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Abstract

The Legendre-Stirling numbers of the second kind were introduced by Everitt
et al. in the spectral theory of powers of the Legendre differential expressions.
As a continuation of the work of Andrews and Littlejohn (Proc. Amer. Math.
Soc., 137 (2009), 2581-2590), we provide a combinatorial code for Legendre-Stirling
set partitions. As an application, we obtain expansions of the Legendre-Stirling
numbers of both kinds in terms of binomial coefficients.

Mathematics Subject Classifications: 05A18, 05A19

1 Introduction

The study on Legendre-Stirling numbers and Jacobi-Stirling numbers has become an
active area of research in the past decade. In particular, these numbers are closely related
to set partitions [3], symmetric functions [12], special functions [11] and so on.

Let ([y](t) = —(1 — *)y"(t) + 2ty'(t) be the Legendre differential operator. Then
the Legendre polynomial y(t) = P,(t) is an eigenvector for the differential operator ¢
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corresponding to n(n + 1), i.e., ([y](t) = n(n + 1)y(t). Following Everitt et al. [6], for
n € N, the Legendre-Stirling numbers LS (n, k) of the second kind appeared originally as
the coefficients in the expansion of the n-th composite power of /, i.e.,

n

CTNE) =Y (=1)FLS (0, k) (L — )"y 0 ()@

k=0

For each k € N, Everitt et al. [6, Theorem 4.1)] obtained that

: 1

According to [2, Theorem 5.4], the numbers LS (n, k) have the following horizontal gen-

erating function
k—

1
" —ZLSnkHaz—i(l+i)). (2)
k=0 =0
It follows from (2) that the numbers LS (n, k) satisfy the recurrence relation
LS (n,k) = LS (n — 1,k — 1) + k(k + 1)LS (n — 1, k).
with the initial conditions LS (n, 0) = 0,0 and LS (0, k) = do x, where 9, ; is the Kronecker’s

symbol. By using (1), Andrews et al. [2, Theorem 5.2] derived that the numbers LS (n, k)
satisfy the vertical recurrence relation

=D LS(k=1,j-1((+1))""
k=j
Following [7, Theorem 4.1], the Jacobi-Stirling number JS*(2) of the second kind may

be defined by
n k—1
:c”:ZJS Ha:—zz—l—z (3)
k=0 i=0

It follows from (3) that the numbers JS¥(2) satisfy the recurrence relation
JSh(2) = ISHT1(2) + k(k +2)JS T (2),

with the initial conditions JS%(2) = 4,0 and JS§(2) = dox (see [11] for instance). It is
clear that JS*(1) = LS (n, k). In [9], Gessel, Lin and Zeng studied generating function of
the coefficients of JS},,,.(2). Note that JS n+k( ) = LS (n + k,n). This paper is devoted
to the following problem.

Problem 1. Let k be a given nonnegative integer. Could the numbers LS (n + k,n) be
expanded in the binomial basis?
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A particular value of LS (n, k) is provided at the end of [3]:

LS(n+1,n):2(n§2). (@)

In [5, Eq. (19)], Egge obtained that

LS(n+2,n):4O<n22> +72<”;2> +36(”12) +4<";“2>.

") = () (), we get

LS(n+2,n)=4O(ng3)+32(n;3)+4<”13>. (5)

Using the triangular recurrence relation (

Egge [5, Theorem 3.1] showed that for & > 0, the quantity LS (n 4+ k,n) is a polynomial
of degree 3k in n with leading coefficient ﬁ

As a continuation of [3] and [5], in Section 2, we give a solution of Problem 1. Moreover,
we get an expansion of the Legendre-Stirling numbers of the first kind in terms of binomial

coefficients.

2 Main results

The combinatorial interpretation of the Legendre-Stirling numbers LS (n, k) of the
second kind was first given by Andrews and Littlejohn [3]. For n > 1, let M,, denote the
multiset {1,1,2,2,...,n,7}, in which we have one unbarred copy and one barred copy
of each integer i, where 1 < 7 < n. Throughout this paper, we always assume that the
elements of M ,, are ordered by

1=1<2=2<.---<nm=n.

A Legendre-Stirling set partition of M, is a set partition of M, with k + 1 blocks
By, By, ..., B, and with the following rules:

(r1) The ‘zero box’ By is the only box that may be empty and it may not contain both
copies of any number;

(ro) The ‘nonzero boxes’ By, B, .. ., By, are indistinguishable and each is non-empty. For
any ¢ € [k], the box B; contains both copies of its smallest element and does not
contain both copies of any other number.

Let LS (n, k) denote the set of Legendre-Stirling set partitions of M,, with one zero box
and k nonzero boxes. The standard form of an element of LS (n, k) is written as

o= B1By--- BBy,
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where By is the zero box and the minima of B; is less than that of B; when 1 <7 < j < k.
Clearly, the minima of B; are 1 and 1. Throughout this paper we always write o €
LS (n, k) in the standard form. As usual, we let angle bracket symbol < 4, j,... > and curly
bracket symbol {k, k, ...} denote the zero box and nonzero box, respectively. In particular,
let <> denote the empty zero box. For example, {1,1,3}{2,2} < 3 >€ £S5(3,2). A
classical result of Andrews and Littlejohn [3, Theorem 2| says that

LS (n, k) = #LS(n, k).

We now provide a combinatorial code for Legendre-Stirling partitions (CLS -sequence
for short).

Definition 2. We call Y,, = (y1,¥2,...,yn) a CLS -sequence of length n if y; = X and
Yrs1 € {X, Aij, By, B, 1 <, 5,58 <n,(V3),i #j} fork=1,2,...,n—1,
where n,(Y}) is the number of the symbol X in Y; = (y1, 42, .-, Uk)-

For example, (X, X, A, 2) is a CLS -sequence, while (X, X, A; 5, B;) is not since y, = Bs
and 3 > n,(Y3) = 2. Let CLS,, denote the set of CLS-sequences of length n.
The following lemma is a fundamental result.

Lemma 3. Forn > 1, we have LS (n, k) = #{Y,, € CLS,, | n.(Y,) = k}.

Proof. Let CLS(n, k) = {Y, € CLS, | n.(Y,) = k}. Now we start to construct a
bijection, denoted by ®, between LS(n, k) and CLS(n, k). When n = 1, we have y; = X.
Set ®(Y;) = {1,1} <>. This gives a bijection from CLS(1,1) to £LS(1,1). Let n = m.
Suppose @ is a bijection from CLS(n, k) to CLS(n, k) for all k. Consider the case n =
m+ 1. Let

Y= (yh Y2y -+ Ym, merl) € CLS 41

Then Y., = (y1,%2,--.,Ym) € CLS(m, k) for some k. Assume ®(Y,,) € LS(m, k). Con-
sider the following three cases:

(1) If a1 = X, then let ®(Y,,11) be obtained from ®(Y;,) by putting the box {m +
1,m + 1} just before the zero box. In this case, ®(V,,+1) € LS(m + 1,k +1).

(1) If ymi1 = A;;, then let ®(Y,,11) be obtained from ®(Y,,) by inserting the entry
m + 1 to the 7th nonzero box and inserting the entry m + 1 to the jth nonzero box.
In this case, ®(V,41) € LS(m + 1, k).

(130) If ymy1 = Bs (resp. Ymy1 = Bs), then let ®(Y,, 1) be obtained from ®(Y,,) by
inserting the entry m + 1 (resp. m + 1) to the sth nonzero box and inserting the
entry m + 1 (resp. m + 1) to the zero box. In this case, ®(Y,,,11) € LS(m + 1,k).

After the above step, it is clear that the obtained ®(Y,,.1) is in standard form. By
induction, we see that @ is the desired bijection from CLS(n, k) to CLS(n, k), which also
gives a constructive proof of Lemma 3. O
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Example 4. Let Y5 = (X, X, A2, Bo, B1). The correspondence between Y5 and ®(Y5) is
built up as follows:
X e {1,1} <>;
X & {1,1}{2,2} <>;
Ag’l ~ {1,T, g}{2,§73} <>
By & {1,1,3}{2,2,3,4} < 4 >;
B, & {1,1,3,5}{2,2,3,4} < 4,5 > .
As an application of Lemma 3, we present the following lemma.

Lemma 5. Let k be a given positive integer. Then for n > 1, we have

LS(nt ko) =2°3 (tkil)ti (t“;l) i <f2;1) i (“;1). (6)

t=1 ko1=1 to=1 ti=1
Proof. 1t follows from Lemma 3 that
LS (n+k,n) = #{Yosr € CLSnik | 1o (YVoqr) = n}.

Let Yoir = (y1,%2,---,Ynsk) be a given element in CLS, . Since ng(Y,ix) = n, it
is natural to assume that y; = X except ¢ = t; + 1,t5 + 2,--- .t + k. Let o be the
corresponding Legendre-Stirling partition of Y, x. For 1 < ¢ < k, consider the value of
Yt,+¢. Note that the number of the symbols X before y;,, is t;. Let & be the corresponding
Legendre-Stirling set partition of (y1,ya, .. ., Yt,+0—1). Now we insert y;,,,. We distinguish
two cases:

(i) If y, 10 = A;;, then we should insert the entry ¢, + ¢ to the ith nonzero box of & and
insert t;, + ¢ to the jth nonzero box. This gives 2(24) possibilities, since 1 < 4,7 <ty
and i # j.

(i1) If ys,+0 = By (resp. yi,40 = B,), then we should insert the entry ¢, + ¢ (vesp. t, + ()
to the sth nonzero box of & and insert ¢, + ¢ (resp. ¢, + ) to the zero box. This
gives Q(tf) possibilities, since 1 < s < .

Therefore, there are exactly 2(';‘3) + Q(tf) = Q(té;l) Legendre-Stirling set partitions of
M, +¢ can be generated from & by inserting the entry vy, 4. Note that 1 <¢;_; <t; <n
for 2 < j < k. Applying the product rule for counting, we immediately get (6). O

The following simple result will be used in our discussion.

Lemma 6. Let a and b be two given integers. Then

()0 = (3 ) renen( 2) (7))

In particular,

()G = () () re ()= () 6)
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Proof. Note that

() ey e ez (1)

x—b
5 )
This yields the desired result. O]

We can now conclude the main result of this paper from the discussion above.

Theorem 7. Let k be a given nonnegative integer. For n > 1, the numbers LS (n + k,n)
can be expanded in the binomial basis as

LS (n + k, n) —2"?2 (n+k+1>, (7)

i=k+2

where the coefficients v(k,1) are all positive integers for k + 2 < i < 3k and satisfy the
recurrence relation

ﬂk+1Jy—("Z‘1>7wJ—¢y+u—1xp—h—my@J—zy+<i21)wkg—3y(a

with the initial conditions v(0,0) = 1, v(0,7) = (i,0) = 0 for i # 0. Let y(z) =
Zf’kk+27(k5 i)x'. Then the polynomials vi,(x) satisfy the recurrence relation

k(k+1)

Tir1(x) = (T —kr + IQ) () — (k+ (k- 2)x — 22%) 2%y, (v) + At )7,

5 Vi (),

(9)

with the initial conditions vyo(z) = 1,71 (x) = 23 and y»(z) = 2* + 82° + 102°.

Proof. We prove (7) by induction on k. It is clear that LS (n,n) = 1 = (”gl). When
k =1, by using the Chu Shih-Chieh’s identity

() =%
i:l(tl;l) _ (n;rQ)

and so (4) is established. When k = 2, it follows from Lemma 5 that

Lsm+ﬂﬂw=4§i(bgl)§i(hgl)

to=1 t1=1

"ty + 1 t2+2>
=4 )

> ()
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Setting x = to + 2 and a = 3 in Lemma 6, we get

LS (n +2,n) :421 (1o<t25+2) +8(t21—2> " (ti;z))

() (7)

which yields (5). Along the same lines, it is not hard to verify that
"L [t +1 ts +3 ts +3 ts +3
LS 3 =38 10 8
ora =532 () (0 57) +5("57)+ (1))
n+4 n+4 n+4 n+4 n+4
=8(2 44 21 4 .

Hence the formula (7) holds for £ = 0,1,2,3, so we proceed to the inductive step. For
k > 3, assume that

3k
n+k+1
LS = ok ' :
k=2 > (e (")
i=k+2
It follows from Lemma 5 that
n 3k
t +1 t +k+1
_ ok+l k+1 o f Th+1
LS (n+ &+ 1,n) = 2 g:( : :)537@@( i )
tp+1=1 i=k+2

By using Lemma 6 and the Chu Shih-Chieh’s identity, it is routine to verify that the
coefficients (k, 7) satisfy the recurrence relation (8), and so (7) is established for general
k. Multiplying both sides of (8) by x and summing for all 7, we immediately get (9). [

In [2], Andrews et al. introduced the (unsigned) Legendre-Stirling numbers Lc (n, k)
of the first kind, which may be defined by the recurrence relation

Le(n,k) =Le(n—1,k—1)+n(n—1)Le(n — 1,k),

with the initial conditions Lc (n,0) = 6,0 and Lc (0,n) = &pn. Let fi(n) = LS (n + k,n).
According to Egge [5, Eq. (23)], we have

Le(n—1,n—k—1) = (=1)*fi(—n) (10)
for k > 0. For m, k € N, we define

(—m):<—mx—m—1»~nﬁn—k+1)

k k!

Combining (7) and (10), we immediately get the following result.
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Corollary 8. Let k be a given nonnegative integer. Forn > 1, the numbers Le (n—1,n—
k —1) can be expanded in the binomial basis as

3k
— 1
Le(n—1,n—k—1) = (—1)*2* Z 7(1{:,@')( "+,k+ ) (11)
i
i=k+2
where the coefficients vy(k,i) are defined by (8).
It follows from (9) that

k(k+1)
2

1
1+ 6k + M) (k. 3k),

(k+2)(k+1)
2

7(/{:+1,k+3)=( —k(k+2)+ )7(k,k+2),

v(k+1,3k4+3) = 5

7 N

(1) = = (D k1) ),

Since v(1,3) = 1 and v, (—1) = —1, it is easy to verify that for £ > 1, we have

(3k)!
)

k(3
It should be noted that the number ~(k, 3k) is the number of partitions of {1,2,... 3k}
into blocks of size 3, and the number k“) M is the product of first k positive triangular
numbers. Moreover, if the number LS (n + k,n) is viewed as a polynomial in n, then its
degree is 3k, which is implied by the quantlty (”+k +1) Furthermore the leading coefficient

of LS (n + k,n) is given by 28v(k, 3k) = G = =2k k(,i()’g,)) (32) i5r» which yields [5, Theorem
3.1].

o (k+ 1)1

100k +2) = 1, 9k, 3K) = 5

ne (=1 =(=1)

3 Concluding remarks

In this paper, by introducing the CLS -sequence, we present a combinatorial expansion of
LS (n + k,n). It should be noted that the CLS-sequence has several other variants.

For an alphabet A, let Q[[A]] be the rational commutative ring of formal Laurent
series in monomials formed from letters in A. Following Chen [4], a context-free grammar
over A is a function G : A — QJ[[A]] that replace a letter in A by a formal function over
A. The formal derivative D = Dg: Q[[A]] — QJ[[A]] is defined as follows: for x € A, we
have D(z) = G(z); for a monomial u in Q[[A]], D(u) is defined so that D is a derivation,
and for a general element ¢ € Q[[A]], D(q) is defined by linearity. The reader is referred
to [10] for recent results on context-free grammars.

As a variant of the CLS-sequence, we now introduce a marked scheme for Legendre-
Stirling set partitions. Given a set partition 0 = By By - -+ BBy € LS(n, k), where By is
the zero box of 0. We mark the box vector (By, Bs, ..., Bg) by the label az. We mark
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any box pair (B;, B;) by a label b and mark any box pair (Bs, By) by a label ¢, where
1<i<j<kand1l < s < k. Let o denote the Legendre-Stirling set partition that
generated from o by inserting n +1 and n +1. If n +1 and n + 1 are in the same box,
then o’ = BBy - -+ ByBi11 By, where By,1 = {n+1,n+ 1}. This case corresponds to the
operator a; — az1b"c.

If n+ 1 and n + 1 are in different boxes, then we distinguish two cases:

(1) Given a box pair (B;, Bj), where 1 < i < j < k. We can put n+ 1 (resp. n+ 1)
into the box B; and put n + 1 (resp. n + 1) into the box B;. This case corresponds
to the operator b — 2b.

(it) Given a box pair (B, By), where 1 < i < k. We can put n+1 (resp. n + 1) into the
box B; and put n + 1 (resp. n + 1) mto the zero box By. Moreover, we mark each
barred entry in the zero box By by a label z. This case corresponds to the operator

— (14 2)c.

Let A = {ag,a1,a2,as,...,b,c} be a set of alphabet. Following the above marked
scheme, we consider the grammars

Gr = {ag = aic, a1 — asbe, ... ap_y — apb™e,b— 2b,c — (14 2)c},

where k£ > 1. It is a routine check to verify that

DyDy_1 - Dy(ao) ZJS akb

Therefore, it is clear that for n > k, the number J S¥(2) is a polynomial of degree n — k in

z, and the coefficient 2% of JS¥(2) is the number of Legendre-Stirling partitions in £S(n, k)

with i barred entries in zero box, which gives a grammatical proof of [8, Theorem 2].
We end our paper by proposing the following.

Conjecture 9. For any k£ > 1, the polynomial v(x) has only real zeros. Set

2%k—2 2%
V() = y(k, 3k) " +? H (x —75), Yp1(z) = y(k + 1,3k + 3)2F+3 H(m - 8),
i=1 i=1
where rop_9 < Top_3 < - <19 < 1y and Sop < Sop_1 < Sop_2 < - -+ < 89 < ;. Then

Sop < Top—2 < Sop—1 < Top—3 < Sop—o <+ < T < Sp1 < S < Ty <00 < 8§y <1 < 8y,

in which the zeros sx;1 and sy of y,41(2) are continuous appearance, and the other zeros
of Yi41(z) separate the zeros of v (x).
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