)
in d colors. For

each subset S ⊂ [n] of size at least k, define the color of S to be the most popular color
among its subsets. We have thus defined the coloring κ′ of KGr

n,k′ for all k′ > k. Put
u := blog2

n
k+lβ
c and consider the following sequence of numbers

q0 := k+ l, qi := d2i(k+ lβ)e, where i = 1, . . . , u and β =

{
1 if r = 2
r
r−1 if r > 3.

(19)

Note that, by definition, no qi is bigger than n and that qi 6 2lβ−1qi−1 for each i ∈ [u].
The numbers qi will play the role of the sizes of subsets on which we construct our Kneser
hypergraphs. Next, for each i = 0, . . . , u, define the following two numbers:

ti :=
⌈(qi

k

)
d

⌉
, zi :=

⌈ (qi
k

)
2sqi

⌉
, where s :=

{
(2r + 1)lβ−1 if r = 2, 3;

(2r + 1)lβ−1k if r > 3.
(20)

Note that t0 is equal to t from the previous section. Both ti and zi will play the roles of
the sizes of popular colors among the k-subsets of a certain qi-element set.

The following lemma is central for this section.

Lemma 5. For any coloring κ of KGr
n,k in d colors there is a color α for which one of the

following holds.

(i) There exists i ∈ {0, . . . , u} and r pairwise disjoint subsets A1, . . . , Ar ∈
(
[n]
qi

)
, such

that at least zi subsets from each
(
Aj
k

)
, j = 1, . . . , r, are colored in α.

(ii) There exists i ∈ {0, . . . , u−1} and r pairwise disjoint subsets A1 ∈
(
n
qi

)
, A2, . . . , Ar ∈(

[n]
qi+1

)
, such that at least ti subsets from

(
A1

k

)
and zi+1 subsets from each

(
Aj
k

)
,

j = 1, . . . , r, are colored in α.

Proof. We start by analyzing the colorings of KGr
n,k into d colors. For each i = 0, . . . , u

associate with each set A ∈
(
[n]
qi

)
the set XA of the colors that are used at least ti

2
times

in the coloring of
(
A
k

)
(recall the definitions (19), (20)). Note that at least a half of the

vertices of
(
A
k

)
is colored by colors from XA. We have two possibilities for a given i: either

for each set A ∈
(
[n]
qi

)
there is a color that is used for zi vertices on

(
A
k

)
, or there is a

set A ∈
(
[n]
qi

)
such that |XA| > sqi. This is obvious in case zi 6 ti. If zi > ti (which is

typically the case), then the negations of both statements imply that in XA there are less
than sqi colors, each of cardinality at most zi− 1. On the other hand, the colors from XA

are used for at least 1
2

(
qi
k

)
k-sets in A, but 1

2

(
qi
k

)
> (zi − 1)sqi. This is a contradiction.
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If for each qi-element set A there is a color in XA used at least zi times, then, arguing
as in the proof of Theorem 2, we conclude that (i) from the lemma takes place.

If not, then fix the largest index i, for which there exist a qi-element set A with
|XA| > sqi, and choose such A. Clearly, i 6 u− 1, otherwise we have more than d colors
in XA. Put Y := [n] \A and consider the majority coloring κ′ of the qi+1-element subsets
of Y . We denote by KGr

Y,qi+1
the Kneser hypergraph induced on

(
Y
qi+1

)
.

We claim that at least one of the two holds. Either A κ′ is not proper, and we again
conclude that (i) holds (remark that for any qi+1-set B the set XB has a color class of size
zi+1 by the choice of i), or B in KGr

Y,qi+1
there is a color from XA used for an (r−1)-tuple

of pairwise disjoint qi+1-element sets. If the second possibility takes place, then we obtain
(ii) from the lemma. Thus, we are left to show that one of the two possibilities claimed
in this paragraph takes place.

Assume that neither of the two options A, B takes place. In the case r = 2, this
simply means that KGY,qi+1

is properly colored in less than d − sqi colors (the negation
of B implies that the colors from XA are not used in κ′). Remark that β = 1 for r = 2
and thus qi+1 = 2qi for each i = 0, . . . , u− 1. Therefore, n− 2k− 2l+ 1− sqi = d− sqi >
χ(KGY,qi+1

) = (n− qi)−2qi+1 + 2, which is equivalent to (s−5)qi + 2(k+ l) + 1 < 0. But,
by the definition (20), s = 5 when r = 2. We arrive at a contradiction, which concludes
the proof for r = 2.

In the case r > 3 the negation of A, B means that KGr
Y,qi+1

is properly colored, and
that for each color α ∈ XA the collection of sets colored in α contains at most r − 2
pairwise disjoint sets.

If r = 3, then construct a new coloring of KG3
Y,qi+1

by arbitrarily grouping the colors
from XA into pairs and replacing each pair by a single new color. Remark that the new
coloring uses at most d− sqi

2
colors and is still proper, since in any newly formed color there

are no more than two pairwise disjoint sets. Therefore, χ(KG3
n,k+l)−1− sqi

2
> χ(KG3

Y,qi+1
).

Recall that qi+1 6 2lβ−1qi. For any r > 2, we have

χ(KGrn,k+l)− χ(KGrY,qi+1
) =⌈

n− (k + l − 1)r

r − 1

⌉
−

⌈
n− qi − (qi+1 − 1)r

r − 1

⌉
<
rqi+1 + qi
r − 1

6
(2r + 1)lβ−1qi

r − 1
. (21)

Thus, for r = 3 we conclude that sqi
2
< (2r+1)lβ−1qi

2
, which contradicts (20).

Finally, consider the case r > 3. We again construct a new coloring of KGr
Y,qi+1

that
uses fewer colors than κ′, using the following procedure. First, split the colors from XA

into groups of size k(r − 2) + 1 (with one remaining group of potentially smaller size).
In each group choose one color α and split vertices (sets) from KGY,qi+1

of color α into
k(r − 2) groups of pairwise intersecting sets. To obtain such a split, take the largest
family of pairwise disjoint sets in KGY,qi+1

colored in α. It has size most r − 2, and thus
it covers the set U ⊂ Y of cardinality at most (r − 2)k. Each other set of color α in Y
must intersect U . We then split all sets of color α into families Kj, j = 1, . . . , |U | of sets
containing the j-th element of U .
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Next, we adjoin each of the families Kj to one of the remaining k(r − 2) colors in the
group. We get a proper coloring since none of the newly formed colors contain more than
r − 1 pairwise disjoint sets. The number of colors used in the new coloring is less than
d−b sqi

k(r−2)+1
c 6 d−b sqi

k(r−1)c. Thus, comparing the inequality χ(KGr
n,k+l)−1−b sqi

k(r−1)c >
χ(KGr

Y,qi+1
) with the inequality (21), we get⌊ sqi

k(r − 1)

⌋
+ 1 <

(2r + 1)lβ−1qi
r − 1

,

which contradicts the definition (20).

Lemma 5 tells us that if there exists a proper d-coloring of KGr
n,k(p), then there are

subsets A1, . . . , Ar as in the lemma, such that the induced subgraph of KGr
n,k(p) on these

subsets has no edge. In what follows we calculate the probabilities of these events.
Assume that the first possibility from Lemma 5 for a certain i takes place. The

probability of the corresponding event for the random hypergraph is at most(
n

qi

)r((qi
k

)
zi

)r
(1− p)zri . (22)

If the second possibility from Lemma 5 for a certain i takes place, then the probability of
the corresponding event for the random hypergraph is at most(

n

qi

)(
n

qi+1

)r−1((qi
k

)
ti

)((qi+1

k

)
zi+1

)r−1
(1− p)tiz

r−1
i+1 6 nrqi+1

((qi+1

k

)
zi+1

)r
(1− p)tiz

r−1
i+1 . (23)

Typically, the last expression in (23) is much bigger than that in (22). Note that the
total number of events is 2u + 1 6 2 log n. Therefore, if each has probability less than
1
n
, say, then we a.a.s. have χ(KGr

n,k(p)) > d + 1. We remark that this condition on the
probability of a single event is by no means restrictive, since we are manipulating with
expressions of much higher order of growth. The following analogue of Lemma 3 with
general bounds on the chromatic number of random Kneser hypergraphs is proven by
analogous calculations:

Lemma 6. For n > (k+ l)r we a.a.s. have χ(KGr
n,k(p)) > d+ 1 := χ(KGr

n,k+l) if for each
i = 0, . . . , u we have

3r
(
qi log n+ zi log(2sqi)

)
− pzri → −∞ and (24)

3r
(
qi+1 log n+ zi+1 log(2sqi+1)

)
− ptizr−1i+1 → −∞. (25)

In what follows, we assume that p > 0 is fixed and that k, l > 2. We have log qi =
Ω(log(2sqi+1)) for any i > 0. Then the inequalities (24) and (25) follow from

zr−1i � log qi, zri � qi log n, tiz
r−2
i+1 � log qi, tiz

r−1
i+1 � qi+1 log n. (26)

We have zi+m/zi = Ω(qi+m/qi) for any r > 2, k > 2 and m ∈ [u− i]. Therefore, for r > 3
it is sufficient to verify the inequalities (26) for i = 0. For r = 2 it is sufficient to verify
the first, second and fourth inequality from (26) for i = 0 and the inequality t0 > log n.
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For r = 2, 3 we have s = O(l1/2), which implies zi = O
(

(qik )
l1/2qi

)
� log qi. Therefore,

the first inequality from (26) is satisfied for r = 2, 3, and (26) reduces to the following:

zr0 � (k + l) log n, tiz
r−2
i+1 � log qi, t0z

r−1
1 � (k + l) log n, (27)

where for r = 3 the second inequality is again automatically satisfied. Let r = 2. Looking
at the definitions (20) and using the fact that

(
k+l
k

)
= Ω((k + l)2), it is clear that the

second condition is the most restrictive. The following inequality is sufficient to satisfy
(27) and implies both (7) and (8): (

k + l

k

)
� n log n. (28)

For r = 3, replacing the t0 factor with 1, we conclude that (27) follows from(
k + l

k

)3

� (k + l)4l3/2 log n,

(
2(k + l3/2)

k

)2

� (k + l)3l log n. (29)

For fixed l the first condition is clearly more restrictive, and we get that (29) holds for
k � log1/(3l−4) n. For fixed k the first inequality is more restrictive again, and we get that
it holds for l� log1/(3k−11/2) n. This gives the inequalities (9) and (10).

For r > 3 we have to assume l > 3 in order to get any good lower bound on zi: for
l = 2 we have z0 = 1. But for l > 3 we again have zi � log qi, so it is again enough
to verify the first and third inequalities in (27). Replacing t0 with 1, we get that (27) is
implied by (

k + l

k

)r
� kr(k + l)r+1lr/(r−1) log n and (30)(

2(k + lr/(r−1))

k

)r−1
� kr−1(k + l)

(
k + l

r
r−1

)r−1
l log n. (31)

Similarly to the case r = 3, for both fixed l and fixed k (30) is more restrictive. For fixed

l we get that (30) holds for k � log
1

r(l−2)−1 n. For fixed k it holds for l� log
1

r(k−1)− 2r−1
r−1 n.

This implies (11) and (12).

5 Simple lower bounds

In this section we present simple upper bounds for χ(KGr
n,k(p)) and compare them

with the results of Theorem 1. If there exist a set A ⊂ [n] of size rk + l, such that
KGr(n, k)(p)|A is an empty graph, then, coloring A into color 0 and the rest as in the
standard coloring of KGr(n, k), we get that χ(KGr

n,k(p)) 6 χ(KGr
n,k) − bl/(r − 1)c. To

estimate the probability of having such A, we find n sets of size l + 2k in [n], which
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have pairwise intersections of size at most 1, and, and calculate the probability that one
of those becomes empty. Note that the events for different sets are independent. The
probability is (

1− (1− p)
∏r
i=1 (l+ikk )

)n
6 e−n(1−p)

∏r
i=1 (l+ikk )

.

Therefore, if

n(1− p)
∏r
i=1 (l+ikk ) →∞, (32)

then a.a.s. there exists such a set. If p, r, k are fixed, then this condition is satisfied
if for sufficiently large constant we have ecl

rk
= o(n), which implies that we can take

l = Ω(log
1
rk n). This shows that bounds (10), (12) are essentially tight: the difference

between the lower and the upper bounds are in the degree of the logarithm.
If p, r, and l are fixed, then the situation is more interesting. The condition (32) is

satisfied if ec
r2k

= o(n), which could be fulfilled for k = Ω(log log n). This is very different
from the bounds (9), (11). Of course, in the graph case (r = 2) the gap between the
upper and lower bounds is even bigger.

6 Discussion

In [26] Kupavskii asked whether it is true that for some k = k(n) a.a.s. we have
χ(KGn,k(1/2)) = χ(KGn,k). This question remains wide open for all meaningful values
of k (by that we mean that n − 2k → ∞), with current methods not allowing to attack
it. We ask a similar question for Kneser hypergraphs. This may be easier to show in the
hypergraph case. Indeed, when the bound (4) is applicable, then for sufficiently large r
and most n the difference between the chromatic number of KGr

n,k is guaranteed to be at
most 1.

The huge difference in the bounds between the cases r = 2 and r > 3 asks for some
further exploration. What is the correct order of growth of k needed to guarantee that the
chromatic number of a Kneser graph a.a.s. drops by an additive term only when passing
to a random subgraph? We conjecture that the following should be true:

Conjecture. For any fixed p > 0 we have χ(KGn,k(p)) > χ(KGn,k)− 4 for k � log n.

So far most of the research in this direction was concerned with lower bounds. What
could one say concerning the upper bounds, or, stated in a more convenient way, lower
bounds for the expression χ(KGr

n,k) − χ(KGr
n,k(p))? In the previous section we showed

that for fixed k and r > 3 we can obtain lower bounds similar to the upper bounds given
by (10), (12). The case of fixed k and r = 2 seems to be troubling again, as the lower
bounds for χ(KGr

n,k) − χ(KGr
n,k(p)) that are in sight are logarithmic, while the upper

ones, provided by (8), are polynomial. We also have a huge gap between the upper and
lower bounds on k, for which the difference between χ(KGr

n,k) and χ(KGr
n,k(p) is at most

a fixed constant l, as we show in the previous section.
Finally, we remark that the method from Theorem 2 may be applied to the following

class of Kneser hypergraphs of set families. Assume that F ⊂
(
[n]
k+l

)
is a family of k + l-

element sets. We form a family H of all k-element subsets, contained in at least one set
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from F (this is the so-called k-th shadow of F). Denote by KGr(H) the r-uniform Kneser
hypergraph on H. Then equation (13) tells us that χ(KGr(H)(p)) > d+1 := χ(KGr(F))
with probability at least

1− |H|
( (

k+l
k

)⌈
(k+lk )
d

⌉)r(1− p)⌈(k+lk )
d

⌉r
.

The following question seems to be worth exploring: are there any interesting classes of
graphs or hypergraphs, for which the topological bounds (as the ones proven in [26] and
[1]) work, while the present combinatorial approach fails?

Note: New results on the subject, including the the resolution of a slightly weaker
version of the conjecture above, appeared in [25].
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