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Abstract

Theta-vexillary signed permutations are elements in the hyperoctahedral group
that index certain classes of degeneracy loci of type B and C. These permutations
are described using triples of s-tuples of integers subject to specific conditions. The
objective of this work is to present different characterizations of theta-vexillary
signed permutations, describing them in terms of corners in the Rothe diagram and
pattern avoidance.

Mathematics Subject Classifications: 05A05, 14M15

1 Introduction

A permutation w is called vexillary if and only if it avoids the patterns [2 1 4 3], i.e.,
there are no indices a < b < c < d such that w(b) < w(a) < w(d) < w(c). Vexillary
permutations were defined by Lascoux and Schützenberger [9] in the 1980s. In the 1990s,
Macdonald [10] and Fulton [8] gave a characterizations for the vexillary permutations in
terms of the essential sets. Since Sn is the Weyl group of type A, the vexillary permutations
represent Schubert varieties in some flag manifold where the Lie group is G = Sl(n,C).

A few years later, the notion of vexillary permutations in the hyperoctahedral group
were introduced by Billey and Lam [5]. Recently, Anderson and Fulton [2, 4] provided a
different characterization for vexillary signed permutations. They defined them through
a specific triple of integers: given three s-tuple of positive integers τ = (k,p,q), where
k = (0 < k1 < · · · < ks), p = (p1 > · · · > ps > 0), and q = (q1 > · · · > qs > 0),
satisfying pi − pi+1 + qi − qi+1 > ki+1 − ki for 1 6 i 6 s − 1, one constructs a signed
permutation w = w(τ ). There is a natural embedding ι : Wn ↪→ S2n+1, and in fact a signed
permutation w ∈ Wn is vexillary if and only if the ordinary permutation ι(w) ∈ S2n+1 is
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vexillary, in the sense described above. Anderson and Fulton also characterize vexillary
signed permutations in terms of essential sets, pattern avoidance, and Stanley symmetric
functions [4].

In this work, we present a class of signed permutations called theta-vexillary signed
permutations. They are defined using a triple of integers τ = (k,p,q) where we allow
negative values for q and satisfy eight different conditions, which will be called a theta-
triple. The set of theta-vexillary signed permutations is relevant because it contains
all vexillary signed permutations and k-Grassmannian permutations, which are the ones
associated to the Grassmannian Schubert varieties of type B and C.

Theta-vexillary signed permutations have an important geometric interpretation in
terms of degeneracy loci. For our purpose, it is easier to consider the hyperoctahedral
group as the Weyl group of type B. Consider a vector bundle V of rank 2n + 1 over X,
equipped with a nondegenerate quadratic form and two flags of bundles E• = (Ep1 ⊂
Ep2 ⊂ · · · ⊂ Eps ⊂ V ) and F• = (Fq1 ⊂ Fq2 ⊂ · · · ⊂ Fqs ⊂ V ) such that: for q > 0, the
subbundles Fq are isotropic, of rank n+ 1− q; for q < 0, Fq is coisotropic, of corank n+ q;
and all the subbundles Ep are isotropic, of rank n+ 1− p. The degeneracy locus of τ is

Ωτ := {x ∈ X | dim(Epi ∩ Fqi) > ki, for 1 6 i 6 s}.

In [3], Anderson and Fulton proved that under certain conditions on the triple τ , the
cohomology class [Ωτ ] is the multi-theta-polynomial Θλ(τ ) whose coefficients are Chern
classes of the vector bundles Epi and Fqi . The polynomial Θλ(τ ) generalizes the theta-
polynomials defined by Buch, Kresch, and Tamvakis [7] via raising operators. This moti-
vates the name “theta-vexillary”.

The main result of this work provides two other ways to characterize theta-vexillary
permutations. If a permutation w in the Weyl group Wn of type B is represented as a
matrix of dots in a (2n+1)×n array of boxes, the (Rothe) extended diagram is the subset
of boxes that remains after striking out the boxes weakly south or east of each dot. The
southeast (SE) corners in the extended diagram form the set of corners C (w). The set
of corners of a theta-vexillary signed permutation is always the union of a set Ne(w) of
corners that form a piecewise path that goes to the northeast direction, and the set U(w)
of unessential corners. We also have a characterization of theta-vexillary permutations
via pattern avoidance.

Theorem 1. Let w be a signed permutation. The following are equivalent:

1. w is theta-vexillary, i.e., there is a triple τ such that w = w(τ );

2. the set of corners C (w) is the disjoint union

C (w) = Ne(w)∪̇U(w),

3. w avoids the following thirteen signed patterns [1 3 2], [2 3 1], [3 2 1], [3 2 1],
[2 1 4 3], [2 3 4 1], [2 3 4 1], [3 4 1 2], [3 4 1 2], [3 4 1 2], [3 4 1 2], [4 1 2 3], and
[4 1 2 3].
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This theorem is a consequence of Propositions 18 and 21 and it is similar to the
vexillary signed permutation’s version.1

Comparing to the vexillary case, we admit some SE corners in the diagram that
are not in an ordered northeast path, which we call unessential corners. Besides, the
characterization via signed pattern avoidance for the theta-vexillary permutations has
eight patterns in common with those for the vexillary case and [2 1] is the unique not
present in this list.

The pattern avoidance criterion allows us to compare a theta-vexillary permutation
with a vexillary permutation of type C defined by Billey and Lam [5]. According to them,
a signed permutation is vexillary of type C if the Stanley symmetric function Fw of type
C is equal to the Schur Q-function Qλ for some shape λ ` `(w) with distinct parts. In
[5, Theorem 7], they proved that a vexillary permutation of type C should avoid eighteen
patterns, which includes all thirteen patterns given in our main theorem. Therefore, every
vexillary permutation of type C is theta-vexillary.

Considering the pattern avoidance criterion, the set of theta-vexillary signed permuta-
tions form a new class of permutations according to the “Database of Permutation Pattern
Avoidance” maintained by Tenner [11].

2 Signed permutations in Wn

The notation here is the same used in [1]. We also refer [6, §8.1] for further details.
Consider the permutation of positive and negative integers, where the bar over the

number denotes a negative sign, and consider the natural order of them

. . . , n, . . . , 2, 1, 0, 1, . . . , n, . . .

A signed permutation is a permutation w satisfying that w(ı) = w(i), for each i. A
signed permutation belongs to Wn if w(m) = m for all m > n; this is a group isomorphic
to the hyperoctahedral group, the Weyl group of types Bn and Cn. Since w(ı) = w(i), we
just need the positive positions when writing signed permutation in one-line notation, i.e.,
a permutation w ∈ Wn is represented by w(1) w(2) · · · w(n). For example, the full form
of the signed permutation w = 2 1 3 in W3 is 3 1 2 0 2 1 3, but we can omit the values
at the position 3, 2, 1 and 0. The group Wn is generated by the simple transpositions
s0, . . . , sn, where for i > 0, right-multiplication by si exchanges entries in positions i and
i + 1, and right-multiplication by s0 replaces w(1) with w(1). Every signed permutation
w can be written as w = si1 · · · si` such that ` is minimal; call the number ` = `(w) the
length of w. This value counts the number of inversions of w ∈ Wn, and it is given by the
formula

`(w) = #{1 6 i < j 6 n | w(i) > w(j)}+ #{1 6 i 6 j 6 n | w(−i) > w(j)}. (1)

1Recently, Anderson and Wesner verified that there is also a pattern avoidance criterion for ι(w): the
permutation w is theta-vexillary if, and only if, ι(w) avoids the following twelve patterns: [2 1 4 3 6 5],
[3 1 6 4 2 7 5], [3 2 7 4 1 6 5], [5 2 7 4 1 6 3], [2 6 4 8 1 5 3 7], [2 6 5 8 1 4 3 7], [5 1 7 3 6 2 8 4],
[5 1 7 6 3 2 8 4], [6 4 8 2 7 1 5 3], [6 4 8 7 2 1 5 3], [6 5 8 7 2 1 4 3], and [6 5 8 2 7 1 4 3].
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The element w
(n)
◦ = 1 2 · · ·n is the longest element inWn and it is called the involution

of Wn. Notice that the involution w
(n)
◦ has length n2.

The group of permutations Wn can be embedded in the symmetric group S2n+1, con-
sidering S2n+1 the permutations of n, . . . , 0, . . . , n. Indeed, define the odd embedding by
ι :Wn ↪→ S2n+1 where it sends w = w(1) w(2) · · · w(n) to the permutation

w(n) · · · w(2) w(1) 0 w(1) w(2) · · · w(n)

in S2n+1. The embedding ι will be used when it is necessary to highlight that we need
the full permutation of w.

There is also a even embedding ι′ :Wn ↪→ S2n defined by omitting the value w(0) = 0.
Considering the natural inclusions Wn ⊂ Wn+1 ⊂ · · · , we get the infinite Weyl group

W∞ = ∪Wn. When the value n is understood or irrelevant, we can consider w as an
element of W∞. The odd embeddings are compatible with the corresponding inclusions
S2n+1 ⊂ S2n+3 ⊂ · · · .

2.1 Diagram of a permutation in S2n+1

A permutation belongs to Sn if v(m) = m for all m > n; remember that the permuta-
tion group Sn is the Weyl group of type An. The group Sn is generated by the simple
transpositions s1, . . . , sn, where for i > 0, right-multiplication by si exchanges entries in
positions i. Every permutation v can be written as v = si1 · · · si` such that ` is minimal.
This number ` = `(v) is the length of v and it can be determined by counting the number
of inversions of v, i.e.,

`(v) = #{1 6 i < j 6 n | v(i) > v(j)}.

Usually, permutations in Sn are written using the one-line notation v(1) v(2) · · · v(n).
Given a permutation v, it has a descent at position i if v(i) > v(i+ 1) for some integer i.

Let us consider the specific case where the permutation group is S2n+1.
Consider a (2n+1)×(2n+1) arrays of boxes with rows and columns indexed by integers

[n, n] = {n, . . . , 1, 0, 1, . . . , n} in matrix style. The permutation matrix associated to a
permutation v ∈ S2n+1 is obtained by placing dots in positions (v(i), i), for all n 6 i 6 n,
in the array. Again, the diagram of v is the collection of boxes that remain after removing
those which are (weakly) south and east of a dot in the permutation matrix. Observe
that the number of boxes in the diagram is equal to the length of the permutation.

The rank function of a permutation v ∈ S2n+1 for a pair (p, q), where n 6 p, q 6 n, is
the number of dots strictly south and weakly west of the box (q−1, p) in the permutation
matrix of v. In other words, it will be defined by

rv(p, q) := #{i 6 p | v(i) > q},

for n 6 p, q 6 n.
We say that a box (a, b) is a southeast (SE) corner of the diagram of v if v has a

descent at b, with a lying in the interval of the jump, and v−1 has a descent at a, with b
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lying in the interval of the jump. This can be written as

v(b) > a > v(b+ 1) and

v−1(a) > b > v−1(a+ 1).
(2)

A corner position of v is a pair (p, q) such that the box (q − 1, p) is a southeast (SE)
corner of the diagram of v. The set of corners of w is the set C (w) of triples (k, p, q) such
that (p, q) is a corner position and k = rw(p, q).

For example, consider v = ι(2 3 1) = 1 3 2 0 2 3 1. Figure 1 shows the diagram of v.
The SE corners (q− 1, p) are highlighted and they are filled with the rank function values
rv(p, q). In this case, the set of corners is

C (v) = {(1, 3, 1), (1, 1, 2), (3, 0, 1), (2, 2, 2)}.

b

b

b

b

b

b1

1 3

21
2
3

1
2
3

0

1 2 3123 0

b

Figure 1: Diagram for v = ι(2 3 1) = 1 3 2 0 2 3 1. The circle corners connected with
dashed lines illustrate the symmetry of Lemma 3.

Notice that if a box (q − 1, p) is a SE corner that satisfies (2), then (p, q) is a corner
position and k = rv(p, q).

2.2 Extended diagram of a signed permutation in Wn

We know that signed permutations must satisfy the relation w(ı) = w(i), then the negative
positions can be obtained from the positive ones. Hence, a signed permutation w ∈ Wn

corresponds to a (2n + 1) × n array of boxes, with rows indexed by {n, . . . , n} and the
columns indexed by {n, . . . , 1}, where the dots are placed in the boxes (w(i), i) for n 6
i 6 1.

For each dot, we place an “×” in those boxes (a, b) such that a = w(i) and i 6 b, in
other words, an × is placed in the same column and opposite along with the boxes to the
right of this ×.

The extended diagram D+(w) of a signed permutation w is the collection of boxes in
the (2n+ 1)× n rectangle that remain after removing those which are south or east of a
dot. The diagram D(w) ⊆ D+(w) is obtained from extended diagram D+(w) by removing
the ones marked with ×. Namely, D(w) is defined by

D(w) = {(i, j) ∈ [n, 1]× [n, n] | w(i) > j,w−1(j) > i, and w−1(−j) > i}.
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Lemma 2. The number of boxes of D(w) is equal to the length of w.

Proof. Observe that if we define J = {j ∈ [n, n] | w−1(j) < 0}, the set D(w) can be split
into two subsets D1(w) = {(i, j) ∈ D(w) | j ∈ J} and D2(w) = {(i, j) ∈ D(w) | j 6∈ J}.
Since both sets have cardinality #D1(w) = #{1 6 l < m 6 n | w(l) > w(m)} and
#D2(w) = #{1 6 l 6 m 6 n | w(−l) > w(m)}, the assertion follows from Equation
(1).

Observe that if we use the embedding ι : Wn ↪→ S2n+1, the matrix and extended
diagram of w ∈ Wn corresponds, respectively, to the first n columns of the matrix and
diagram of ι(w). The notation ι(D+(w)) will be used when we need to use the respective
(2n+ 1)× (2n+ 1) diagram of ι(w).

The rank function of a permutation w in Wn is defined by

rw(p, q) = #{i > p | w(i) 6 q},

for 1 6 p 6 n, and n 6 q 6 n.
Since w(ı) = w(i), then the rank function rw(p, q) is also equal to #{i 6 p | w(i) > q},

so the rank functions rw coincides to rι(w).
Given w ∈ Wn, the next lemma states that there is a symmetry about the origin of the

corner positions corresponding to ι(w). In order to simplify the notation, given a triple
(k, p, q), define the reflected triple (k, p, q)⊥ = (k + p+ q − 1, p+ 1, q + 1).

Lemma 3 ([1], Lemma 1.1). For w ∈ Wn, the set of corners of ι(w) ∈ S2n+1 has the
following symmetry: (k, p, q) is in C (ι(w)) if and only if (k, p, q)⊥ is in C (ι(w)).

We can see in Figure 1 that both corners in the left half of the diagram are symmetric
by the origin to other two corners on the right side. This behavior will happen for every
signed permutation w, implying that half of C (ι(w)) suffices to determine the signed
permutation w; we will consider those corners appearing in the first n columns.

A corner position of signed permutation w is a pair (p, q) such that the box (q − 1, p)
is a southeast (SE) corner of the extended diagram of w. The set of corners C (w) of a
signed permutation w is the set of triples (k, p, q) such that (q − 1, p) is a SE corner of
the extended diagram D+(w) and k = rw(p, q), except for corner positions (p, q) where
p = 1 and q 6 0. This exception comes from the fact that (1, q), for q 6 0, is not a
corner position in ι(w) because the respective box (q − 1, 1) cannot be a SE corner since
w(0) = 0.

For instance, the extended diagram of w = 2 3 1 is the collection of white boxes in
the first three columns of the diagram in Figure 1. The SE corners are the ones labeled
with 1. Notice that the box in position (2, 1) is not a SE corner because it isn’t a corner
in ι(w).

Remark 4. Anderson and Fulton in [1, 4] defined a slightly different set called essential
set of w. This set is contained in the set of corners since they remove a few “redundant”
SE corners. In the present work, we need the whole set of corners since the essential set
is not enough to perform our construction.
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Since the integer k is the rank of w in (p, q), sometimes we can simply say that the
corner position (p, q) ∈ C (w), instead of the triple (k, p, q).

The Figure 2 illustrates the extended diagram and the set of corner of the signed
permutation w = 10 1 5 3 2 4 6 9 8 7.
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w = 10 1 5 3 2 4 6 9 8 7
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ℓ(w) = 65

(9, 2, 6)}
(6, 4, 3), (6, 2, 1), (7, 2, 3),

C (w) = {(3, 8, 7), (4, 6, 4), (5, 5, 2),

Figure 2: Diagram and set of corners of a signed permutation.

To make the diagrams look cleaner, from now on we won’t denote × in the extended
diagrams D+(w). We also can omit the word “extended” since we are only interested in
studying the extended diagram of a signed permutation w.

2.3 NE path and unessential corners

Suppose that w ∈ Wn is any signed permutation. There are two notable classes of SE
corner in the set C (w) that we will be important to our main theorem. They are the
corners in the northeast path and the unessential corners.

Given any signed permutation w, consider a (strict) partial order for the set of corners
C (w) by (p, q) < (p′, q′) if and only if p > p′ and q < q′, for corner positions (p, q), (p′, q′) ∈
C (w). For example, in Figure 2, the unique possible relation is (4, 3) < (2, 1), the two
boxes filled in with the value 6.

Define the northeast (NE) path as the set Ne(w) of minimal elements of C (w) relative
to the poset “<”. Using the same example of Figure 2, we have that Ne(w) = C (w) −
{(6, 2, 1)}, since all the corners are minimal under this poset except (6, 2, 1).

The positions (pi, qi) of the NE path Ne(w) can be ordered so that p1 > p2 > · · · >
pr > 0 and q1 > q2 > · · · > qr. In fact, suppose that we order p1 > p2 > · · · > pr > 0
but there is i such that and qi < qi+1. If pi = pi+1 then we can exchange i and i + 1.
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Otherwise, if pi > pi+1 then (pi, qi) < (pi+1, qi+1) and (pi+1, qi+1) does not belong to the
NE path.

Given a signed permutation w, we say that a corner position (p, q) of C (w) is unessen-
tial if there are corner positions (p1, q1), (p2, q2) and (p3, q3) in the NE path Ne(w) satis-
fying the following conditions:

p1 = p and q1 < q < 0;

p2 > 0 and q2 = q + 1;

(p3, q3) < (p, q).

In other words, (p, q) is not a minimal corner in the poset in the upper half of the
diagram, the box (q1− 1, p1) lies above and in the same column of the box (q− 1, p), and
the box (q2, p2 − 1) reflected from (q2 − 1, p2) lies to the right and in the same row of
(q − 1, p), as shown in Figure 3. We denote by U(w) the set of all unessential corners of
w.

(q1 − 1, p1)

(q2, p2 − 1)

(q − 1, p)

b

(q2 − 1, p2)

(q3 − 1, p3)

Figure 3: Configuration of an unessential corner (p, q). The highlighted box (q − 1, p)
satisfies all the conditions.

It is important to emphasize that all three corners (p1, q1), (p2, q2) and (p3, q3) must
belong to the NE path Ne(w).

For instance, considering the signed permutation w = 10 1 5 3 2 4 6 9 8 7 of Figure 2,
the set of unessential corners U(w) only contains the triple (6, 2, 1).

3 Theta-triples and theta-vexillary signed permutations

A theta-triple is three s-tuples τ = (k,p,q) with

k = (0 < k1 < k2 < · · · < ks),

p = (p1 > p2 > · · · > ps > 0), (3)

q = (q1 > q2 > · · · > qs),

and satisfying eight conditions. We intentionally split such conditions in three blocks that
share common characteristics. The first three conditions are
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A1. qi 6= 0 for all i;

A2. qi 6= −qj, for any i 6= j.

A3. If qs < 0 then ps > 1;

Now, let a = a(τ ) be the integer such that qa−1 > 0 > qa, allowing a = 1 and
a = s + 1 for the cases where all q’s are negative or all q’s are positive, respectively.
For all i > a, denote by R(i) (or R(i)τ to specify the triple) the unique integer such
that qR(i) > −qi > qR(i)+1; if necessary, consider k0 = 0, p0 = +∞, q0 = +∞, and
R(a− 1) = a− 1. The next three conditions are

B1. (pi − pi+1) + (qi − qi+1) > ki+1 − ki, for 1 6 i < a− 1;

B2. (pi − pi+1) + (qi − qi+1) > (ki+1 − ki) + (kR(i) − kR(i+1)), for a 6 i < s;

B3. ps + qs + ks > kR(s) + 1, if a 6 s.

It is important to observe that none of the above conditions compare indexes a − 1
and a. Finally, consider a 6 i 6 s and let L(i) = Lτ (i) be the biggest integer j in
{R(i) + 1, . . . , a− 1} satisfying kj − kR(i)+1 > qR(i)+1 − qj, i.e.,

L(i) = max{R(i) + 1 6 j 6 a− 1 | kj − kR(i)+1 > qR(i)+1 − qj}. (4)

The last two conditions are

C1. −qi > ki − kR(i) for all a 6 i 6 s;

C2. −qi > qL(i) + kL(i) − kR(i) for all a 6 i 6 s.

Given a theta-triple τ , the construction algorithm of the permutation w(τ ) is given by
a sequence of s+ 1 steps as follows:

Step (1) Starting in the p1 position, place k1 consecutive entries, in increasing order,
ending with −q1. Mark the absolute value of these numbers as “used”;

Step (i) For 1 < i 6 s, starting in the pi position, or the next available position to the
right, fill the next available ki−ki−1 positions with entries chosen consecutively from
the unused absolute numbers, in increasing order, ending with −qi or, if it is not
available, the biggest unused number below −qi. Again, mark the absolute value of
these numbers as “used”;

Step (s+ 1) Fill the remaining available positions with the unused positive numbers,
in increasing order.

Notice that we should mark as used the absolute of the placed values because we allow
negative qi for a theta-triple.

The next proposition presents the smallest integer n such that w(τ ) ∈ Wn.
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Proposition 5. Let τ be a theta-triple and define Nτ = max{ki + pi − 1 | 1 6 i 6 s}
and Mτ = max{ki + qi − 1 | 1 6 i < a}. Then, n = max{Nτ ,Mτ} is the smallest integer
such that w(τ ) ∈ Wn.

Proof. First of all, we will prove that w ∈ Wmax{Nτ ,Mτ }. If 1 6 i 6 s then, by the end of
a Step (i), we have filled ki − 1 position strictly to the right of position pi. Assume that
j is such that kj + pj − 1 = Nτ . Then, by the end of a Step (j), we have filled kj − 1
position strictly to the right of position pj and the rightest filled position is ki + pi − 1.

By definition of Nτ , pj − pi > ki − kj for any j < i 6 s, and there is enough room to
fill ki − kj positions between pi and pj during the Steps (i + 1), (i + 2), . . . , (j). Hence,
ki + pi − 1 is still the rightest filled in Steps (1) to (s).

Now, consider P the largest absolute value place during Steps (1) to (s). The amount
of values placed by Step (s+ 1) is P − ks. Since there are Nτ − ks spots available to the
left of position Nτ , the Step (s + 1) will place value to the right of Nτ if, and only if,
P > Nτ .

Let us compute P . The largest absolute value placed by Steps (1) to (a − 1) is
Mτ = max{ki + qi − 1 | 1 6 i < a} by the same reason that Nτ is maximum. On the
other hand, the largest absolute value placed by Steps (a) to (s) is smaller or equal to
qs (this follows from the fact that such steps does not place negative values as it will be
proved in Lemma 8). Then, P = max{Mτ , qs}.

Clearly, if P = Mτ then n = max{Nτ ,Mτ} is the right most position placed in the
construction of w(τ ). Suppose that P = qs and Nτ = kj + pj − 1 for some j. Then, by
definition of Nτ and condition B3, we have Nτ = kj + pj − 1 > ks + ps− 1 > kR(s)− qs >
P > Mτ . Hence, Step (s + 1) does not place values to the right of Nτ . Therefore,
w(τ ) ∈ Wmax{Nτ ,Mτ }.

To prove that n = max{Nτ ,Mτ} is the smallest, we will show that w(n) 6= n. Suppose
that n = Nτ = kj + pj − 1 where j is the smallest possible. If j < a then w(Nτ ) = qj <
0 < Nτ . If j > a then, as consequence of conditions B2 and B3, we have kj + pj + qj >
ks + ps + qs + kR(j) − kR(s) > 1 + kR(j) > 1. Hence, w(Nτ ) = qj < kj + pj − 1 = Nτ .

Finally, suppose that n = Mτ . We’ve already showed that the value Mτ is placed
during Steps (1) to (a − 1) whereas the position Mτ is filled in Step (s + 1). Therefore,
w(Mτ ) 6= Mτ .

A signed permutation w ∈ Wn is called theta-vexillary if w = w(τ ) comes from some
theta-triple τ = (k,p,q).

Example 6. The permutation w given in Figure 2 can be obtained from the triple τ =
(3 4 5 6 9, 8 6 5 4 2, 7 4 2 3 6) using the above algorithm:

· · · · · · · 9 8 7
· · · · · 4 · 9 8 7
· · · · 2 4 · 9 8 7
· · · 3 2 4 · 9 8 7
· 1 5 3 2 4 6 9 8 7

w = 10 1 5 3 2 4 6 9 8 7
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The triple τ satisfies all eight conditions above and, then, τ is a theta-triple. Thus,
w is theta-vexillary signed permutation.2 Observe that every pair (pi, qi) in this triple is
also a corner position in the diagram of Figure 2. This fact is not a coincidence, and we
will show that every theta-triple are corner positions on the permutation.

Notice the construction algorithm does not create an inversion inside a step, i.e., if
a < b are positions placed by a Step (i) then w(a) < w(b).

Remark 7. The definition of a theta-triple was motivated by the triple of type C given by
Anderson and Fulton [3]. Indeed, any theta-triple is a triple of type C, but the converse is
not true. A theta-triple has two properties that a triple of type C does not: each (ki, pi, qi)
is associated to a SE corner of w(τ ) (Proposition 13); and any theta-vexillary permutation
is given by a unique theta-triple τ (Proposition 20). Both results are relevant when we
study SE corners in the diagram of w(τ ).

Now, we will give a brief explanation of the eight conditions of a theta-triple. Condi-
tions A1, A2, and A3 guarantee that the permutation w(τ ) associated to such theta-triple
is a signed permutation.

Conditions B1, B2, and B3, in some sense, characterize a theta-vexillary permutations
as well as the condition (pi−pi+1)+(qi−qi+1) > ki+1−ki does for vexillary permutations.
In condition B2, an extra kR(i) − kR(i+1) is added to the right side because, during the
construction of w(τ ), Step (i) skips an equal number of entries that have already been
used in previous steps. Moreover, condition B3 is equivalent to apply i = s in condition
B2, where we consider the extreme cases (k0, p0, q0) = (0, n, n) and (ks+1, ps+1, qs+1) =
(n, 1,−n).

Finally, for conditions C1 and C2, the next lemma states an equivalent definition of
them based on the construction algorithm of w(τ ):

Lemma 8. The conditions C1 and C2 are equivalent, respectively, to

C1′. Given any a 6 i 6 s, all entries placed by Steps (a) to (i) are positive;

C2′. Given any a 6 i 6 s, all entries placed by Steps (R(i) + 1) to (a − 1) are strictly
bigger than qi.

Proof. For the first statement, observe that all Steps from (a) to (i) must skip at most
ka−1−kR(i) values because they were already used in Steps (R(i)+1) to (a−1) and denote
by α := −qi− (ka−1− kR(i)) the number of available positive entries from 1 to qi that can
be used by Steps (a) to (i). Then, condition C1 is equivalent to say that α > ki − ka−1,
i.e., there is enough positive values available to be placed by Steps (a) to (i).

For the second assertion, remember that the definition of L(i) says that it is the biggest
integer in {R(i)+1, . . . , a−1} where kL(i)−kR(i)+1 > qR(i)+1−qL(i). The smallest possible

entry placed by Steps (R(i)+1) to (L(i)) is limited below by qL(i) + kL(i) − kR(i)+1. Since
for any Step (j) after L(i), we have that kj − kR(i)+1 < qR(i)+1 − qj, then no entry placed

2This is an example of a theta-vexillary permutation that is not type C vexillary as defined by Billey
and Lam [5]. Indeed, it contains the pattern [3 2 1].
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by such step cannot be smaller than qL(i). So, every entry placed by Steps (R(i) + 1) to

(a− 1) is limited below by qL(i) + kL(i) − kR(i) + 1, and we conclude that both conditions

C2 and C2′ imply that qi < qL(i) + kL(i) − kR(i) + 1.

In other words, conditions C1 and C2 guarantee that given i > a, then all values
placed by Steps (R(i) + 1) to (i) ranges from qi to qi. In practice, it will be easier to use
C1′ and C2′ instead of C1 and C2.

Now, let us study the descents of a theta-vexillary signed permutation w(τ ) and its
inverse w(τ )−1.

Proposition 9. Let w = w(τ ) be a theta-vexillary signed permutation and τ = (k,p,q)
be a theta-triple. Then all the descents of w are at positions pi − 1, i.e, for each i, we
have w(pi − 1) > qi > w(pi) and there are no other descents.

Proof. In Step (1), no descents are created, unless p1 = 1, in which case the permutation
has a single descent at 0. For 1 < i < a, this is proved in Lemma 2.2 of [4]. Now, supposing
that a 6 i 6 s and i > 2, assume inductively that for j < i, there is a descent at position
pj − 1 whenever this position has been filled, satisfying w(pj − 1) > qj > w(pj), and there
are no other descents. By Lemma 8, only positive entries are placed in consecutive vacant
positions of Step (i), from left to right, at position pi (or the next vacant position to the
right, if pi−1 = pi). We consider “sub-steps” of Step (i), where we are placing an entry
at position p > pi, and distinguish three cases. First, suppose we are at position p, with
p < pi−1 − 1. In this case, the previous entry placed in Step (i) (if any) was placed at
position p − 1, so we did not create a descent at p − 1. Position p + 1 is still vacant, so
no new descents are created.

To clarify this proof, let τ = (3 4 5 6 9, 8 6 5 4 2, 7 4 2 3 6) as in Example 6. In Step
(5), the first entry placed is 1 and it does not create a descent:

w = · 1 · 3 2 4 · 9 8 7

Next, suppose we are at position p = pi−1−1. This means that pi−1−pi 6 ki−ki−1, so
let β = (ki−ki−1)−(pi−1−pi) be the number of entries remaining to be placed in Step (i),
after placing the current at position p. Condition B1 tells us that qi 6 qi +β < qi−1, then
considering the integer interval Ii = {qi−1 + 1, . . . , qi}, it must be non-empty. We claim
that the entry w(p) = w(pi−1 − 1) lies in Ii and therefore w(pi−1 − 1) > qi−1 > w(pi−1),
proving this situation. Remember that the construction algorithm must skip those entries
whose absolute value has already been used, and then this claim is equivalent to say that
even removing from Ii those repetitions, there still is some value to be picked by w(p) in
Ii.

To prove that claim, lets count how many values in Ii were used in previous steps.
For a 6 j < i, any entry x of Steps (j) satisfies x 6 qj 6 qi−1, that means x 6∈ Ii. If
1 6 j 6 R(i) then any entry x placed in Steps (j) satisfies x 6 qj 6 qR(i) < qi, implying
that x 6∈ Ii. If R(i − 1) < j < a then by condition C2′, any entry x placed in Steps
(j) satisfies x > qi−1, implying that x 6∈ Ii. Finally, if R(i) < j 6 R(i − 1) then by
condition C2′, any entry x placed in Step (j) satisfies qi < x 6 qj 6 qR(i−1) < qi−1,
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hence, x ∈ Ii. We conclude that the only absolute values placed in previous steps that
belongs to the interval Ii are all the ones from Steps (R(i) + 1) to (R(i − 1)). So there
are α := kR(i−1) − kR(i) values in Ii that cannot be used in Step (i) in position p. In
order to place the correct value for position p of Step (i), we need to consider that the
values which are going to be placed after position p also must belong to Ii and are bigger
than w(p), i.e., it also is required to skip the β biggest values in Ii. Since the number of
elements of Ii is qi − qi−1, follows from condition B2 that #(Ii) > α + β and, therefore,
there is some value in Ii to pick for w(p).

Continuing the example, in Step (5), the second entry placed is 5, which creates a
descent at position 3:

w = · 1 5 3 2 4 · 9 8 7

Finally, suppose we are at position p > pi−1. Using the previous case, the entry to
be placed is some x ∈ Ii. When an entry is placed in a vacant position to the right of
a filled position, it does not create a descent since either all entries already placed the
previous steps are smaller than qi−1 < x or the entries placed in this step is smaller than
x. When it is placed to the left of a filled position, which can only happen at positions
pj − 1 for some j < i − 1, and it does create a descent at the position pj − 1 satisfying
w(pj − 1) > qi−1 > qj > w(pj)

In Step (5) of our example, it remains to place the 3rd value 6 in the next vacant
position, which occurs at position 7. Observe that we do not create a descent at the filled
position to its left, but we do create a descent at position 7, since the position 8 is already
filled:

w = · 1 5 3 2 4 6 9 8 7

At Step (s + 1), we can apply the previous case for i = s + 1, adding the values
ks+1 = n, ps+1 = 0, qs+1 = −n+ 1 to τ . This procedure will create descents only at those
pj − 1 which are still vacant.

Given a triple τ = (k,p,q), the dual triple is defined by τ ∗ = (k,q,p), where p and q
were switched. Clearly, a dual triple τ ∗ is not necessarily a theta-vexillary permutation,
but the dual triple is useful to compute the inverse of w(τ ).

The dual triple τ ∗ = (k, q, p) determines a signed permutation ι(w(τ ∗)) in S2n+1 using
the following algorithm:

Step (0) Put a zero at the position 0;

Step (1) Starting in the q1 position, place k1 consecutive entries, in increasing order,
ending with −p1. Mark the absolute value of these numbers as “used” and fill the
reflection through 0 with the respective reflection w(a) = w(a);

Step (i) For 1 < i 6 s, starting in the qi position (if qi < 0 then use a position before
zero), or the next available position to the right, fill the next available ki − ki−1
positions with entries chosen consecutively from the unused absolute numbers, in
increasing order, ending with −pi or, if it is not available, the biggest unused number

the electronic journal of combinatorics 25(4) (2018), #P4.53 13



below −pi. Again, mark the absolute value of these numbers as “used” and fill the
reflection through 0 with the respective reflection w(a) = w(a);

Step (s+1) Fill the remaining available positions after 0 with the unused positive num-
bers in increasing order. Finally, fill the reflection through 0 with the respective
reflection w(a) = w(a)

The difference here compared to the construction using the theta-vexillary permutation
is that we allow having negative positions, so we need the full form of the permutation.
The signed permutation w(τ ∗) is obtained from ι(w(τ ∗)) by restricting it to the positions
{1, . . . , n}.
Lemma 10. We have w(τ ∗) = w(τ )−1.

Proof. We can prove in the same way as Lemma 2.3 of [4], adding the fact that for
a 6 i 6 s, the permutation ι(w) maps the set a(i) to b(i) and, hence, the inverse ι(w)−1

maps b(i) to a(i).

Example 11. Consider the dual triple τ ∗ = (3 4 5 6 9, 7 4 2 3 6, 8 6 5 4 2) from Example
6. The permutation ι(w(τ ∗)) is constructed as follows:

· · · · · · · · · · 0 · · · · · · · · · ·
· 8 9 10 · · · · · · 0 · · · · · · 10 9 8 ·
· 8 9 10 · · 6 · · · 0 · · · 6 · · 10 9 8 ·
· 8 9 10 · · 6 · 5 · 0 · 5 · 6 · · 10 9 8 ·
· 8 9 10 · · 6 4 5 · 0 · 5 4 6 · · 10 9 8 ·
· 8 9 10 7 3 6 4 5 2 0 2 5 4 6 3 7 10 9 8 ·
1 8 9 10 7 3 6 4 5 2 0 2 5 4 6 3 7 10 9 8 1

For each step, bold numbers represent the values placed in the step, and italic numbers
are their reflection through zero. Thus, w(τ ∗) = 2 5 4 6 3 7 10 9 8 1 and we can easily verify
that this permutation is the inverse of w = 10 1 5 3 2 4 6 9 8 7.

Although w(τ ∗) is not necessarily theta-vexillary, a similar version of Proposition 9
holds for this case and the proof follows that same idea.

Proposition 12. Let w = w(τ ) be a theta-vexillary signed permutation, for a theta-triple
τ = (k,p,q). Then all the descents of w−1 are at positions qi − 1, when i < a, and qi,
when i > a. In fact, we have

w−1(qi − 1) > pi > w−1(qi), for i < a;

w−1(qi) > pi − 1 > w−1(qi + 1), for i > a;

and there are no other descents.

By Proposition 9, it is clear that w(τ ) has exactly s descents. However, its inverse
w(τ )−1 does not hold the same property since it is possible that there exist i and j such
that qi − 1 = qj. In Example 11, we have that w(τ )−1 has three descents while s = 5. In
this case, we observe that q1 − 1 = q5 and q2 − 1 = q4.
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4 Extended diagrams for theta-vexillary permutations

In this section, we aim to understand how a theta-vexillary permutation looks like in the
extended diagram.

Given a position (p, q) in the extended diagram D+(w), define the left lower region of
(p, q) by the set boxes in the extended diagram strictly south and weakly west of the SE
corner (q − 1, p). In other words, denoting it by Λ(p, q), this set is

Λ(p, q) := {(a, b) ∈ D+(w) | a > q, b 6 p}.

Notice that the construction algorithm of a theta-vexillary permutation w(τ ) can
also be seen as a process of placing dots in the extended diagram, since each pair (w(i), i)
corresponds to a dot in the diagram. We can say that a Step (i) places dots in the diagram
using the following rule: if an entry x is placed at a position z in the permutation, i.e.,
w(z) = x, then it produces a dot at the box (x, z) in the diagram. For instance, the triple
τ = (3 4 5 6 9, 8 6 5 4 2, 7 4 2 3 6) of Example 6 whose diagram is represented in Figure 2.
The first step places the entries 9, 8 and 7, respectively, at positions 8, 9 and 10, which
correspond to place dots in boxes (9, 8), (8, 9) and (7, 10). The second step places only a
dot in the box (4, 6). We continue for each step until we place all dots in the diagram.

Proposition 13. Let w = w(τ ) be a theta-vexillary signed permutation and τ = (k,p,q)
be a theta-triple. Then we have the following:

1. The boxes (qi − 1, pi) and their reflection (qi, pi − 1) are SE corners of the diagram
of ι(w) (not necessarily all of them);

2. For any 1 6 i 6 s + 1, all the dots placed by Step (i) in the diagram are inside
region Λ(pi, qi) and outside Λ(pi−1, qi−1);

3. ki is the number of dots inside the region Λ(pi, qi).

Proof. Lemma 3 says that there is a symmetry between boxes (qi− 1, pi) and their reflec-
tion (qi, pi − 1). Then, it suffices to prove that every (qi − 1, pi) is a SE corner. If p > 0,
then a signed permutation w has a descent at position p−1 if and only if i(w) has descents
at position p− 1 and p. By proposition 9, ι(w) satisfies ι(w)(pi − 1) > qi > ι(w)(pi), and
it implies that

ι(w)(pi) > qi − 1 > ι(w)(pi + 1).

On the other hand, by Proposition 12, ι(w)−1 satisfies

ι(w)−1(qi − 1) > pi > ι(w)−1(qi),

for any i. This proves that (qi − 1, pi) satisfies Equation (2), which proves item (1).
For item (2), first of all, observe that every entry x placed at position z in Step (i)

satisfies pi 6 z and x 6 qi, implying that the correspondent dot at box (x, z) in the
diagram belongs to Λ(pi, qi).
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Now, we need to check that all dots placed by Step (i) are outside Λ(pi−1, qi−1). It is
enough to verify that whenever in Step (i) we are placing an entry x at a position z > pi−1
in the permutation, then x > qi−1. Set β = (ki− ki−1)− (pi−1− pi) the number of entries
to be placed after the position pi−1 during Step (i). If 1 6 i < a then condition B1 implies
that β < qi−1 − qi. The entries that will be placed are qi + β + 1, . . . , qi and they are all
strictly greater than qi−1 (in the diagram, it is equivalent to say that we have qi−1 − qi
available rows to place the dots above qi−1 but we only need β rows). If i = a then by
Lemma 8, x > 0 > qi−1.

If a < i 6 s+1 then condition B2 implies that β < (qi−1− qi)− (kR(i−i)−kR(i)), which
means that have (qi−1 − qi)− (kR(i−1) − kR(i)) available rows in the diagram to place the
dots above qi−1 but we only need β rows. Observe that we must skip kR(i−1) − kR(i) rows
in the diagram since their reflection have already been used between Steps (R(i) + 1) to
(R(i− 1)). This proves item (2).

Finally for (3), ki is the total of dots placed until Step (i) and they are all placed inside
the region Λ(pi, qi). Any other dot placed after this step is placed outside Λ(pi, qi).

If we denote τ as the set {(ki, pi, qi) | 1 6 i 6 s}, then Proposition 13 tells us that τ
as a subset of corners, i.e., we can denote τ ⊂ C (w).

Remember that there is a poset “<” in the set of corners C (w) where two corners
positions satisfy (p, q) < (p′, q′) if and only if p > p′ and q < q′. Also remember that the
NE path Ne(w) ⊂ C (w) is the set of minimal elements of this poset.

Lemma 14. Let w = w(τ ) be a theta-vexillary signed permutation, and τ = (k,p,q) be
a theta-triple. Then every corner position (pi, qi) of τ is minimal in the poset “<”, i.e.,
τ ⊂ Ne(w).

Proof. Suppose that there is a pair (pi, qi) of τ and a corner position (p, q) ∈ C (w) such
that (p, q) < (pi, qi), i.e., p > pi and q < qi. The pair (p, q) is not in τ because p and
q are strictly decreasing s-tuples. Since the box (q − 1, p) is a SE corner, Equation (2)
implies that

q < x and p 6 y, (5)

where x := w(p− 1) and y := w−1(q).
When we use the construction algorithm to produce the permutation w, observe that

the position p − 1 must be filled by some step and the entry q must be placed in some
step. So, there must be integers 1 6 m, l 6 s+ 1 such that:

a) The entry x is placed in the position p− 1 during some Step (m). This places a dot
at the box (x, p+ 1) ∈ Λ(pm, qm);

b) The entry q is placed in the position y during some Step (l). This places a dot at
the box (q, y) ∈ Λ(pl, ql).

Although there exist such integers m and i, we are going to show that they cannot be
either equal, smaller or greater than each other. Hence, this contradicts the assumption
that (pi, qi) is not minimal in the poset.
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If m = l then, using Equation (5), p − 1 < y are positions in Step (m = l) and the
entry in such positions are w(p − 1) = x > q = w(y), i.e., there is a descent in it. This
contradicts the fact that there are no descents in a step.

If m < l then, using Equation (5), we got that y 6 p and q 6 x 6 qm (the former
relation comes from the fact that every entry placed by Step (m) is weakly smaller than
qm). This implies that the box (q, y) also belongs to the region Λ(pm, qm), a contradiction
of item 2 of Proposition 13.

If m > l then observe that Step (l) must fill all positions from pl to y in the construction
algorithm of the permutation w. Since y > p − 1 > pi > pl (because i < l), we have
that the position p− 1 is also filled by Step (l), which contradicts the fact that it is filled
during Step (m).

Recall that a corner position (p, q) of C (w) is unessential if there are corners (p1, q1),
(p2, q2) and (p3, q3) in the NE path Ne(w) such that (p, q) is not a minimal corner in the
poset in the upper half of the diagram, the box (q1 − 1, p1) lies above and in the same
column of the box (q− 1, p), and the box (q2, p2− 1) reflected from (q2− 1, p2) lies to the
right and in the same row of (q − 1, p), as in Figure 3.

Proposition 15. Given w ∈ Wn, suppose that the set of corners C (w) is the disjoint
union

C (w) = Ne(w)∪̇U(w).

Then w is a theta-vexillary.

Proof. Suppose that the set of corners C (w) of a permutation w is given by the disjoint
union of the NE path Ne(w) and the set of unessential corners U(w). Since all corner
positions (pi, qi) of Ne(w) can be ordered so that p1 > p2 > · · · > pr > 0 and q1 > q2 >
· · · > qr, set ki as the rank rw(pi, qi) and define the triple τ ′ = (k,p,q). We will prove
that τ is almost a theta-vexillary triple, i.e., it satisfies A1, A2, A3, C1, C2, and B1. In
order to get B2 and B3, occasionally some elements (ki, pi, qi) should be removed from τ ′.

Conditions A1, A2 and A3 are true because w is a signed permutation inWn. In fact,
A1 and A3 come directly from the fact that there is no SE corner at row −1 or above
the middle in column −1 since w(0) = 0, and A2 is satisfied just because we cannot have
dots lying in opposite rows.

Now, a and R(i), for a 6 i 6 s, can be defined. Let us prove that τ satisfies the
remaining conditions. Consider the diagrams sketched in Figure 4.

For condition C1, let a 6 i 6 s and consider the regions A and B as in Figure 4 (left).
Denote by d(A) and d(B) the number of dots in each one of them. The definition of R(i)
can be translated to the diagram as follows: R(i) is the unique index smaller than a such
that there is no other corner of τ lying to the right of it and in the rows qR(i) − 1, . . . , qi.
Suppose that there is a dot in the darker region A of Figure 4 (left). This dot must be
placed by some Step (j), for j > R(i), which implies that the corner position (pj, qj) is
located above the row qi and it also places a dot above qi. However, the construction of
a step says that we must fill all entries between them, including qi. So, we should have a
dot at row qi and another in the row qi, a contradiction of condition A2. Hence, d(A) = 0.
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Figure 4: Configuration required to get conditions C1, C2 (left), B1 (middle), B2, and
B3 (right).

On the other hand, d(B) 6 −qi because condition A2 says that we cannot have dots in
opposite rows. Thus, −qi > d(A) + d(B) = ki − kR(i), since d(A) + d(B) is the amount of
dots to be placed from Step (R(i) + 1) to (i).

By Lemma 8, we may show that τ satisfies condition C2′ instead of C2. In the previous
case, we proved that region A contains no dots. It means that no step from (R(i) + 1)
to (a − 1) place dots in A, which is equivalent to say that all entries placed by Steps
(R(i) + 1) to (a− 1) are strictly bigger than qi, proving C2′.

For condition B1, let 1 6 i < a − 1 and consider the rectangular regions A and B
as in Figure 4 (middle). Denote by d(A) and d(B) the number of dots in each one of
them. Notice that the number of dots in each rectangle is limited by the length of their
sides, and d(A) + d(B) is the number of dots in Step (i). If pi = pi+1 then d(B) = 0 and
d(A) < qi − qi+1, since we cannot place a dot in row qi − 1. So, (pi − pi+1) + (qi − qi+1) >
d(B) +d(A) = ki+1−ki. If pi > pi+1 then, we cannot have the dot in column pi + 1 inside
B because it would not create a SE corner (qi − 1, pi). Hence, (pi − pi+1) + (qi − qi+1) >
d(B) + d(A) = ki+1 − ki.

For conditions B2 and B3, let a 6 i 6 s and consider the rectangular regions A, B
and C of Figure 4 (right). Suppose that pi > pi+1. Using the same argument of condition
C1, all dots between the rows qi and qi+1 are in rectangle C and the number of dots
in this region is d(C) = kR(i) − kR(i+1). As well as the previous case, d(B) < pi − pi+1

and the number of dots in region A is d(A) 6 (qi − qi+1) − d(C), since we cannot have
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dots in opposite rows. Therefore, (pi − pi+1) + (qi − qi+1) > d(B) + d(A) + d(C) =
(ki+1 − ki) + (kR(i) − kR(i+1)).

The difficulty appears when pi = pi+1. In this case, d(B) = 0 and d(A) 6 (qi− qi+1)−
d(C). Then, (pi−pi+1) + (qi− qi+1) > d(B) +d(A) +d(C) = (ki+1−ki) + (kR(i)−kR(i+1)),
which means that the equality can happen. So, we need to remove these elements from
τ ′ where the equality holds. Denote the set of index I = Iτ ′ ⊂ [1, s] by

I = {i > a | (pi − pi+1) + (qi − qi+1) = (ki+1 − ki) + (kR(i) − kR(i+1))}

Define τ the triple τ := {(ki, pi, qi) ∈ τ ′ | i 6∈ I}. Clearly, τ satisfies A1, A2,
A3, C1, C2, and B1. Suppose that a 6 i < j are integers such that i, j 6∈ I and
i+ 1, i+ 2, . . . , j − 1 ∈ I, i.e., i and j are consecutive indexes in τ . Then they satisfy

(pi − pi+1) + (qi − qi+1) > (ki+1 − ki) + (kR(i) − kR(i+1)),

(pi+1 − pi+2) + (qi+1 − qi+2) = (ki+2 − ki+1) + (kR(i+1) − kR(i+2)),

(pi+2 − pi+3) + (qi+2 − qi+3) = (ki+3 − ki+2) + (kR(i+2) − kR(i+3)),

...

(pj−1 − pj) + (qj−1 − qj) = (kj − kj−1) + (kR(j−1) − kR(j)).

Therefore,

(pi − pj) + (qi − qj) > (kj − ki) + (kR(i) − kR(j)),

and τ also satisfies B2 and B3.
Finally, observe that the extended diagram of w(τ ) is exactly the extended diagram

of w, which means that w(τ ) = w.

Now, we aim to prove the converse of Proposition 15.

Lemma 16. Let w = w(τ ) be a theta-vexillary signed permutation, and τ = (k,p,q) be
a theta-triple. Then for any 1 6 i 6 s such that pi > pi+1, there is no corner position
(p, q) different of (pi, qi) satisfying p > pi+1 and qi > q. In other words, (pi, qi) is the
unique SE corner in the region highlighted in Figure 5.

i+ 1

i

Figure 5: Region in the extended diagram where we cannot have a SE corner.
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Proof. Suppose that there is (p, q) for some i such that p > pi+1. If pi > p > pi+1 then
the position p − 1 is a descent of w, which is impossible since all descents of w are at
positions pi − 1 and no one matches to p− 1.

If pi = p and q > qi then the box (q − 1, pi) is a SE corner, and the dots in row q and
column pi + 1 are placed as in Figure 6. The dot placed in row q lies inside the region
Λ(pi+1, qi+1), and outside Λ(pi, qi), implying that such dot is placed during Step (i+ 1).

b

b

b

i

i+ 1

Figure 6: Sketch of the diagram to prove Lemma 16.

Notice that the dot at column pi + 1 cannot be placed during Step (i+ 1) because it
would create a descent in Step (i+ 1). Then, there is j > i+ 1 such that Step (j) placed
such dot. In this case, Step (i + 1) should skip column pi + 1, which is impossible (by
construction, this step places dots in all available columns between w−1(q and pi+1).

The NE path also can contain another kind of SE corner defined as follows: given a
theta-vexillary signed permutation w and a theta-triple τ , a corner position (p, q) 6∈ τ is
called optional if there are a 6 i 6 s and 1 6 j < a such that p = pi, qi < q = qj + 1
and qi−1 > q > qi. In other words, (p, q) belongs to the NE path just between the corners
(pi−1, qi−1) and (pi, qi), and the box (qi − 1, pi) lies above and in the same column of
(q − 1, p), as shown in Figure 7. Denote by Opτ (w) the set of all optional corners and
observe that Opτ (w) ⊂ Ne(w).

i

j⊥

(q − 1, p)

b

j

i− 1

Figure 7: Configuration of an optional corner (p, q).

Observe that such box only occurs if the number of available rows between qi and q
is smaller than the number of dots to be placed by Step (i), which is ki − ki−1. In other
words, we need to have enough dots to place during Step (i) such that some of them are
placed below the corner (p, q). This implies that the following equation is satisfied:

q − qi = ki − k + kj − kR(i). (6)
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Thus, a triple τ ′ obtained by adding (k, p, q) to τ also gives the same permutation
but it is not a theta-triple anymore.

For instance, considering the theta-vexillary signed permutation w = 10 1 5 3 2 4 6 9 8 7
of Figure 2, the set of optional corners Opτ (w) only contains the triple (7, 2, 3).

Proposition 17. Let w be a theta-vexillary and τ be a theta-triple. Then, the set of
corners is the disjoint union

C (w) = τ ∪̇ Opτ (w) ∪̇ U(w).

Proof. Denote by ι(τ ) ⊂ C (ι(w)) the set of all corner positions of τ and their reflections,
i.e.,

ι(τ ) =
s⋃
i=1

{(ki, pi, qi) ∪ (ki, pi, qi)
⊥}.

Propositions 9 and 12 state that all descents of w and w−1 are exclusively determined
by elements in τ . Moreover, this assertion can be extended to the diagram D(ι(w))) of
ι(w): all descents of ι(w) are at position pi − 1 and pi, and all descents of ι(w)−1 are
at position qi − 1 and qi, where i ranges from 1 to s. Thus, if there is other SE corner,
it should not create descents, but it must match existing descents. For instance, for τ
of Example 6 and its diagram in Figure 2, observe that the corner position (2, 3) does
not belong to ι(τ ) but it is in the same row and column of two corner positions of ι(τ ),
namely, (4, 3) and (2, 6).

We conclude that if there exists a corner position T that does not belong to ι(τ ) then
there are corner positions T ′, T ′′ in ι(τ ) such that T ′ is in the same column of T , and T ′′

is in the same row of T . Then, we need to figure out when a combination of descents of
corners T ′ and T ′′ in ι(τ ) a new corner.

Consider the diagram D(ι(w)) divided in quadrants as in Figure 8.

B

n · · · 1
n

1 · · ·n

1

...

1

n

... A

C

D

0

0 b

Figure 8: Quadrants of the diagram.

Given (p, q) ∈ ι(τ ), we say that the SE corner (q − 1, p) belongs to:

• Quadrant A if (p, q) = (pi, qi) for some i < a;

• Quadrant B if (p, q) = (pi, qi) for some i > a;

the electronic journal of combinatorics 25(4) (2018), #P4.53 21



• Quadrant C if (p, q) = (pi, qi)
⊥ for some i < a;

• Quadrant D if (p, q) = (pi, qi)
⊥ for some i > a.

Consider two corner positions T ′ = (p′, q′) and T ′′ = (p′′, q′′) in ι(τ ) such that p′ > p′′

and q′ 6= q′′, i.e., T ′ and T ′′ are in different rows and columns. A cross descent is a box
that lies in the same row of one of these corners (either T ′ or T ′′) and in the same column
of the remaining one. There are four types of cross descent boxes of T ′ and T ′′ as shown
in Figure 9.

Type α Type β Type γ Type δ

T ′

T ′′

T ′

T ′′ T ′

T ′′

T ′

T ′′

Figure 9: Four possible cross descents boxes.

Namely,

• A cross descent of type α is the box (q′′ − 1, p′) when q′ > q′′;

• A cross descent of type β is the box (q′ − 1, p′′) when q′ > q′′;

• A cross descent of type γ is the box (q′′ − 1, p′) when q′ < q′′;

• A cross descent of type δ is the box (q′ − 1, p′′) when q′ < q′′.

Suppose that T ′ = (p′, q′) and T ′′ = (p′′, q′′) are two corners of ι(τ ). Consider that
T ′ lies in some quadrant X, T ′′ lies in some quadrant Y, and they have cross descent
box (a, b) of type ξ, where X,Y ∈ {A,B,C,D} and ξ ∈ {α, β, γ, δ}. We say that this
configuration has shape XξY. Also denote by cξ(T

′, T ′′) = (a, b) the respective cross
descent box.

First of all, we need to figure out all possible shapes and, then, verify if the cross
descent box of each shape is a SE corner.

There are 64 different combination of shapes XξY, where X,Y ∈ {A,B,C,D} and
ξ ∈ {α, β, γ, δ}. However, not every shape is possible because τ is a theta-triple and
T ′, T ′′ are chosen in ι(τ ). An example of impossible shape is AδA since, by definition,
there is no i < j where T ′ = (pi, qi) and T ′′ = (pj, qj) such that qi < qj. Thus, it remains
only 24 possible shapes. We listed them in Table 1, divided in two categories: shapes
XξY where the cross descent box cξ(T

′, T ′′) belongs to the quadrants A or B, and shapes
XξY where cξ(T

′, T ′′) belongs to the quadrants C of D.
Observe that if cξ(T

′, T ′′) belongs to quadrants C or D then its reflection cξ(T
′, T ′′)⊥

belongs to quadrant A or B and corresponds to the cross descent box of corners (T ′′)⊥ =
(p′′+ 1, q′′+ 1) and (T ′)⊥ = (p′+ 1, q′+ 1). In other words, each shape in the left column
of Table 1 is equivalent to another one to the right column. Hence, we can consider only
the 12 shapes where cξ(T

′, T ′′) belongs to quadrants A or B.
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Table 1: Possible shapes
Shapes XξY where cξ(T

′, T ′′) Shapes XξY where cξ(T
′, T ′′)

belongs to A or B: belongs to C or D:
AαA, AαB, AαC, CβC, DβC, AβC,
AαD, BαB, BαC, BβC, DβD, AβD,
AβA, AβB, BβB, CαC, DαC, DαD,
AγD, BγC, BγD. BδC, AδD, BδD.

It follows from Lemma 14 that τ ∩U(w) = ∅ because no unessential corner is minimal
in the poset. By definition of optional corner, we also have that τ ∩ Opτ (w) = ∅ and
Opτ (w) ∩U(w) = ∅. Then, all the sets are disjoint.

Suppose that T ′ = (p′, q′) and T ′′ = (p′′, q′′) of ι(τ ) has some shape XξY, where
X,Y ∈ {A,B,C,D} and ξ ∈ {α, β, γ, δ}, such that the cross descent box cξ(T

′, T ′′) is a
SE corner in quadrant A or B which does not belongs to τ . Then, analyzing each situation
in the first column of Table 1, we must show that either cξ(T

′, T ′′) ∈ Opτ (w) ∪̇ U(w) or
it leads us to a contradiction.

Consider ξ = α, where p′ > p′′, q′ > q′′, and T = (p′, q′′) is a SE corner (q′′ − 1, p′) not
in τ and satisfying the following conditions

ι(w)(p′ − 1) > q′′ > ι(w)(p′)

ι(w)−1(q′′) > p′ − 1 > ι(w)−1(q′′ + 1).
(7)

• If XξY is a shape AαA, AαB or BαB, then T ′ = (pi, qi), T
′′ = (pj, qj), where

1 6 i < j 6 s, and T = (pi, qj) is a SE corner (qj − 1, pi). But Lemma 16 says that
T cannot be a corner.

• If XξY is a shape AαC or BαC, then T ′ = (pi, qi), for some i, T ′′ = (pj, qj)
⊥ =

(pj + 1, qj + 1), for some j < a, and qi > qj + 1. We can assume that i is chosen such
that there is no l > i satisfying pi = pl and qi > ql > qj + 1, i.e., there is no corner
of τ in the same column and between the SE corners T ′ and T . If pi > pi+1 then
Lemma 16 is contradicted. Thus, we have that pi = pi+1 and qi > qj + 1 > qi+1,
implying that T is an optional SE corner.

• If XξY is a shape AαD, then T ′ = (pi, qi), for some i < a, T ′′ = (pj, qj)
⊥ =

(pj + 1, qj + 1), for some a 6 j 6 s, and qi > qj + 1. As in the previous case,
we can assume that i is chosen such that there is no l > i satisfying pi = pl and
qi > ql > qj + 1, i.e., there is no corner of τ in the same column and between the
SE corners T ′ and T . If pi > pi+1, then the corner T contradict Lemma 16. Thus,
pi = pi+1, qi > qj + 1 > qi+1 and i = R(j). Notice that the dot in the row qj + 1
is between rows qi and qj since T is a corner, which is impossible as shown in the
proof of Proposition 15 (see Figure 10).

Consider ξ = β, where p′ > p′′, q′ > q′′, and T = (p′′, q′) is a SE corner (q′− 1, p′′) is a
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j⊥

i = R(j)

brow (qj + 1) →

row qi →

i+ 1

Figure 10: Sketch of the diagram of shape AαD.

SE corner not in τ and satisfying the following conditions

ι(w)(p′′ − 1) > q′ > ι(w)(p′′)

ι(w)−1(q′) > p′′ − 1 > ι(w)−1(q′ + 1).
(8)

• If XξY is a shape AβA or AβB, then T ′ = (pi, qi) and T ′′ = (pj, qj), for some i < a
and i < j. Observe that the dots at column pj and row qj are placed by Step (j) (or
some previous one). Then, by construction, the dot at row qi− 1 must be placed by
some Step (l) for l 6 j. Thus, ι(w)−1(qi − 1) > pj, a contradiction of Equation (8).

• If XξY is a shape BβB, then T ′ = (pi, qi) and T ′′ = (pj, qj), for some a 6 i < j 6 s.
If ι(w)−1(qi − 1) < 0, i.e., the dot in the row qi − 1 is in quadrant B then we can
proceed as the previous case. If ι(w)−1(qi − 1) > 0 then it belongs to the quadrant
C and it is a reflection of a dot placed during some Step (l) for l < a. Since
ι(w)(qi) < pj + 1 6 0, then ql = qi + 1 and the corner (pl, ql) lies in row qi + 1.
Therefore, the reflection (pl, ql)

⊥ is in the row qi − 1, and the corner T is optional
or unessential (see Figure 11).

b

b

b

b

b

i

j

l

l⊥

Figure 11: Sketch of the diagram of shape BβB.

Consider ξ = γ, where p′ > p′′, q′ < q′′, and T = (p′, q′′) is a SE corner (q′′ − 1, p′) is a
SE corner not in τ and satisfying the following conditions

ι(w)(p′ − 1) > q′′ > ι(w)(p′)

ι(w)−1(q′′) > p′ − 1 > ι(w)−1(q′′ + 1).
(9)

• If XξY is a shape AγD or BγD, then T ′ = (pi, qi), for any i, T ′′ = (pj, qj)
⊥ =

(pj+1, qj+1), for some a 6 j 6 s, and qi < qj+1. By Equation (9), qj−1 > ι(w)(pi)
and ι(w)−1(qj − 1) > pi − 1 > 0 > ι(w)−1(qj), implying that no Step (l), for l < a,
can place the dot at row qj. Hence, qR(j) = qj + 1 and T is exactly the corner
(pR(j), qR(j)) of τ (see Figure 12).
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j⊥

i

b

b

Row qj → b

Figure 12: Sketch of the diagram of shape AγD or BγD.

• If XξY is a shape BγC, then we clearly have that T is an unessential or optional
corner.

Proposition 18. For w ∈ Wn, w is theta-vexillary if and only if the set of corners C (w)
is the disjoint union

C (w) = Ne(w)∪̇U(w).

Proof. Suppose that w(τ ) is theta-vexillary. From Lemma 14, τ ∪Opτ (w) ⊂ Ne(w). On
the other hand, Proposition 17 implies that Ne(w) ⊂ τ∪Opτ (w) since Ne(w)∩U(w) = ∅.
Hence, Ne(w) = τ ∪ Opτ (w).

Remark 19. If w is a theta-vexillary signed permutation but we don’t know a theta-triple
such that w = w(τ ), we can use the process in the proof of Proposition 15 to get τ .
Starting with all corners in the NE path Ne(w), we withdraw all optional corners from
it. The result is a valid theta-triple τ of w.

Proposition 20. The theta-triple is unique for each theta-vexillary signed permutation.

Proof. Suppose that τ and τ̃ are two different theta-triples such that w = w(τ ) = w(τ̃ ).
Then, τ ∪̇Opτ (w) = Ne(w) = τ̃ ∪̇Opτ̃ . If there is a corner position (p, q1) ∈ Opτ ∩ τ̃ then
there is q2 > q1 such that (p, q2) ∈ τ is a corner position immediately above it. Notice
that (p, q2) does not belong to τ̃ , otherwise condition B2 of τ̃ for both corners would
contradict Equation (6) for the optional corner (p, q1). Then, (p, q2) ∈ Opτ̃ ∩ τ . For the
same reason, there is q3 > q2 such that (p, q3) ∈ Opτ ∩ τ̃ , and keep going. Hence, this
process should be repeated forever, which is impossible since the sets are finite. Therefore,
Opτ ∩ τ̃ = ∅, and by the same reason Opτ̃ ∩ τ = ∅, which implies that τ = τ̃ .

5 Pattern avoidance

Recall that given a signed pattern π = π(1) π(2) · · · π(m) inWm, a signed permutation w
contains π if there is a subsequence w(i1) · · ·w(im) such that the signs of w(ij) and π(j)
are the same for all j, and also the absolute values of the subsequence are in the same
relative order as the absolute values of π. Otherwise w avoids π.

Proposition 21. A signed permutation w is theta-vexillary if and only if w avoids the
following thirteen signed patterns [1 3 2], [2 3 1], [3 2 1], [3 2 1], [2 1 4 3], [2 3 4 1],
[2 3 4 1], [3 4 1 2], [3 4 1 2], [3 4 1 2], [3 4 1 2], [4 1 2 3], and [4 1 2 3].

the electronic journal of combinatorics 25(4) (2018), #P4.53 25



Proof. We know, by Proposition 15, how to describe a theta-vexillary permutation by the
SE corners of the extended diagram.

Assume that w is a theta-vexillary signed permutation. To prove that it avoids all
these 13 patterns, we will assume if one of these patterns is contained in w, then show
that there is a SE corner T such that T 6∈ Ne(w) ∪U(w).

Suppose that w contains [2 1 4 3] as a subsequence (w(a) w(b) w(c) w(d)) satisfying
w(b) < w(a) < w(d) < w(c) for some a < b < c < d as in Figure 13 (left).

b

abc

w(a)

w(c)

w(b)

b

b

T ′

b

w(d)

d

T

i

j

b

abc

w(a)

w(c)

w(b) b

b

T ′

T

Figure 13: Situation where w contains: [2 1 4 3] in the left; and [1 3 2] in the right.

Then, there is at least one SE corner in each shaded area, which will be denoted
by T and T ′. Clearly T 6∈ Ne(w) and, by Proposition 18, it should be an unessential
corner. Since τ is a theta-triple of w, there are i < j such that Step (i) places the dot
in the column b and Step (j) place the dot in the column a. However, it lead us to a
contradiction because we cannot place a dot in the row w(b) during Step (i) and skip the
row w(a) since it will be place further.

Now, suppose that w contains [1 3 2] as a subsequence (w(a) w(b) w(c)) satisfying
w(a) < w(c) < w(b) for some a < b < c as in Figure 13 (right). Then, there is at least
one SE corner in each shaded area, which will be denoted by T and T ′. By definition,
T is neither an unessential corner nor belongs to the NE path, i.e, T 6∈ Ne(w) ∪ U(w),
which contradicts Proposition 18.

Notice that we could consider the diagram of w restricted to the columns a, b, c and
rows 0,±w(a),±w(b),±w(c). Then, the corners T and T ′ in such restriction can be easily
represented as the first diagram of Figure 14. Clearly, such configuration tells us that T is
neither unessential nor minimal. The same idea can be used to prove that the remaining
eleven patterns in Figure 14 should be avoided.

Now, let us assume that w is permutation that avoids all the thirteen patterns listed
above. We are going to prove that C (w) = Ne(w) ∪ U(w), and hence, w is a theta-
vexillary permutation.

Suppose that there are corners T = (p, q) and T ′ = (p′, q′) such that q > 0 > q′ and
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b

[3 2 1]

b

b

b

[3 2 1]

b

b

b

[2 3 4 1]

b

b

b

b

[2 3 4 1]

b

b

b

b

[3 4 1 2]

b

b

b

b

[3 4 1 2]

b

b

b

b

[3 4 1 2]

b

b

b

b

[3 4 1 2]

b

b

b

b

[4 1 2 3]

b

b

b

b

[4 1 2 3]

b

b

b

b

b

b

[1 3 2]

b

b

[2 3 1]

b

T

T ′

T

T ′

T ′

T

T ′
T ′

T

T ′

T T ′

T

T ′

T ′ T ′ T ′ T ′

T T

T T T T

Figure 14: Diagram of w restricted to 12 different patterns.

p′ > p > 0, i.e., T is in quadrant A, T ′ is in quadrant B, and T ′ < T . If we denote a := p,
b := p′−1 and c := w−1(q′), then they satisfy 0 < a < b < c and w(a) < 0 < w(c) < w(b).
Observe that a, b, c are the columns of the dots in Figure 15.

b

b

b

a

b

c

T

T ′

Figure 15: Sketch for the case where T is in quadrant A, T ′ is in quadrant B, and T ′ < T .

In order to relate the subsequence (w(a) w(b) w(c)) of w to some 3-pattern π, we need
describe all possible orderings of w(a), w(b) and w(c).

• If w(a) < w(c) < w(b) then π = [1 3 2];

• If w(c) < w(a) < w(b) then π = [2 3 1];

• If w(c) < w(b) < w(a) then π = [3 2 1].
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By hypothesis, the pattern in each case should be avoided. Hence the configuration
in Figure 15 is impossible.

Now, suppose that there are corners T = (p, q) and T ′ = (p′, q′) such that q > q′ > 0
and p′ > p > 0, i.e., both T and T ′ are in quadrant A and T ′ < T . Denote i := w−1(q+1),
a = p, b = p′ − 1 and c = w−1(q′).

If i > 0, then they satisfy 0 < i < a < b < c and w(a) < w(i) < w(c) < w(b). Observe
that ı, a, b, c are the columns of the dots in Figure 16 (left).

b

b

a

b

c

T

T ′

i

bc

bc

b

b

a

b

c

T

T ′

ı

bc

bc w(ı)

w(i)

Figure 16: Sketch for the case where both T and T ′ are in quadrant A, and T ′ < T .

In order to relate the subsequence (w(i) w(a) w(b) w(c)) of w to some 4-pattern π, we
need to describe all possible orderings of w(i), w(a), w(c) and ±w(b).

• If w(b) < w(c) < w(i) < w(a) then π = [3 4 1 2];

• If w(b) < w(c) < w(i) < w(a) then π = [3 4 1 2];

• If w(c) < w(b) < w(i) < w(a) then π = [3 4 2 1];

• If w(c) < w(i) < w(b) < w(a) then π = [2 4 3 1];

• If w(c) < w(i) < w(a) < w(b) then π = [2 3 4 1].

By hypothesis, the pattern in each case should be avoided (in some cases, the high-
lighted parts are avoided by [3 2 1]). Hence this configuration is impossible.

Table 2: Combinations to get the respective 4-pattern of the subsequence of w.

ı<a<b<c a<ı<b<c a<b<ı<c a<b<c<ı

w(b)<w(c)<w(ı)<w(a) [3 4 1 2] [4 3 1 2] [4 1 3 2] [4 1 2 3]

w(b)<w(c)<w(ı)<w(a) [3 4 1 2] [4 3 1 2] [4 1 3 2] [4 1 2 3]

w(c)<w(b)<w(ı)<w(a) [3 4 2 1] [4 3 2 1] [4 2 3 1] [4 2 1 3]

w(c)<w(ı)<w(b)<w(a) [2 4 3 1] [4 2 3 1] [4 3 2 1] [4 3 1 2]

w(c)<w(ı)<w(a)<w(b) [2 3 4 1] [3 2 4 1] [3 4 2 1] [3 4 1 2]
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If i < 0 then we have four possibilities to place ı > 0 in the sequence 0 < a < b < c.
Observe that i, a, b, c are the columns of the dots in Figure 16 (right). Table 2 combines
all these possibilities along with all possible orderings of w(ı), w(a), w(c) and ±w(b), in
order to get the respective 4-pattern π relative to the correspondent subsequence of w.

By hypothesis, the pattern in each case should be avoided and, hence, this case is
impossible.

Finally, suppose that there are corners T = (p, q) and T ′ = (p′, q′) such that 0 > q > q′

and p′ > p > 0, i.e., both T and T ′ are in quadrant B, and T ′ < T . If we denote
i = w−1(q + 1), a = p − 1, b = p, c = p′ − 1 and d = w−1(q′), then they satisfy
i < a < b < c < d, w(b) < w(a) and w(b) < w(i) < w(d) < w(c). Observe that ı, a, b, c
are the columns of the dots in Figure 17 (left).
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b
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b
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T ′

b

b

d

b
i

b

b

ac

T

T ′

b

b

d

bı
S′

S

q

q

w(ı)

w(i)

Figure 17: Sketch for the case where both T and T ′ are in quadrant B, and T ′ < T .

Consider the following situations:

• If w(b) < 0 then the subsequence (w(b) w(c) w(d)) of w is a 3-pattern π equal to
[1 3 2], [2 3 1] or [3 2 1], which is impossible;

• If 0 < w(b) < w(a) < w(d) < w(c) then (w(a) w(b) w(c) w(d)) is a 4-pattern
π = [2 1 4 3] and also should be avoided;

• If i > 0 and w(b) > 0 then the subsequence (w(i) w(b) w(c) w(d)) is a 4-pattern
π = [2 1 4 3] and also should be avoided;

• If 0 > i > c and w(b) > 0 then the subsequence (w(ı) w(c) w(d)) of w is a 3-pattern
π equal to [1 3 2], [2 3 1] or [3 2 1], which is impossible;

• If i < c and 0 < w(b) < w(d) < w(a) then clearly there are SE corners S and S ′ as
in Figure 17 (right). Therefore, such construction implies that T is an unessential
box.

Therefore, Propositions 18 and 21 prove Theorem 1.
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[11] B. Tenner, Database of permutation pattern avoidance, URL: http://math.depaul.
edu/bridget/patterns.html.

the electronic journal of combinatorics 25(4) (2018), #P4.53 30

http://arxiv.org/abs/1210.2066
http://arxiv.org/abs/1806.01230
http://math.depaul.edu/bridget/patterns.html
http://math.depaul.edu/bridget/patterns.html

	Introduction
	Signed permutations in Wn
	Diagram of a permutation in S(2n+1)
	Extended diagram of a signed permutation in W(n)
	NE path and unessential corners

	Theta-triples and theta-vexillary signed permutations
	Extended diagrams for theta-vexillary permutations
	Pattern avoidance

