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Abstract

A clique colouring of a graph is a colouring of the vertices such that no maximal
clique is monochromatic (ignoring isolated vertices). The least number of colours
in such a colouring is the clique chromatic number. Given n points x1, . . . ,xn in
the plane, and a threshold r > 0, the corresponding geometric graph has vertex
set {v1, . . . , vn}, and distinct vi and vj are adjacent when the Euclidean distance
between xi and xj is at most r. We investigate the clique chromatic number of such
graphs.

We first show that the clique chromatic number is at most 9 for any geometric
graph in the plane, and briefly consider geometric graphs in higher dimensions. Then
we study the asymptotic behaviour of the clique chromatic number for the random
geometric graph G(n, r) in the plane, where n random points are independently and
uniformly distributed in a suitable square. We see that as r increases from 0, with
high probability the clique chromatic number is 1 for very small r, then 2 for small
r, then at least 3 for larger r, and finally drops back to 2.
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1 Introduction and main results

In this section we introduce clique colourings and geometric graphs; and we present our
main results, on clique colourings of deterministic and random geometric graphs.

Recall that a proper colouring of a graph is a labeling of its vertices with colours such
that no two vertices sharing the same edge have the same colour; and the smallest number
of colours in a proper colouring of a graph G = (V,E) is its chromatic number, denoted
by χ(G).

We are concerned here with another notion of vertex colouring. A clique S ⊆ V is a
subset of the vertex set such that each pair of vertices in S is connected by an edge; and
a clique is maximal if it is not a proper subset of another clique. A clique colouring of
a graph G is a colouring of the vertices such that no maximal clique is monochromatic,
ignoring isolated vertices. The least number of colours in such a colouring is the clique
chromatic number of G, denoted by χc(G). (If G has no edges we take χc(G) to be 1.)
Clearly, χc(G) 6 χ(G) but it is possible for χc(G) to be much smaller than χ(G). For
example, for any n > 2 we have χ(Kn) = n but χc(Kn) = 2. Note that if G is triangle-free
then χc(G) = χ(G).

A standard example of a hypergaph arising from a graph G is the hypergraph H with
vertex set V (G) and edges the vertex sets of the maximal cliques. A clique-colouring of
G is exactly the standard hypergraph colouring of H, that is, colouring the vertices so
that no edge is monochromatic.

For several graph classes the maximum clique chromatic number is known to be 2 or 3.
For maximum value 2 we have for example: comparability graphs [10], claw-free perfect
graphs [3], odd-hole and co-diamond free graphs [8], claw-free planar graphs [29], powers
of cycles (other than odd cycles longer than three, which need three colours) [5], and
claw-free graphs with maximum degree at most 7 (again, except for odd cycles of length
more than three) [19]. For maximum value 3 we have for example: planar graphs [26],
co-comparability graphs [10], circular-arc graphs (see [6]) and generalised split graphs
(see [15]). Further related results can be found in [2], [15] and [17]. It was believed
for some time that perfect graphs had bounded clique chromatic number, perhaps with
maximum value 3 (see [10] or for example [16]); but it was shown very recently that
in fact such clique chromatic numbers are unbounded [7]. The behaviour of the clique
chromatic number for the binomial (known also as Erdős-Rényi) random graph G(n, p) is
investigated in [22] and [1].

On the algorithmic side, it is known that testing whether χc(G) = 2 for a planar graph
can be performed in polynomial time [18], but deciding whether χc(G) = 2 is NP -hard
for perfect graphs [18] and indeed for K4-free perfect graphs [8], and for graphs with
maximum degree 3 [3]; see also [20].

We are interested here primarily in clique colourings of geometric graphs in the plane,
but we shall also briefly consider geometric graphs in Rd for any positive integer d. Given
n points x1, . . . ,xn in Rd and given a threshold distance r > 0, the corresponding (Eu-
clidean) geometric graph has vertex set {v1, . . . , vn}, and for i 6= j, vertices vi and vj
are adjacent when the Euclidean distance d(xi,xj) 6 r. We call a graph G geometric or
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geometric in Rd if there are points xj and r > 0 realising G as above. By rescaling by a
factor 1/r we may assume, without loss of generality, that r = 1. A geometric graph in
R2 is also called a unit disk graph.

Our first theorem shows that the clique chromatic number is uniformly bounded for
geometric graphs in the plane. (In contrast, Bacsó et al. [3] observed that χc(G) is
unbounded even for line graphs of complete graphs, and recall that χc(G) is unbounded
for perfect graphs.)

Theorem 1. If G is a geometric graph in the plane R2 then χc(G) 6 9.

Let χmax
c (Rd) denote the maximum value of χc(G) over geometric graphs G in Rd.

Clearly χmax
c (R2) is at least 3 (consider C5) so we have 3 6 χmax

c (R2) 6 9: it would
be interesting to improve these bounds. In Section 2 we shall see that more generally
χmax
c (Rd) is finite for each d, but (perhaps unsurprisingly) χmax

c (Rd)→∞ as d→∞; and
we shall see further related deterministic results.

For random geometric graphs the upper bound in Theorem 1 can often be improved.
Given a positive integer n and a threshold distance r > 0, we consider the random geomet-
ric graph G ∈ G(n, r) on vertex set V = {v1, . . . , vn} obtained as before by starting with n

random points sampled independently and uniformly in the square Sn = [−
√
n/2,

√
n/2]

2
,

see [28]. (We could equally work with the unit square [0, 1]2.) Note that, with probability
1, no point in Sn is chosen more than once, so we may identify each vertex v ∈ V with
its corresponding geometric position v = (vx, vy) ∈ Sn. The (usual) chromatic number of
G(n, r) was studied in [21, 23], see also [28].

We say that events An hold with high probability (whp) if the probability that An holds
tends to 1 as n goes to infinity. Also, we use log to denote natural logarithm. It is known
that the value rc = rc(n) =

√
(log n)/π is a sharp threshold function for connectivity for

G ∈ G(n, r) (see, for example, [27, 14]). This means that for every ε > 0, if r 6 (1− ε)rc,
then G is disconnected whp, whilst if r > (1 + ε)rc, then G is connected whp.

The next two results summarise what we know about the clique chromatic number χc
of a random geometric graph G in the plane; but first here is an overview. As r increases
from 0 we have whp the following rough picture: χc(G) is 1 up to about n−1/2, then 2 up
to about n−1/8, then at least 3 (and at most χmax

c (R2) 6 9) up to about
√

log n (roughly
the connectivity threshold), when it drops back to 2 and remains there.

Theorem 2. For the random geometric graph G ∈ G(n, r) in the plane:

1. if nr2 → 0 then χc = 1 whp,

2. if nr2 → c then P(χc = 1)→ e−(π/2)c and P(χc = 2)→ 1− e−(π/2)c,

3. if nr2 →∞ and nr8 → 0 then χc = 2 whp,

4. if nr8 → c then P(χc = 2)→ e−µc and P(χc = 3)→ 1− e−µc, for a suitable constant
µ = µ(C5) > 0 (see below),

5. if nr8 →∞ and r 6 0.46
√

log n then χc > 3 whp,
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6. if r > 9.27
√

log n then χc = 2 whp.

The constant µ in part (4) above may be expressed explicitly as an integral, see
equation (3.2) in [28]. It is the asymptotic expected number of components C5 in the
case when nr8 → 1. We can say more within the interval in (5) above where χc(G) > 3:
at the low end of the interval we have χc(G) = 3 whp; and higher up, within a suitable
subinterval, χc(G) is whp as large as is possible for a geometric graph.

Proposition 3. For the random geometric graph G ∈ G(n, r) in the plane:

1. if nr8 →∞ and nr18 → 0 then χc(G) = 3 whp,

2. there exists ε > 0 such that, if n−ε 6 r 6 ε
√

log n then χc(G) = χmax
c (R2) whp.

The only random geometric graphs we consider here are those described above, where
the points are independently and uniformly distributed over a square in the plane. See [28]
for more general models of random geometric graphs, and see [9] in particular for models
in high dimensions.

2 Deterministic results

In this section, we start by proving Theorem 1, and then consider geometric graphs in
dimensions greater than 2. After that we give Lemma 7, concerning the maximum value
of χc(G) for general n-vertex graphs, for small values of n: this result will be used in the
next section in the proof of Proposition 3.

Proof of Theorem 1. Fix y with 1
2
< y <

√
3/2. Divide the plane into horizontal strips

R× [ny, (n+ 1)y) for n ∈ Z. Suppose we are given a finite set of points in the plane, and
let G be the corresponding unit disk graph. Consider one strip, let W be the subset of
the given points which are in the strip (which we may assume is non-empty), and H be
the geometric graph corresponding to W . We claim that χc(H) 6 3.

For u,v ∈ W we write u ≺ v if ux < vx and uv ∈ E(H). If u ≺ v then 1 < d(u,v) <
(vx − ux)2 + 3

4
so vx > ux + 1

2
. Thus if also v ≺ w then wx > vx + 1

2
> ux + 1, so u ≺ w.

Thus ≺ is a (strict) partial order on W . Further, H is the corresponding comparability
graph, since if uv ∈ E(H) then ux 6= vx (for if ux = vx then d(u,v) = |uy− vy| < y < 1 so
uv is in E(H) not E(H)). Thus H is a co-comparability graph. Hence, by the result of
Duffus et al. [10] mentioned earlier, we have χc(H) 6 3, as claimed. (Indeed, we do not
know an example where χc(H) > 2.)

Now label the strips cyclically a, b, c, a, b, c, a, . . . moving upwards say, and use 3 colours
to properly clique colour the a-strips, a new set of 3 colours for the b-strips and similarly
a new set of 3 colours for the c-strips, using 9 colours in total. A monochromatic maximal
clique with at least 2 vertices could not have points in two different strips since 2y > 1,
and could not be contained in one strip since we have a proper clique-colouring there.
Thus χc(G) 6 9.
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Theorem 1 shows that the clique chromatic number is at most 9 for any geometric
graph in the plane. We next see that, for a given dimension d, there is a uniform bound
on the clique chromatic number for all geometric graphs in Rd.

Proposition 4. Let G be a geometric graph in Rd. Then

χc(G) 6 2 (d
√
de+ 1)

d
< 2 e2

√
d dd/2.

Our simple proof uses a tessellation into small hypercubes which induce cliques. In
the case d = 2 it is better to use hexagonal cells, and then the bound improves from 18 to
14. In [25], hexagonal cells are used in pairs to show that χmax

c (R2) 6 10, nearly matching
the upper bound 9 in Theorem 1.

Proof. We may assume that the threshold distance r is 1. Let k = d
√
de, let s = 1/k, and

let Q be the hypercube [0, s)d. Observe that Q has diameter s
√
d 6 1, so the subgraph of

G induced by the points in Q is complete. We partition Rd into the family of translates
Q + sz of Q, for z ∈ Zd. (Here Q + y is the set of all points x + y for x ∈ Q.) Consider
the subfamily F0 = (Q + (k + 1)sz : z ∈ Zd). Let z and z′ be distinct points in Zd, and
let x and x′ be points in the cells Q + (k + 1)sz and Q + (k + 1)sz′ in F0 respectively.
Without loss of generality, we may assume that z1 > z′1. Then

d(x,x′) > x1 − x′1 > (k + 1)s(z1 − z′1)− s > ks = 1.

Thus the subgraph G′ of G induced on the vertices corresponding to the points in the cells
of F0 consists of disjoint cliques, with no edges between them. Hence χc(G

′) 6 2, since
we just need to ensure that each cell with at least two points gets two colours. Finally,
let F(y) denote the translate by y of the family F0, so

F(y) = (Q+ y + (k + 1)sz : z ∈ Zd)

(and F0 = F(0)). Let S(y) be the union of the cells in F(y), and let G(y) be the
subgraph of G induced by the vertices corresponding to the points in S(y). Then the
(k + 1)d sets S(y) for y ∈ {0, . . . , k}d partition Rd; and so

χc(G) 6
∑

y∈{0,...,k}d
χc(G(y)) 6 2(k + 1)d,

as required for the first inequality. For the second inequality, we have

(k + 1)d < (
√
d+ 2)d = dd/2(1 + 2/

√
d)d < dd/2e2

√
d,

and the proof is finished.

For example, we may deduce from this result that χmax
c (R3) 6 2 · 33 = 54. It is not

hard to make small improvements for each d, but let us focus on the case d = 3.

Proposition 5. If G is a geometric graph in R3 then χc(G) 6 21.
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Figure 1: Dashed lines join points of the unit triangular lattice T at distance 1, and solid
lines bound the hexagonal Voronoi cells

Proof. Let T denote the unit triangular lattice in R2, with vertices the integer linear
combinations of p = (1, 0) and q = (1

2
,
√
3
2

) (and where the edges have unit length).
Consider the hexagonal packing in the plane, as in Figure 1, formed from the hexagonal
Voronoi cells of T .

The sublattice T ′ of T with vertices generated by 2p + q and −p + 3q is a triangular
lattice with edge-length

√
7, and 7 translates of V (T ′) partition V (T ) (for example trans-

late by (0, 0),q, 2q, 3q,p+q,p+2q,p+3q – see Figure 2, and for example [24]). We thus
obtain a 7-colouring of the vertices of T , and this gives a 7-colouring of the cells.

Since the cells have diameter 2/
√

3, the distance between any two cells centred on
distinct points in T ′ is at least

√
7 − 2/

√
3 ≈ 1.491051. (In fact, the minimum dis-

tance occurs for example between the cells centred on (0, 0) and on 2p + q, and equals

d((1
2
, 1
2
√
3
), (2, 1√

3
)) =

√
7
3
≈ 1.527525.) Thus our 7-colouring of the cells is such that, for

any two distinct cells of the same colour, the distance between them is at least 1.49 (see
also Theorems 3 and 4 of [24] for related results).

Rescale by multiplying by 3
4
, so that the diameter of a hexagonal cell is now 3

4
· 2√

3
=√

3
4
. The distance between distinct rescaled cells corresponding to centres in T ′ has now

been reduced to at least 3
4
· 1.49 = 1.1175 > 1.1, still bigger than 1.

Suppose that we are given any finite set of points in R3, take r = 1, and let G be the
corresponding geometric graph. Think of R3 as R2 ×R. Consider any cell C, and let GC

be the geometric graph corresponding to the points in the cylinder C×R, with threshold
distance r = 1. We may now argue as in the proof of Theorem 1: for clarity we spell this
out. Observe that for u,v ∈ C × R, if uz = vz then d(u,v) 6 3

4
< 1 so uv ∈ E(GC). For

u,v ∈ C × R we write u ≺ v if uv ∈ E(GC) and uz < vz. If u ≺ v then

1 < d(u,v)2 = (ux − vx)2 + (uy − vy)2 + (uz − vz)2 6 3
4

+ (uz − vz)2,
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Figure 2: Cells with the same colour. Any two cells of the same colour are at distance at

least
√

7
3

and so vz > uz + 1
2
. If also v ≺ w then similarly wz > vz + 1

2
; and then wz > uz + 1 and

so u ≺ w. It follows that ≺ is a (strict) partial order, and GC is the co-comparability
graph. Thus, once more by the result of Duffus et al. [10], we have χc(GC) 6 3.

Consider the 7-colouring of the cells. For each colour i = 1, . . . , 7 and each cell C of
colour i, properly clique colour the points in C ×R using colours (i, 1), (i, 2), (i, 3). If two
points in distinct cylinders have the same colour, then the distance between them is at
least 1.1 > 1, so the corresponding vertices are not adjacent in G. Thus the colourings of
the cylinders fit together to give a proper clique colouring of G using at most 21 colours,
as required.

The next result shows that, if we do not put some restriction on the dimension d, then
we can say nothing about a geometric graph in Rd.

Proposition 6. For each graph G there is a positive integer d such that G is a geometric
graph in Rd, and indeed if G has n > 2 vertices we can take d 6 n− 1.

Observe that the second part of this result follows immediately from the first, since the
affine span of n points has dimension at most n− 1.

Proof. We prove more, namely that for any ε > 0 there are points x1, . . . ,xn in Rn such
that for each i we have 1 ·xi = 1 and xi is within distance ε of ei (where ei is the ith unit
vector in Rn), and such that for i 6= j

d(xi,xj)

{
<
√

2 if ij is an edge

>
√

2 if not.

The case n = 2 is trivial. Suppose that n > 3 and the result holds for n − 1. Start
with xi = ei for each i = 1, . . . , n. We first adjust xn. For 1 6 i < j 6 n let zij be −1 if ij
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is an edge and +1 if not. Note that the n n-vectors 1 and en − e1, en − e2, . . . , en − en−1

form a basis of Rn. Hence there is a unique vector y with y · 1 = 0 and y · (en− ei) = zin
for each i = 1, . . . , n− 1.

Let ε > 0, and assume (as we may) that ε < 1/‖y‖. Let δ = ε/‖y‖, and re-set xn to
be en + δy. Note first that 1 · xn = 1 and d(xn, en) = ‖δy‖ = ε. For each i ∈ [n− 1]

‖xn − ei‖2 = ‖(en − ei) + δy‖2 = 2 + 2δzin + δ2‖y‖2 = 2 + ε2 + 2δzin.

But ε2 − 2δ = ε(ε− 2
‖y‖) < −δ. Thus ‖xn − ei‖2 is < 2− δ if in is an edge and > 2 + δ if

not. Let
0 < η < min{

√
2 + δ −

√
2,
√

2−
√

2− δ}.

By the induction hypothesis, we may choose points x1, . . . ,xn−1 in Rn with nth co-ordinate
0, such that distances corresponding to edges are <

√
2 and other distances are >

√
2,

and for each i ∈ [n−1] we have xi ·1 = 1 and xi is within distance η of ei. By the triangle
inequality, d(xn,xi) = d(xn, ei) + ηi for some ηi with |ηi| 6 η. Thus for each i ∈ [n− 1]

d(xn,xi)

{
<
√

2− δ + η <
√

2 if in is an edge

>
√

2 + δ − η >
√

2 if not.

This completes the proof by induction.

Let χmax
c (n) be the maximum value of χc(G) over all n-vertex graphs. Since the

Ramsey number R(3, k) satisfies R(3, k) = Θ(k2/ log k), there exist n-vertex triangle-free
graphs Gn with stability number O(

√
n log n) (see [12] for the best known bounds) and

thus with chromatic number and hence clique chromatic number Ω(
√
n/ log n). (Recall

that χc = χ for a triangle-free graph.) Hence

χmax
c (n) = Ω(

√
n/ log n) as n→∞. (1)

It now follows from Proposition 6 that

χmax
c (Rd) = Ω(

√
d/ log d) as d→∞. (2)

This shows explicitly that χmax
c (Rd) → ∞ as d → ∞, though the lower bound here is

rather a long way from the upper bound (roughly dd/2) provided by Proposition 4. (See
also Section 4, where we discuss χmax

c (Rd) in paragraph (2), and χmax
c (n) in paragraphs (5)

and (6).)

It is convenient to give one more deterministic result here, which we shall use in the
proofs in the next section and in the final section. For the sake of completeness, we include
the straightforward proof.

Lemma 7. Let the graph G have n vertices. If n 6 5 then χc(G) 6 2 except if G is
isomorphic to C5 when χc(G) = 3. If n 6 10 then χc(G) 6 3.
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Proof. Suppose that n 6 5. If deg(v) > 3 then colouring N(v) with colour 1 and the
other vertices with colour 2 shows that χc(G) 6 2: thus we may assume that each degree
is at most 2. If G has a triangle then G consists of a triangle perhaps with one additional
disjoint edge, so χc(G) 6 2. If G does not have a triangle, then either G is isomorphic
to C5 or χc(G) 6 χ(G) 6 2. Also, since C5 has no triangles, χc(C5) = χ(C5) = 3. This
completes the proof of the first statement.

Now let us prove that χc(G) 6 3 for n 6 9. Suppose for a contradiction that n 6 9
and χc(G) > 3, and n is minimal such that this can happen. The minimum degree in G
is at least 3 (for if deg(v) 6 2 and χc(G− v) 6 3 then χc(G) 6 3).

Suppose that deg(v) > 4 for some vertex v, and let G′ = G \N(v). Then |V (G′)| 6 5
and χc(G

′) > 3 (since χc(G) 6 χc(G
′)+1). Thus by the first part of the lemma, deg(v) = 4

and G′ is isomorphic to C5. But now v has neighbours in G′, a contradiction.
It follows that G is cubic. Hence n is even, and so n 6 8. Now let v be any vertex

and as before let G′ = G \ N(v). Arguing as before, we must have χc(G
′) > 3 so G′ is

isomorphic to C5 and v has neighbours in G′, a contradiction.

It remains only to show that χc(G) 6 3 when n = 10. As above, we may assume
that G is connected and the minimum degree in G is at least 3. If G has a vertex v with
deg(v) > 5, then by the case n = 4 of the lemma, G′ = G\N(v) satisfies χc(G

′) 6 2, since
G′ consists of an isolated vertex and a 4-vertex graph: but now, using the third colour
for each vertex in N(v), we see that χc(G) 6 3. If each vertex has degree at most 3 then
χc(G) 6 χ(G) 6 3 by Brooks’ theorem (since G is connected and is not K4).

Now we may assume, without loss of generality, that G has a vertex v with deg(v) = 4.
Since v is isolated in G′ = G \ N(v), by the case n = 5 of the lemma, χc(G

′) 6 2 (and
thus as before χc(G) 6 3) unless G′ is the disjoint union of the vertex v and the 5-cycle
C = v1, . . . , v5 with edges vivi+1 (where v6 means v1). Assume that G′ is indeed of this
form. We now have two cases.

Case 1: there are adjacent vertices vi, vi+1 in the cycle C that form a triangle with
some vertex u ∈ N(v).
We may 3-clique colour G as follows. Without loss of generality, assume that i = 2. Give
colour 1 to v, v2, v3 and v5; give colour 2 to v1 and v4; and give colour 3 to each vertex in
N(v). Let K be a monochromatic clique of size at least 2. If K has only colour 1, then
K cannot contain v or v5 (since they have no neighbours coloured 1), so we can add u to
K; K cannot have only colour 2 (since the vertices coloured 2 form a stable set); and if
K has only colour 3 then we can add v to K.

Case 2: no two vertices in the cycle C form part of a triangle.
Each vertex u ∈ N(v) can be adjacent to at most two (non-adjacent) vertices in C, and
every vertex vi in C has at least 1 and at most 2 neighbours in N(v). Hence some vertex
in C has exactly one neighbour in N(v): without loss of generality, assume that v1 has
exactly one neighbour, say, u1 in N(v). Note that u1 is not adjacent to v2 or v5: since u1
is adjacent to at most one of v3, v4 we may assume, without loss of generality, that u1 is
not adjacent to v4. Give colour 1 to u1, v2, v4; give colour 2 to v, v3, v5; and give colour 3
to v1 and each vertex in N(v) \ {u1}.

As in the first case, let K be a monochromatic clique of size at least 2. Then K cannot
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be only colour 1 or only colour 2, since the vertices coloured 1 and the vertices coloured 2
both form stable sets; and if K has only colour 3 then v1 6∈ K (since v1 has no neighbours
coloured 3) so we can add v to K.

The Grötzsch graph is triangle-free on 11 vertices and has chromatic number 4, and
thus has clique chromatic number 4. Since χmax

c (10) = 3 by the last result, it follows that
χmax
c (11) = 4. Indeed, we may deduce easily that

χmax
c (n) = 4 for n = 11, . . . , 16. (3)

In order to see it, suppose G is connected and has n 6 16 vertices: we must show that
χc(G) 6 4. If each vertex has degree at most 4 then χ(G) 6 4 by Brooks’ Theorem, and
so χc(G) 6 4. If some vertex v has degree at least 5 then G′ = G \ N [v] has at most 10
vertices, so χc(G) 6 1 + χc(G

′) 6 4.

3 Random results

In this section we prove Theorem 2 and Proposition 3. We use one preliminary lemma
that concerns the appearance of small components in the random geometric graph G. It is
taken from Chapter 3 of [28], where it is proved using Poisson approximation techniques.

Lemma 8. Let k > 2 be an integer, let H be a connected unit disk graph with k vertices,
and let µ = µ(H) > 0 be the constant defined in equation (3.2) in [28].

1. If nr2(k−1) → 0 then whp G has no component with k or more vertices.

2. If nr2(k−1) → c where 0 < c <∞ then the expected number of components isomorphic
to H tends to µc, and the probability that G has such a component tends to 1−e−µc.

3. If nr2(k−1) →∞ and r → 0 then whp G has a component H.

(In part (2) above, the number of components isomorphic to H in fact converges in
distribution to Poisson(µc).) We may now prove Theorem 2, taking the parts in order.
We shall use the last lemma several times, sometimes without explicit reference.

Proof of Theorem 2

Part (1). The expected number of edges is asymptotic to
(
n
2

)
πr2/n ∼ (π/2)nr2. Thus

by Markov’s inequality, if nr2 → 0 then whp G has no edges so χc(G) = 1. (This also
follows from Lemma 8 part (1) with H as the complete graph K2.)

Part (2). If nr2 → c where 0 < c <∞, then the expected number of edges tends to µc,
where µ = µ(K2) = π/2 (edge-effects are negligible). Also, since nr4 → 0, whp each com-
ponent has size at most 2, and so χc(G) 6 2. Hence P(χc(G) = 1) = P(G has no edges)→
e−µc, and P(χc(G) = 2) ∼ P(G has an edge)→ 1− e−µc.

Part (3). If nr2 → ∞ then whp G has an edge (and indeed G has at least one
component that is an isolated edge), so χc(G) > 2. If nr8 → 0 then whp each component
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of G has size at most 4, and then χc(G) 6 2 by Lemma 7. These two results combine to
prove Part (3).

Part (4). If nr8 → c (where 0 < c < ∞), then the probability there is a component
C5 tends to 1− e−µc, where µ = µ(C5) > 0. Also whp G has edges and each component
has size at most 5. Hence P(χ = 2) ∼ P(G has no component C5) → e−µc; and, using
also Lemma 7, P(χ = 3) ∼ P(G has a component C5)→ 1− e−µc.

Part (5). If nr8 →∞ and r → 0, then whp G has a component C5, and so χc(G) > 3.
The following lemma covers the remainder of the relevant range of values for r.

Lemma 9. Let G ∈ G(n, r) with (n/ log n) r8 →∞ and r 6 0.46
√

log n. Then χc(G) > 3
whp.

In order to simplify the proof of Lemma 9 we will make use of a technique known
as Poissonization, which has many applications in geometric probability (see [28] for a
detailed account of the subject). Here we sketch all we need. Consider the related model

of a random geometric graph G̃(n, r), where the set of points is given by a homogeneous
Poisson point process of intensity 1 in the square Sn of area n. In other words, we form
our graph from N points in the square Sn chosen independently and uniformly at random,
where N is a Poisson random variable of mean n.

The main advantage of generating our points by a Poisson point process arises from
the following two properties: (a) the number of points that lie in any region A ⊆ Sn of area
a has a Poisson distribution with mean a, and the numbers of points in disjoint regions of
Sn are independently distributed; and (b) by conditioning G̃(n, r) on the event N = n, we
recover the original distribution of G(n, r). Therefore, since Pr(N = n) = Θ(1/

√
n), any

event holding in G̃(n, r) with probability at least 1− o(n− 1
2 ) must hold whp in G(n, r).

Proof of Lemma 9. Our plan is to show that whp G contains a copy of C5 such that no
edge of this copy is in a triangle in G, and so χc(G) > 3. In order to allow r to be as
large as possible we consider a configuration of 5 points such that the corresponding unit
disk graph is C5, and the area A that must contain no further points (to avoid unwanted
triangles) is as small as possible.

We work in the Poisson model G̃(n, r). Within Sn choose (b
√
n/4rc)2 disjoint square

cells which are translates of [0, 4r)2. For each of these cells, we shall consider a regular
pentagon Q centered at the center of the cell and contained well within the cell.

Consider first the square [−2, 2)2. Start with a regular pentagon, with extreme points
listed clockwise as v1, . . . ,v5 around the boundary, centred on the origin O = (0, 0), and
scaled so that the diagonals (for example v1v3) have length 1. The angle v1Ov2 is 2π/5,
and the line Ov2 is orthogonal to the line v1v3 and bisects it. Hence the radius (from
the centre O to each extreme point vi) is a := |Ov1| = 1/(2 sin 2π

5
) ≈ 0.525731. (We give

numbers rounded to 6 decimal places.) If T is the midpoint of the side v1v2, then the line
OT is orthogonal to v1v2 and the angle v1OT is π/5. Hence the side length s (the length
of v1v2 for example) satisfies s

2a
= sin(π/5), so s = sin(π/5)/ sin(2π/5) = 1/(2 cos π

5
) ≈

0.618034. For each successive pair vivi+1 of extreme points (including v5v1), let Bi be
the intersection of the unit radius disks centred on vi and vi+1; and let the ‘controlled
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region’ B be the union of the Bi, with area A. For the value of A, we have the following
claim.

OO

P

R

Q

T

U

W

Figure 3: Configuration of points in the proof of the claim

Claim: A ≈ 4.633376.

Proof of the claim. We may calculate A as follows. Let us take v1 to be on the y-axis
above the origin O, so v1 = (0, a). Now v2 = (a cos π

10
, a sin π

10
). Let us denote v1 by W

and v2 by P .
Suppose that the circle C of radius 1 centred on P meets the lines x = 0 (on which

W lies) and y = (tan 3π
10

)x (bisecting the angle between OW and OP ) above the x-axis
at Q and R respectively. Then the area A is 10A0, where A0 is the area bounded by
these two straight lines and the arc of the circle C between Q and R – see the shaded
area on Figure 3. We may calculate A0 as the area A1

0 of the sector of the circle bounded
by the arc between Q and R and the radii PQ and PR, less the area A2

0 of triangle
OPR, plus the area A3

0 of triangle OPQ. Recall that T is the point of intersection of the
lines PW and OR, and note that |PT | = |WT | = s/2 and PW and OR are orthogonal.
Now (by Pythagoras’ theorem) |OT |2 = a2 − (s/2)2 and |TR|2 = 1 − (s/2)2; and so

|OT | = a
√

1− sin2(π/5) ≈ 0.425325 and |TR| =
√

1− a2 sin2(π/5) ≈ 0.951057.
Drop a perpendicular from Q to the (extended) line PW , meeting the line at U . Note

that the angle UWQ is 3π
10

, and so |UW | = |QU | cot(3π/10). Hence, by considering the
triangle PQU in which |PQ| = 1, |UQ| is the positive solution h of the quadratic equation(

s+ cot(3π/10)h
)2

+ h2 = 1;

and thus we obtain h ≈ 0.406737. It follows that the angle WPR is α = arcsin |TR| ≈

the electronic journal of combinatorics 25(4) (2018), #P4.56 12



1.256637, the angle WPQ is γ = arcsin |UQ| ≈ 0.418879, and so

A1
0 =

α− γ
2
≈ 0.418879.

Moreover,

A2
0 =

s|OT |
4

+
s|TR|

4
≈ 0.212663,

A3
0 =

s|UQ|
2

+
s|OT |

2
≈ 0.257121,

and so A = 10A0 = 10(A1
0 − A2

0 + A3
0) ≈ 4.633376.

We continue with the proof of Lemma 9. Let 0 < b < A−
1
2 ≈ 0.464570; and let

r = r(n) satisfy (n/ log n) r8 → ∞ and r 6 b
√

log n. As indicated earlier, we shall show
that whp G contains a copy J of C5 such that no edge of J is in a triangle in G, and so
χc(G) > 3.

Choose ε > 0 sufficiently small that η := 1 − (1 + ε)2b2A > 0, the region (1 + ε)B is
contained in the ball centred on O with radius 2, and ε < (1 + ε)s < 1− ε. Scale up by
a factor 1 + ε, and use the notation v′i, A

′, B′ to refer to the rescaled case. Note that B′

is contained in [−2, 2)2 (by our assumption on (1 + ε)B). Put small open balls of radius
ε/2 around the five extreme points v′i of the pentagon, and note that these small balls are
all disjoint (since (1 + ε)s > ε). If x and y are points in the small balls at non-adjacent
vertices v′i and v′j then d(x,y) > 1 (since d(v′i,v

′
j) = 1 + ε). If x and y are points in

the small balls at adjacent vertices v′i and v′i+1 (where v′6 means v′1) then d(x,y) < 1
(since (1 + ε)s+ ε < 1); and if z 6∈ B′ then either d(z,x) > d(z,v′i)− ε/2 > 1 or similarly
d(z,y) > 1, so we do not get triangles involving a point z 6∈ B′.

Now rescale by r, and call the rescaled controlled region B′′. Note that the area of B′′

is (1 + ε)2r2A. If exactly one Poisson point x lies in each rescaled small ball and there are
no other such points in B′′ then we have a copy of C5 as desired. Setting λ = π(εr/2)2,
the probability qn of this happening satisfies

qn = (λe−λ)5e−r
2((1+ε)2A−5π(ε/2)2) = λ5e−r

2(1+ε)2A.

Since events within different cells are independent, the probability pn that G ∈ G̃(n, r)
has no C5 as desired satisfies

pn 6 (1− qn)(b
√
n/4rc)2 6 exp

(
−(1 + o(1))

qn n

16r2

)
.

Observe that
r2(1 + ε)2A 6 b2(1 + ε)2A log n = (1− η) log n.

If 1 6 r 6 b
√

log n then

qnn/r
2 = λ5e−r

2(1+ε)2A n/r2 = Ω(r8nη) = Ω(nη),
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and if ( logn
n

)
1
8 � r 6 1 then

qnn/r
2 = Ω(λ5n/r2) = Ω(r8n)� log n.

Thus in both cases pn = o(n−
1
2 ). It follows that the failure probability in the original

G(n, r) model is o(1), as required.

Part (6) (of Theorem 2). The next lemma proves Part (6), and thus completes the
proof of Theorem 2.

Lemma 10. Let G ∈ G(n, r) with r > 9.27
√

log n. Then χc(G) = 2 whp.

Proof of Lemma 10. Clearly G has an edge whp, and so χc(G) > 2 whp. Hence, we
only need to show that χc(G) 6 2 whp. As in the proof of Proposition 5, start with
a hexagonal packing in the plane, as in Figure 1, formed from the Voronoi cells (with
vertical left and right sides) of the unit triangular lattice T (where the edges have unit
length). The hexagonal cells have area

√
3/2 and diameter 2/

√
3.

Now rescale by the factor
√

2√
3
(1 + ε) log n for some suitably small ε > 0. As a result,

each cell has area (1 + ε) log n and diameter δ := ((1 + ε)8 log n)
1
2 3−3/4. (For orientation,

note that the lower bound on r is (for small ε) more than 7.4 δ.) By shrinking slightly in
the x and the y directions, we may ensure that the left and right sides of the square Sn lie
along vertical sides of cells (more precisely, we may ensure that, as we move up the left
side of the square, every second internal cell has its vertical left boundary along the side
of the square, and every second one is bisected by the side of the square; and similarly for
the right side of the square), and each cell which meets a horizontal side of Sn is at least
half inside Sn. We then obtain (at least for large n) a partition of the square Sn such that
each cell has diameter at most δ, each ‘internal’ cell not meeting the boundary has area
at least a = (1 + ε/2) log n, and each ‘boundary’ cell meeting the boundary has area at
least a/2. There are O(n/ log n) internal cells and O(

√
n/ log n) boundary cells.

The probability that a given internal cell contains at most one point in its interior is
at most (

1− a

n

)n
+ n

(
1− a

n

)n−1 a
n
6 n−1−ε/2+o(1).

Since there are O(n/ log n) internal cells, the expected number of such cells is n−ε/2+o(1) =
o(1). Similarly, the probability that a given boundary cell contains at most one point in

its interior is at most n−
1
2
−ε/4+o(1); and since there are O(

√
n/ log n) boundary cells, the

expected number of such cells is n−ε/4+o(1) = o(1). It follows from Markov’s inequality
that whp all cells have at least two points in their interior.

It suffices now to show (deterministically) that for each set of points in Sn with at
least two in the interior of each cell, the corresponding graph G has χc(G) 6 2. To do
this, we colour the vertices of G arbitrarily as long as both colours are used in every cell:
we shall show that this gives a proper clique-colouring.

Observe that G has no isolated vertices since r is more than the diameter δ of a cell
(indeed, r > 7.4δ and so – assuming n is large – the minimum degree may be shown to be
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at least 95, since in the triangular lattice there are 48 lattice points (x, y) > (0, 0) within
graph distance 7 of (0, 0), and thus within Euclidean distance 6.1δ, so each point in each
of these cells is at Euclidean distance < r from each point in the cell corresponding to
(0, 0)). Consider any maximal clique K in G with corresponding Euclidean diameter D
(so 0 < D 6 r), and suppose that D is attained for the Euclidean distance between the
points u and v corresponding to vertices u and v in K. Let y be the midpoint of the line
joining u and v, and let the cell C contain y. Since for each vertex w in the clique K,
the corresponding point w is at distance at most D from both u and v, it follows that w
is at distance at most

√
D2 − (D/2)2 =

√
3D/2 from y. Hence if

√
3D/2 + δ 6 r, (4)

then every point of the cell C is at distance at most r from all points of K. Since K is
maximal, all vertices corresponding to points that belong to the cell must be in K, and
so K is not monochromatic. Since D 6 r, the desired inequality (4) holds as long as√

3r/2 + δ 6 r, which is equivalent to r > 4δ(1 +
√

3/2). But

4(1 +
√

3/2)8
1
2 3−3/4 = (1 +

√
3/2)27/23−3/4 = 9.261506

to 6 decimal places. Thus, by choosing ε > 0 sufficiently small, we see that it suffices to
have r > 9.2616

√
log n.

We have completed the proof of Theorem 2. It remains to prove Proposition 3. The
first part of that result follows directly from Lemmas 7 and 8, since we already know that
χc(G) > 3 whp, and the latter lemma shows that whp G has no components with more
than 10 vertices. The second part will follow easily from the next lemma, by considering
a connected geometric graph H such that χc(H) = χmax

c (R2).

Lemma 11. Let h > 2 and let H be any given connected geometric graph with h vertices.
Suppose that nr2(h−1) → ∞ and r 6

√
log n/(πh). Then for G ∈ G(n, r), whp G has a

component isomorphic to H.

Proof. If nr2(h−1) → ∞ and r → 0 then whp G has a component H by Lemma 8. To
handle larger values of r, we now work in the Poisson model G̃(n, r). Assume from now
on that r > 1/ log n say (and still r 6

√
log n/(πh)). Fix distinct points x1, . . . ,xh such

that, for each distinct i and j, d(xi,xj) < 1 if ij ∈ E(H) and d(xi,xj) > 1 if ij 6∈ E(H).
Thus the unit disk graph generated by these points is H. Let α = max{d(xi,xj) : ij ∈
E(H)}, let β = min{d(xi,xj) : ij 6∈ E(H)}, and let γ = min{d(xi,xj) : i 6= j}. Let
0 < η 6 1

2
min{1 − α, β − 1, γ}. Put a small open ball B(xi, η) of radius η around each

point xi. Observe that these balls are pairwise disjoint, and if yi ∈ B(xi, η) for each i
then y1, . . . ,yh yield the same geometric graph H.

Let C1 be the set of points within distance 1 of the points xi (so C1 is the union of
the balls B(xi, 1)), and let A1 be the area of C1. Observe that A1 < πh since h > 2 and
H has an edge. Let C be the set of points within distance 1 + η of the xi, and let C have
area A. Let b = (πh)−1/2. If η is chosen sufficiently small then b2A < 1; assume we have
done this.
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If each ball B(xi, η) contains exactly one Poisson point and there are no other such
points in C, then we have a copy of H forming a component of G. Now scale by r, note
that we can pack Θ(n/r2) disjoint copies of the configuration in Sn, and we may argue as
in the proof of Lemma 9, as follows.

Set λ = π(ηr)2. Let qn be the probability that each small ball contains exactly one
Poisson point and there are no such points where they should not be. Then

qn = (λe−λ)he−r
2(A−hπη2) = λhe−r

2A.

Since events within different cells are independent, for some constant c > 0 the probability
pn that G ∈ G̃(n, r) has no component H satisfies

pn 6 (1− qn)
cn
r2 6 exp

(
−cnqn

r2

)
.

Now, for r 6 b
√

log n, we have r2A 6 b2A log n, and so

qnn/r
2 = λhe−r

2An/r2 = Ω(n1−b2Ar2h−2) = Ω(n1−b2A(log n)−(2h−2)).

Thus, since b2A < 1, we have pn = o(n−
1
2 ). It follows that the failure probability in the

original G(n, r) model is o(1), as required.

4 Concluding Remarks

Let us pick up a few points for further thought.

1. Recall that χmax
c (R2) is the maximum value of χc(G) over geometric graphs G in

the plane, and we saw that 3 6 χmax
c (R2) 6 9. Can we improve either bound?

Observe that if a geometric graph G is triangle-free then G is planar (if in the
embedding of a geometric graph two edges cross, then this induces a triangle in G,
see for example [4]) and so χc(G) 6 χ(G) 6 3 by Grötzsch’s theorem. We saw in
Lemma 7 that χc(G) 6 3 for all graphs with at most 10 vertices. The Grötzsch
graph showed that this bound does not extend to n = 11 (see also equation (3),
and point (4) below). But the Grötzsch graph is not a geometric graph in the
plane, so perhaps the upper bound 3 extends to larger values n when we restrict
our attention to geometric graphs? Any extension for geometric graphs would lead
to an improvement in Proposition 3 Part (1). If it turns out that χmax

c (R2) = 3,
then Theorem 2 is tighter than it currently seems, and Proposition 3 is redundant.
If χmax

c (R2) > 3 then it would be interesting to refine Part (5) of Theorem 2.

2. More generally, can we say more about χmax
c (Rd)? We saw in Proposition 5 that

χmax
c (R3) 6 21: can we improve this upper bound? Can we find a geometric graph

in R3 with χc(G) > 3? We have seen that χmax
c (Rd) is at most 2e2

√
d dd/2 and is

Ω(
√
d/ log d) as d→∞. Can we improve these bounds?

Remark: After submission of this paper the upper bound on χmax
c (Rd) was improved

in [13] to 2O(d).
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3. In the light of the last two parts of Theorem 2 (and Proposition 3), it is natural to
ask if there is a constant ρ, where 0.46 6 ρ < 9.27, such that for G ∈ G(n, r) and
any ε > 0, we have whp

χc(G)

{
> 3 if n−1/8 � r 6 (ρ− ε)

√
log n

= 2 if r > (ρ+ ε)
√

log n.

4. Recall that χmax
c (n) is the maximum value of χc(G) over all n-vertex graphs. Triv-

ially χmax
c (1) = 1. We saw in Lemma 7 and equation (3) that

χmax
c (n) =


2 if n = 2, 3, 4

3 if n = 5, . . . , 10

4 if n = 11, . . . , 16

What about larger values of n?

Now consider asymptotic behaviour. We saw in equation (1) that χmax
c (n) =

Ω(
√
n/ log n). On the other hand, we claim that

χmax
c (n) 6 2

√
n. (5)

We may see this as follows. Repeatedly, pick greedily a maximal independent set,
give all the vertices in the set the same fresh colour and remove them, until we find
a maximal independent set I of size less than

√
n. Such a set I is a dominating set

in the remaining graph H, so χc(H) 6 |I|+ 1, see [3, 22]. Thus if H has h vertices,
then at most min{|I|+ 1, h} further colours are needed.

In the first phase we use at most (n − h)/
√
n =

√
n − h/

√
n colours. If h >

√
n

then we use at most (
√
n − 1) + (|I| + 1) < 2

√
n colours in total. If h <

√
n then

we use at most
√
n+ h < 2

√
n colours, and hence χmax

c (n) < 2
√
n. This proves the

claim (5).

We know that χmax
c (n) is Ω(

√
n/ log n) and O(

√
n). Can we say more about the

asymptotic behaviour of χmax
c (n)? See also [11], and Problem 1 there in particular.

Is it true that for each n, χmax
c (n) is achieved by a triangle-free n-vertex graph?

Indeed, could it even be the case that every graph has a triangle-free subgraph with
at least the same value of χc?

5. Our upper bound on χc(G) gives an upper bound on the clique transversal number
τc(G), which is defined to be the minimum size of a set S of vertices which meets all
maximal cliques (ignoring isolated vertices). For each n-vertex graph G, since the
maximum size of a set of vertices containing no maximal clique is at least n/χc(G),
we have

τc(G) 6 n− n/χc(G).
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The result noted above that χc(G) 6 2
√
n yields τc(G) 6 n − 1

2

√
n, which may be

compared with the best known bound τc(G) 6 n −
√

2n +
√

2 (see [11]). It is not
likely to be easy to improve our upper bound by say a factor 4 to χc(G) 6 (1/2)

√
n,

since that would strictly improve the upper bound on τc (to τc(G) 6 n− 2
√
n).

6. Finally, consider the number of dimensions we need to embed a graph. Let d∗(n)
be the least value d such that every graph with n vertices is geometric in Rd. Then
d∗(n) 6 n− 1 by Proposition 6. We claim that

d∗(n) = Ω(log n/ log log n). (6)

For, let ε > 0, and let f(n) = (1 − ε) log n/ log log n for n > 3. Suppose that
d∗(n) 6 f(n) for arbitrarily large values n. We shall obtain a contradiction.

Note first that f(n) is increasing for n > 16. Define m = m(d) = dd(1+ε)de. Clearly
m(d) > 16 for d > 3. Now f(m(d + 1)) ∼ (1 − ε2)d as d → ∞: hence, for some
constant d0 > 3 we have f(m(d+ 1)) 6 d for each d > d0.

Let d1 > d0 be arbitrarily large. There exists d > d1 such that m(d) 6 n < m(d+1)
for some n with d∗(n) 6 f(n). Now

d∗(m(d)) 6 d∗(n) 6 f(n) 6 f(m(d+ 1)) 6 d,

and so
χmax
c (Rd) > χmax

c (m(d)).

But by (1), for some constant c > 0 we have

χmax
c (n) > c

√
n/ log n for each n > 3.

Hence,
χmax
c (Rd) > c d(1+ε)d/2(log(m(d))−1/2 � d(1+ε/2)d/2.

But this contradicts the upper bound on χmax
c (Rd) in Proposition 4, and so we have

established the claim (6).

Now we know that d∗(n) = Ω(log n/ log log n) and d∗(n) 6 n − 1. Our bounds are
wide apart. What more can be said about d∗(n)?
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