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Abstract

Let k > 3 be an integer, q be a prime power, and Fq denote the field of q
elements. Let fi, gi ∈ Fq[X], 3 6 i 6 k, such that gi(−X) = − gi(X). We define
a graph S(k, q) = S(k, q; f3, g3, · · · , fk, gk) as a graph with the vertex set Fkq and
edges defined as follows: vertices a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk) are
adjacent if a1 6= b1 and the following k − 2 relations on their components hold:

bi − ai = gi(b1 − a1)fi

(b2 − a2
b1 − a1

)
, 3 6 i 6 k.

We show that the graphs S(k, q) generalize several recently studied examples of
regular expanders and can provide many new such examples.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction and Motivation

All graphs in this paper are simple, i.e., undirected, with no loops and no multiple edges.
See, e.g., Bollobás [4] for standard terminology. Let Γ = (V,E) be a graph with vertex set
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†The second author was supported by the Simons Foundation grant #426092.
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V and edge set E. We refer to |V | and |E| as the order and the size of Γ, respectively. For
a subset of vertices A of V , ∂A denotes the set of edges of Γ with one endpoint in A and the
other endpoint in V \A. The Cheeger constant h(Γ) (also known as the edge-isoperimetric

number) of Γ, is defined by h(Γ) := min
{
|∂A|
|A| : A ⊆ V, 0 < |A| 6 1

2
|V |
}
. The graph Γ is

d-regular if each vertex is adjacent to exactly d others. An infinite family of expanders is
an infinite family of regular graphs whose Cheeger constants are uniformly bounded away
from 0. More precisely, for n > 1, let Γn = (Vn, En) be a sequence of graphs such that each
Γn is dn-regular and |Vn| → ∞ as n→∞. We say that the members of the sequence form
a family of expanders if the corresponding sequence

(
h(Γn)

)
n>1

is bounded away from

zero, i.e., there exists a real number c > 0 such that h(Γn) > c for all n > 1. In general,
one would like the valency sequence (dn)n>1 to be growing slowly with n, and ideally, to
be bounded above by a constant. For examples of families of expanders, their theory and
applications, see Davidoff, Sarnak and Valette [8], Hoory, Linial and Wigderson [10], and
Krebs and Shaheen [12].

The adjacency matrix A = A(Γ) of a graph Γ = (V,E) has its rows and columns
labeled by V and A(x, y) equals the number of edges between x and y. When Γ is simple,
the matrix A is symmetric and therefore, its eigenvalues are real numbers. For j between
1 and |V |, let λj = λj(Γ) denote the j-th eigenvalue of A. In general, it is hard to compute
h(Γ), but the second-largest eigenvalue λ2(Γ) can be used to get an estimate for h(Γ). If Γ
is a connected d-regular graph, then 1

2

(
d−λ2

)
6 h(Γ) 6

√
d2 − λ22. The lower bound was

proved by Dodziuk [9] and independently by Alon-Milman [1] and by Alon [2]. In both [1]
and [2], an upper bound of

√
2d(d− λ2) was provided. Mohar [19] improved the upper

bound to the one indicated above. See Brouwer and Haemers [5], [10], [12] for terminology
and results on spectral graph theory and connections between eigenvalues and expansion
properties of graphs. The difference d−λ2 which is present in both sides of the inequalities
above, also known as the spectral gap of Γ, provides an estimate on the expansion ratio
of the graph. In particular, for an infinite family of d-regular graphs Γn, the sequence(
h(Γn)

)
is bounded away from zero if and only if the sequence

(
d − λ2(Γn)

)
is bounded

away from zero. A connected d-regular graph Γ is called Ramanujan if λ2(Γ) 6 2
√
d− 1.

Alon and Boppana [21] proved that this bound is best possible and their results imply
that for any infinite family of connected d-regular graphs Γn, λ2(Γn) > 2

√
d− 1− on(1),

where on(1) is a term that goes to 0 as n goes to infinity. For functions f, g : N → R+,
we write f = on(g) if f(n)/g(n)→ 0 as n→∞.

For the rest of the paper, let q = pe, where p is a prime and e is a positive integer.
For a sequence of prime powers (qm)m>1, we always assume that qm = pemm , where pm is a
prime and em > 1. Let Fq be the finite field of q elements and Fkq be the cartesian product
of k copies of Fq. Clearly, Fkq is a vector space of dimension k over Fq. For 2 6 i 6 k, let
hi be an arbitrary polynomial in 2i − 2 indeterminants over Fq. We define the bipartite
graph BΓk = BΓ(q;h2, . . . , hk), k > 2, as follows. The vertex set of BΓk is the disjoint
union of two copies of Fkq , one denoted by Pk and the other by Lk. We define edges of BΓk
by declaring vertices p = (p1, p2, . . . , pk) ∈ Pk and l = (l1, l2, . . . , lk) ∈ Lk to be adjacent
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if the following k − 1 equations are satisfied:

pi + li = hi(p1, l1, p2, l2, . . . , pi−1, li−1), i = 2, . . . , k. (1)

The graphsBΓk were introduced by Lazebnik and Woldar [16], as generalizations of graphs
introduced by Lazebnik and Ustimenko in [14] and [15]. For surveys on these graphs and
their applications, see Lazebnik and Woldar [16], and Lazebnik, Sun and Wang [13]. An
important property of graphs BΓk [16] is that for every vertex v of BΓk and every α ∈ Fq,
there exists a unique neighbor of v whose first coordinate is α. This implies that each
BΓk is q-regular of order 2qk and size qk+1.

The spectral and combinatorial properties of three specializations of graphs BΓk have
received particular attention in recent years. Cioabă, Lazebnik and Li [7] determined the
complete spectrum of the Wenger graphs Wk(q) = BΓ(q;h2, . . . , hk+1) with hi = p1l

i−1
1 ,

2 6 i 6 k + 1. Cao, Lu, Wan, Wang and Wang [6] determined the eigenvalues of the

linearized Wenger graphs Lk(q) = BΓ(q;h2, . . . , hk+1) with hi = pp
i−2

1 l1, 2 6 i 6 k + 1,
and Yan and Liu [23] determined the multiplicities of these eigenvalues. Moorhouse, Sun
and Williford [20] studied the spectra of graphs D(4, q) = BΓ(q; p1l1, p1l2, p2l1), and in
particular, proved that the second largest eigenvalues of these graphs are bounded from
above by 2

√
q (so D(4, q) is ‘close’ to being Ramanujan).

Let V1 and V2 denote the partite sets or color classes of the vertex set of a bipartite
graph Γ. The distance-two graph Γ(2)(V1) of Γ induced on V1 (also known as the halved
graph of Γ induced on V1) is the graph having V1 as its vertex set with the adjacency
defined as follows: two vertices x 6= y ∈ V1 are adjacent if x and y are at distance two
in Γ. One can define the distance-two graph or halved graph Γ(2)(V2) of Γ induced on V2
in a similar way. Depending on the context, the halved graphs Γ(2)(V1) and Γ(2)(V2) are
sometimes called the point graph and the block graph of Γ, respectively (see [5, p.127]
for example). If Γ is d-regular and contains no 4-cycles, then Γ(2)(V1) is a d(d − 1)-
regular simple graph. There is a simple connection between the eigenvalues of Γ and the
eigenvalues of Γ(2)(Vj) (see, e.g., [7]): every eigenvalue λ of Γ(2)(Vj) with multiplicity m
corresponds to a pair of eigenvalues ±

√
λ+ d of Γ, each with multiplicity m (or a single

eigenvalue 0 of multiplicity 2m in the case λ = −d).
This relation between the spectra of q-regular bipartite graph Γ and its q(q−1)-regular

distance-two graphs Γ(2)(V1) or Γ(2)(V2) has been utilized in each of the papers [7, 6, 20] in
order to find or to bound λ2(Γ) and use this information to assert the expansion property
of Γ. In each of these cases, the distance-two graph of one of the color classes turned
out to be a Cayley graph of a group which allowed the use of representation theory to
compute its spectrum. In [6, 7] the group turned out be abelian, while in [20] it was not
abelian for odd q.

The main motivation behind the construction below is to directly generalize the defin-
ing systems of equations for some of the distance-two graphs of Wk(q) and Lk(q), thereby
obtaining a family of q(q − 1)-regular Cayley graphs of abelian groups. By the adverb
directly used in the previous sentence, we mean to stress that the graphs we build are
not necessarily distance-two graphs of q-regular bipartite graphs Γ. Such examples will be
discussed in Remark 7.1 of Section 7.
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2 Main Results

In this section, we define the main object of this paper, the family of graphs S(k, q), and
we describe our main results. Let k be an integer, k > 3. Let fi, gi ∈ Fq[X], 3 6 i 6 k, be
2(k − 2) homogeneous polynomials of degrees at most q − 1 such that gi(−X) = − gi(X)
for each i. We define S(k, q) = S(k, q; f3, g3, · · · , fk, gk) as the graph with the vertex set
Fkq and edges defined as follows: a = (a1, a2, . . . , ak) is adjacent to b = (b1, b2, . . . , bk) if
a1 6= b1 and the following k − 2 relations on their coordinates hold:

bi − ai = gi(b1 − a1)fi
(b2 − a2
b1 − a1

)
, 3 6 i 6 k. (2)

Clearly, the requirement gi(−X) = − gi(X) is to ensure that adjacency in S(k, q) be
symmetric. One can easily see that S(k, q) is a Cayley graph with the underlying group
G being the additive group of the vector space Fkq with generating set{(

a, au, g3(a)f3(u), · · · , gk(a)fk(u)
)
| a ∈ F∗q, u ∈ Fq

}
.

This implies that S(k, q) is a vertex transitive q(q − 1)-regular graph.
Note that for fi = X i−1 and gi = X, 3 6 i 6 k + 1, S(k + 1, q) coincides with the

distance-two graph of the Wenger graphs Wk(q) induced on lines and for fi = Xpi−2
and

gi = X, 3 6 i 6 k + 1, S(k + 1, q) = L
(2)
k (q) coincides with distance-two graph of the

linearized Wenger graphs Lk(q) also induced on lines.
In order to present our results, we need a bit more notation. For any α ∈ Fq, let

Tr(α) = α + αp + · · · + αp
e−1

be the trace of α over Fp. It is known that Tr(α) ∈ Fp.
For any element β ∈ Fp, let β∗ denote the unique integer such that 0 6 β∗ < p and the
residue class of β∗ in Fp is β. For any complex number c, the expression cβ will mean cβ

∗
.

Let ζp = exp(2πi
p

) be a primitive complex p-th root of unity. For every f ∈ Fq[X], we call

εf =
∑
x∈Fq

ζ
Trf(x)
p the exponential sum of f .

We are ready to state the main results of this paper. All proofs will be provided in
later sections.

The following theorem describes the spectrum of the graphs S(k, q).

Theorem 2.1. Let k > 3. Then the spectrum of S(k, q) is the multiset {λw | w =
(w1, · · · , wk) ∈ Fkq}, where

λw =
∑

a∈F∗
q ,u∈Fq

ζ
Tr

(
aw1+auw2+

k∑
i=3

gi(a)fi(u)wi

)
p . (3)

For a fixed k > 3, the theorem below provides sufficient conditions for the graphs
S(k, q) to form a family of expanders.
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Theorem 2.2. Let k > 3, (qm)m>1 be an increasing sequence of prime powers qm = pemm
(pm prime and em > 1 for m > 1), and let

S(k, qm) = S(k, qm; f3,m, g3,m, · · · , fk,m, gk,m).

Set d
(m)
f = max

36i6k
deg(fi,m) and d

(m)
g = max

36i6k
deg(gi,m). Suppose 1 6 d

(m)
f = o(qm), d

(m)
g =

o(
√
qm), 1 6 d

(m)
g < pm, and for all m > 1, at least one of the following two conditions is

satisfied:

1. The polynomials 1, X, f3,m, . . . , fk,m are Fq-linearly independent, and gi,m contains
a linear term for all i, 3 6 i 6 k.

2. The polynomials f3,m, . . . , fk,m are Fq-linearly independent, and there exists some j,

2 6 j 6 d
(m)
g , such that each polynomial gi,m, 3 6 i 6 k, contains a term c

(m)
i,j X

j

with c
(m)
i,j 6= 0.

Then S(k, qm) is connected and λ2
(
S(k, qm)

)
= o(q2m).

The following two theorems demonstrate that for some specializations of S(k, q), we
can obtain stronger bounds on their second largest eigenvalues.

Theorem 2.3. Let q = pe be an odd prime power with q ≡ 2 mod 3, and 4 6 k 6 q + 1.
Let gi(X) = X3 and fi(X) = X i−1 for each i, 3 6 i 6 k. Then S(k, q) is connected, and

λ2
(
S(k, q)

)
= max

{
q(k − 3), (q − 1)Mq

}
,

where Mq = max
a,b∈F∗

q

εax3+bx. Moreover, Mq 6 2
√
q.

For large k, specifically, when (q − 1)Mq 6 q(k − 3),

λ2
(
S(k, q)

)
= q(k − 3) < q(k − 2) = λ2

(
W

(2)
k−1(q)(V2)

)
.

Similarly to Theorem 2.3, when choosing fi(X) = Xpi−2
, the same f functions as in

L
(2)
k (q), we obtain the following upper bounds for the second largest eigenvalue.

Theorem 2.4. Let q be an odd prime power with q ≡ 2 mod 3, and 3 6 k 6 e + 2. Let
gi(X) = X3 and fi(X) = Xpi−2

for each i, 3 6 i 6 k. Then S(k, q) is connected, and

λ2
(
S(k, q)

)
6 max

{
q(pk−3 − 1), (q − 1)Mq

}
,

where Mq = max
a,b∈F∗

q

εax3+bx. Moreover, Mq 6 2
√
q.

For large k, specifically, when (q − 1)Mq 6 q(pk−3 − 1),

λ2
(
S(k, q)

)
= q(pk−3 − 1) < q(pk−2 − 1) = λ2

(
L
(2)
k−1(q)(V2)

)
.

The paper is organized as follows. In Section 3, we present necessary definitions and
results concerning finite fields used in the proofs. In Section 4, we prove Theorem 2.1.
In Section 5, we study some sufficient conditions on fi and gi for the graph S(k, q) to be
connected and have large eigenvalue gap, and prove Theorem 2.2. In Section 6, we prove
Theorem 2.3 and Theorem 2.4. We conclude the paper with some remarks in Section 7.
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3 Background on finite fields

For definitions and theory of finite fields, see Lidl and Niederreiter [17].

Lemma 3.1 ([17], Ch.5). If f(X) = bX + c ∈ Fq[X] is a polynomial of degree one or
less, then

εf =

{
0, if b 6= 0,
qζTr(c), otherwise.

For a general f ∈ Fq[X], no explicit expression for the exponential sum εf exists.
However, the following theorem provides a good upper bound for it.

Theorem 3.2 (Hasse-Davenport-Weil Bound, [17], Ch.5). Let f ∈ Fq[X] be a polynomial
of degree n > 1. If gcd(n, q) = 1, then

|εf | 6 (n− 1)q1/2.

Lemma 3.3. Suppose that g ∈ Fq[X] and g(−X) = − g(X). Then εg is a real number.

Proof. We have that

εg =
∑
a∈Fq

ζ Tr(g(a))
p = 1 +

∑
a∈F∗

q

ζ Tr(g(a))
p = 1 +

1

2

∑
a∈F∗

q

(
ζ Tr(g(a))
p + ζ Tr(g(−a))

p

)
= 1 +

1

2

∑
a∈F∗

q

(
ζ Tr(g(a))
p + ζ Tr(−g(a))

p

)
= 1 +

1

2

∑
a∈F∗

q

(
ζ Tr(g(a))
p + ζ −Tr(g(a))p

)
.

Since ζβp + ζ−βp ∈ R for any β ∈ Fp, it follows that εg ∈ R.

4 Spectra of the graphs S(k, q)

The proof we present here is based on the same idea as the one in [7]. Namely, computing
eigenvalues of Cayley graphs by using the method suggested in Babai [3] (see also Lovász
[18]). The original completely different (and much longer) proof of Theorem 2.1 that used
circulants appears in Sun [22].

Theorem 4.1 (Babai [3]). Let G be a finite group and S ⊆ G such that 1 6∈ S and
S−1 = S. Let {π1, . . . , πk} be a representative set of irreducible C-representations of G.
Suppose that the multiset Λi := {λi,1, λi,2, . . . , λi,ni

} is the spectrum of the complex ni×ni
matrix πi(S) =

∑
s∈S

πi(s). Then the spectrum of the Cayley graph X = Cay(G,S) is the

multiset formed as the union of ni copies of Λi for i ∈ {1, 2, . . . , k}.

Proof of Theorem 2.1. As we mentioned in Section 2, S(k, q) is a Cayley graph with
the underlying group G being the additive group of the vector space Fkq , and connection
set

S =
{(
a, au, g3(a)f3(u), · · · , gk(a)fk(u)

)
| a ∈ F∗q, u ∈ Fq

}
.
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Since G is an abelian group, it follows that the irreducible C-representations of G are
linear (see [11], Ch. 2). They are given by

πw(v) = ζ Tr(w1v1+···+wkvk)
p ,

where w = (w1, · · · , wk) ∈ Fkq and v = (v1, · · · , vk) ∈ Fkq .
Using Theorem 4.1, we conclude that the spectrum of S(k, q) is a multiset formed by

all λw, w = (w1, · · · , wk) ∈ Fkq , of the form:

λw =
∑
s∈S

ζ Tr(w1s1+···+wksk)
p

=
∑

a∈F∗
q ,u∈Fq

ζ
Tr
(
aw1+auw2+

k∑
i=3

gi(a)fi(u)wi

)
p .

5 Connectivity and expansion of the graphs S(k, q)

It is hard to get a closed form of λw in (3) for arbitrary fi and gi. But if the degrees
of the polynomials fi and gi satisfy suitable conditions, we are able to show that the
components of the graphs S(k, q) have large eigenvalue gap. For these fi and gi, we find
sufficient conditions such that the graphs S(k, q) are connected, and hence form a family
of expanders.

From now on, for any graph S(k, q; f3, g3, · · · , fk, gk), we let dg = max
36i6k

deg(gi) and

df = max
36i6k

deg(fi). We also assume that df > 1 and dg > 1. For each i, 3 6 i 6 k, let ci,j

be the coefficient of Xj in the polynomial gi, i.e.,

gi(X) = ci,1X + ci,2X
2 + . . .+ ci,dgX

dg .

For any w = (w1, · · · , wk) in Fkq , let Nw be the number of u’s in Fq satisfying the
following system

w1 + uw2 +
k∑
i=3

ci,1fi(u)wi = 0,

k∑
i=3

ci,jfi(u)wi = 0, 2 6 j 6 dg (4)

and let Sw be the set of all u’s in Fq such that the following inequality holds for some j,
2 6 j 6 dg,

k∑
i=3

ci,jfi(u)wi 6= 0. (5)

If dg = 1, we set Sw = ∅.
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Lemma 5.1. Let k > 3 and q = pe, p prime. If 1 6 dg < p, then for any w = (w1, · · · , wk)
in Fkq , the eigenvalue λw of S(k, q) in (3) is at most

Nw(q − 1) + |Sw|[(dg − 1)
√
q + 1]. (6)

Moreover, λw = q(q − 1) if and only if Nw = q.

Proof. Let w = (w1, . . . , wk) ∈ Fkq . Using Theorem 2.1, we have

λw =
∑
u∈Fq

∑
a∈F∗

q

ζ
Tr

(
a(w1+uw2)+

k∑
i=3

gi(a)fi(u)wi

)
p

=
∑
u∈Fq

zu,

where

zu =
∑
a∈F∗

q

ζ
Tr

(
a
[
w1+uw2+

k∑
i=3

ci,1fi(u)wi

]
+a2

k∑
i=3

ci,2fi(u)wi+···+adg
k∑

i=3
ci,dgfi(u)wi

)
p .

If u satisfies (4), then zu = q−1. If u ∈ Sw, then zu is an exponential sum of a polynomial
of degree at least 2 and at most dg. By the assumption of the theorem that dg < p and
Weil’s bound in Theorem 3.2, it follows that

|zu| 6 (dg − 1)
√
q + 1.

Finally, for the remaining q −Nw − |Sw| elements u ∈ Fq, we have

w1 + uw2 +
k∑
i=3

ci,1fi(u)wi 6= 0

k∑
i=3

ci,jfi(u)wi = 0, 2 6 j 6 dg. (7)

If dg = 1, then system (7) contains only the first inequality. In both cases, we have
zu = −1. Therefore, we have

λw = Nw(q − 1) +
∑
u∈Sw

zu + (q −Nw − |Sw|)(−1)

6 (Nw − 1)q + |Sw|[(dg − 1)
√
q + 2]

6 Nw(q − 1) + |Sw|[(dg − 1)
√
q + 1].

Let us now prove the second statement of the lemma. It is clear that if Nw = q, then
|Sw| = 0 and λw = q(q− 1). For the rest of this proof, we assume that Nw < q, and show
that λw < q(q − 1).
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Recall that q = pe. If e > 1, then (dg − 1)
√
q + 1 < q − 1 as dg < p. Therefore,

λw < q(q − 1).
For e = 1, we consider the following two cases: q = p = 2 and q = p > 3.
If q = p = 2, then dg = 1 as dg < p, and hence |Sw| = 0. Therefore, λw < q(q − 1).
If q = p > 3, then, as λw is a real number and |zu| 6 p− 1, we have

λw 6 |λw| = |
∑
u∈Fp

zu| 6
∑
u∈Fp

|zu| 6 p(p− 1),

and λw = p(p−1) if and only if zu = p−1 for all u ∈ Fp. The latter condition is equivalent
to

Tr
(
a
[
w1 + uw2 +

k∑
i=3

ci,1fi(u)wi
]

+ a2
k∑
i=3

ci,2fi(u)wi + · · ·+ adg
k∑
i=3

ci,dgfi(u)wi

)
= 0

for all u ∈ Fp. For x ∈ Fp, Tr(x) = 0 if and only if x = 0. This implies that

a
[
w1 + uw2 +

k∑
i=3

ci,1fi(u)wi
]

+ a2
k∑
i=3

ci,2fi(u)wi + · · ·+ adg
k∑
i=3

ci,dgfi(u)wi = 0

for any a ∈ F∗p. Therefore, the polynomial

X
[
w1 + uw2 +

k∑
i=3

ci,1fi(u)wi
]

+X2

k∑
i=3

ci,2fi(u)wi + · · ·+Xdg

k∑
i=3

ci,dgfi(u)wi,

which is over Fp, has p distinct roots in Fp and is of degree at most dg, dg < p. Hence, it
must be zero polynomial, and so Np = p, a contradiction. Hence, λw < p(p− 1).

Let (qm)m>1 be an increasing sequence of prime powers. For a fixed k with k >
3, we consider an infinite family of graphs S(k, qm; f3,m, g3,m, · · · , fk,m, gk,m). Hence,

|V
(
S(k, qm)

)
| = qkm → ∞ when m → ∞. Let d

(m)
f = max

36i6k
deg(fi,m) and d

(m)
g =

max
36i6k

deg(gi,m), for each m. In what follows we provide conditions on d
(m)
f and d

(m)
g which

imply that the components of these graphs have large eigenvalue gaps.

Theorem 5.2. Let (qm)m>1 be an increasing sequence of prime powers, qm = pemm , pm
prime. Suppose that d

(m)
f > 1 and 1 6 d

(m)
g < pm for all m. Let λ(m) be the largest

eigenvalue of S(k, qm) which is not qm(qm − 1) for any m. Then

λ(m) = O(max(d
(m)
f qm, d

(m)
g q3/2m )).

Proof. For any w ∈ Fkqm , the eigenvalue λw of S(k, qm) is at most

Nw(qm − 1) + |Sw|[(d(m)
g − 1)

√
qm + 1],
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by Lemma 5.1.
It is clear that for any w ∈ Fkqm , system (4) has either Nw = qm solutions or at most

d
(m)
f solutions with respect to u. If Nw = qm, then λw = qm(qm − 1) by Lemma 5.1. If

Nw < qm, then Nw 6 d
(m)
f . Therefore, we have

λw 6 d
(m)
f (qm − 1) + qm[(d(m)

g − 1)
√
qm + 1]

6 d
(m)
f qm + d(m)

g q3/2m = O(max(d
(m)
f qm, d

(m)
g q3/2m )).

As an immediate corollary from Theorem 5.2, we have the following theorem.

Theorem 5.3. Let (qm)m>1 be an increasing sequence of prime powers. Suppose that

1 6 d
(m)
f = o(qm), d

(m)
g = o(

√
qm) and 1 6 d

(m)
g < pm for all m. Let λ(m) be the largest

eigenvalue of S(k, qm) which is not qm(qm − 1) for any m. Then

λ(m) = o(q2m).

Our next theorem provides a sufficient condition for the graph S(k, q) to be connected.

Theorem 5.4. For k > 3, let S(k, q) = S(k, q; f3, g3, · · · , fk, gk) and 1 6 dg < p. If at
least one of the following two conditions is satisfied, then S(k, q) is connected.

1. The polynomials 1, X, f3, . . . , fk are Fq-linearly independent, and gi contains a linear
term for each i, 3 6 i 6 k.

2. The polynomials f3, . . . , fk are Fq-linearly independent, and there exists some j,
2 6 j 6 dg, such that each polynomial gi, 3 6 i 6 k, contains a term ci,jX

j with
ci,j 6= 0.

Proof. First, notice that the number of components of S(k, q) is equal to the multiplicity
of the eigenvalue q(q−1). By Lemma 5.1, this multiplicity is equal to

∣∣{w ∈ Fkq : Nw = q}
∣∣.

As the equality Nw = q is equivalent to the statement that system (4) (with respect to
u) has q solutions, the set {w ∈ Fkq : Nw = q} is a subspace of Fkq .

Let v1 = (1, 0, · · · , 0), v2 = (X, 0, · · · , 0), and vi = (ci,1fi, · · · , ci,dgfi) for each 3 6
i 6 k. Let rank(v1, v2, v3 · · · , vk) denote the dimension of the subspace generated by
{v1, v2, v3 · · · , vk}. Then, we have,∣∣{w ∈ Fkq : Nw = q}

∣∣ = qk−rank(v1,v2,v3··· ,vk).

It is clear that if one of the two conditions in the statement of the theorem is satisfied,
then v1, v2, v3, · · · , vk are Fq-linearly independent, and hence

rank(v1, v2, v3, · · · , vk) = k.

Therefore, the graph S(k, q) is connected.

We are ready to prove Theorem 2.2.
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Proof of Theorem 2.2. This is an immediate corollary of Theorem 5.3 and Theorem
5.4.

We conclude this section with an example of families of expanders. Their expansion
properties follow from Theorem 2.2.

Example 5.1. Fix k > 3. Choose (bn)n>1 and (cn)n>1 to be two increasing sequences of
positive real numbers such that bn = o(n), and cn = o(

√
n).

Let (qm)m>1 be an increasing sequence of prime powers such that bq1 > k.
Let f3,m, . . . , fk,m be such that 1, X, f3,m, . . . , fk,m are Fq-linearly independent and

1 6 d
(m)
f < bq. Let g3,m, . . . , gk,m be such that gi,m(−X) = −gi,m(X) for each i, the

coefficient of X in gi,m is non-zero and 1 6 d
(m)
g < min(pm, cqm). Then the graphs

S(k, qm) = S(k, qm; f3,m, g3,m, · · · , fk,m, gk,m), m > 1, form a family of expanders.

6 Spectra of the graphs S(k, q) for gi(X) = X3

In this section, we provide some specializations of the graphs S(k, q) for gi(X) = X3,
3 6 i 6 k, and bound or compute their eigenvalues. Our goal is to prove Theorems 2.3
and 2.4.

Lemma 6.1. Let q be an odd prime power with q ≡ 2 mod 3 and k > 3. Suppose that
gi(X) = X3 for any i, 3 6 i 6 k. For any w ∈ Fkq , let Tw be the number of u ∈ Fq such
that f3(u)w3 + · · · + fk(u)wk = 0. Then λw is either q(Tw − 1) or at most (q − Tw)Mq,
where Mq = max

a,b∈F∗
q

εax3+bx. Moreover, Mq 6 2
√
q.

Proof. By (3), we have the following,

λw =
∑

a∈F∗
q ,u∈Fq

ζ
Tr
(
a(w1+uw2)+a3

k∑
i=3

fi(u)wi

)
p ,

for any w = (w1, · · · , wk). Let F (X) = f3(X)w3 + · · ·+ fk(X)wk.

Case 1: For w of the form (0, 0, w3, · · · , wk), we have:

λw =
∑
u∈Fq

F (u)=0

∑
a∈F∗

q

ζ
Tr
(
a3F (u)

)
p +

∑
u∈Fq

F (u) 6=0

∑
a∈F∗

q

ζ
Tr
(
a3F (u)

)
p

= (q − 1)Tw +
∑
u∈Fq

F (u)6=0

∑
a∈F∗

q

ζ
Tr
(
a3F (u)

)
p .

Since q ≡ 2 mod 3, then gcd(q − 1, 3) = 1, and a 7→ a3 defines a bijection of Fq.

Therefore the above term
∑
a∈F∗

q

ζ
Tr
(
a3F (u)

)
p equals −1. Hence,

λw = (q − 1)Tw − (q − Tw) = q(Tw − 1).
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Case 2: For those w of the form (w1, 0, w3, · · · , wk) with w1 6= 0, we have,

λw =
∑
u∈Fq

F (u)=0

∑
a∈F∗

q

ζ
Tr
(
aw1+a3F (u)

)
p +

∑
u∈Fq

F (u) 6=0

∑
a∈F∗

q

ζ
Tr
(
aw1+a3F (u)

)
p

= −Tw +
∑
u∈Fq

F (u)6=0

(εw1a+F (u)a3 − 1)

= −q +
∑
u∈Fq

F (u) 6=0

εw1a+F (u)a3

6 −q +
∑
u∈Fq

F (u)6=0

Mq (by Lemma 3.3, εw1a+F (u)a3 is real)

6 −q + (q − Tw)Mq < (q − Tw)Mq.

Case 3: For those w of the form w = (w1, w2, w3, · · · , wk) with w2 6= 0, we have

λw =
∑
u∈Fq

F (u)=0
w1+uw2=0

∑
a∈F∗

q

ζ Tr(aw1+auw2)
p +

∑
u∈Fq

F (u)=0
w1+uw2 6=0

∑
a∈F∗

q

ζ Tr(aw1+auw2)
p (8)

+
∑
u∈Fq

F (u)6=0

∑
a∈F∗

q

ζ
Tr
(
a(w1+uw2)+a3F (u)

)
p . (9)

If F (−w1/w2) = 0, then the number of u ∈ Fq such that F (u) = 0 and w1 +uw2 = 0
is 1, and hence,

λw = (q − 1)− (Tw − 1) +
∑
u∈Fq

F (u)6=0

∑
a∈F∗

q

ζ
Tr
(
a(w1+uw2)+a3F (u)

)
p

= q − Tw +
∑
u∈Fq

F (u)6=0
w1+uw2 6=0

(ε(w1+uw2)a+F (u)a3 − 1)

=
∑
u∈Fq

F (u)6=0
w1+uw2 6=0

ε(w1+uw2)a+F (u)a3

6 (q − Tw)Mq.

Now assume that F (−w1/w2) 6= 0. Then, w1 + uw2 6= 0 if F (u) = 0. Then the first
double sum in (8) has no terms, the second double sum in (8) is equal to Tw(−1),
and splitting the double sum in (9) into two double sums, we obtain:
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λw = −Tw +
∑
u∈Fq

F (u)6=0
w1+uw2=0

∑
a∈F∗

q

ζ
Tr
(
a(w1+uw2)+a3F (u)

)
p +

∑
u∈Fq

F (u)6=0
w1+uw2 6=0

∑
a∈F∗

q

ζ
Tr
(
a(w1+uw2)+a3F (u)

)
p

= −Tw +
∑
a∈F∗

q

ζ
Tr
(
a3F (u)

)
p +

∑
u∈Fq

F (u)6=0
w1+uw2 6=0

∑
a∈F∗

q

ζ
Tr
(
a(w1+uw2)+a3F (u)

)
p

= −Tw − 1 +
∑
u∈Fq

F (u)6=0
w1+uw2 6=0

(ε(w1+uw2)a+F (u)a3 − 1)

= −q +
∑
u∈Fq

F (u)6=0
w1+uw2 6=0

ε(w1+uw2)a+F (u)a3

6 −q + (q − Tw − 1)Mq < (q − Tw)Mq.

As q ≡ 2 mod 3, we have gcd(3, q) = 1. By Theorem 3.2, Mq 6 2
√
q, and the lemma is

proven.

Now we prove Theorem 2.3, where fi(X) = X i−1, for any 3 6 i 6 k. In this case, we
are able to determine the second largest eigenvalue of each S(k, q).

Proof of Theorem 2.3. Since 3 6 k 6 q + 1, it follows that X2, X3, · · · , Xk−1 are
Fq-linearly independent, and hence S(k, q) is connected by Theorem 5.4. For any w =
(w1, · · · , wk) ∈ Fkq , let F (X) = X2w3 + X3w4 + · · · + Xk−1wk = X2(w3 + Xw4 + · · · +
Xk−3wk), which implies that Tw (as in Lemma 6.1) is either q or between 1 and k− 2. By
Lemma 6.1, we have that if λw is not q(Tw−1), hence it is at most (q−Tw)Mq 6 (q−1)Mq.
Therefore, we obtain:

λ2
(
S(k, q)

)
6 max{q(k − 3), (q − 1)Mq}.

Moreover, if k > 4, then the above inequality becomes equality. Indeed, for any w ∈ Fkq
of the form w = (0, w2, 0, w4, 0, · · · , 0), where w2, w4 6= 0, the following holds:

λw =
∑

a∈F∗
q ,u∈Fq

ζ Tr(auw2+a3u3w4)
p

=
∑
x∈Fq

∑
a∈F∗

q ,u∈Fq
au=x

ζ Tr(w2x+w4x3)
p

=
∑
x∈Fq

(q − 1)ζ Tr(w2x+w4x3)
p

= (q − 1)εw2x+w4x3 .
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This implies that
max

w=(0,w2,0,w4,0,··· ,0)
w2,w4 6=0

{λw} = (q − 1)Mq.

Therefore, we have λ2(S(k, q)) = max{q(k − 3), (q − 1)Mq}. As q ≡ 2 (mod 3), by
Theorem 3.2, Mq 6 2

√
q.

Proof of Theorem 2.4. Since 3 6 k 6 e + 2, it follows that Xp, · · · , Xpk−2
are Fq-

linearly independent, and hence S(k, q) is connected by Theorem 5.4. For any w =
(w1, · · · , wk) ∈ Fkq , let F (X) = Xpw3 + · · · + Xpk−2

wk = (Xp)w3 + · · · + (Xp)p
k−3
wk =

Y w3 + · · · + Y pk−3
wk where Y = Xp. Since a 7→ ap defines a bijection on Fq, it implies

that Tw (defined here as the number of roots of F (X) in Fq), is either q or at most pk−3.
The statement of the theorem then follows from Lemma 6.1.

7 Concluding remarks

In this section, we make some remarks on several specializations of S(k, q) considered in
Section 6.

Remark 7.1. As we mentioned in Section 1, for every q-regular bipartite graph Γ, every
eigenvalue of Γ(2) should be at least −q. For graphs S(3, q;x2, x3) for prime q between 5
and 19, and for graphs S(4, q;x2, x3, x3, x3) for prime q between 5 and 13, our computations
show that their smallest eigenvalues are strictly less than −q. This implies that these
graphs are not distance two graphs of any q-regular bipartite graphs.

Remark 7.2. In Section 6, we discussed the graphs S(k, q) with gi(X) = X3. Now
assume that n > 1, and gi(X) = X2n+1 for all i, 3 6 i 6 k. For these graphs, Lemma 6.1
can be generalized as follows:

Let q be an odd prime power with q 6≡ 1 mod (2n + 1) and (2n + 1, q) = 1. For any
w ∈ Fkq , let Nw be the number of u ∈ Fq such that w3f3(u) + · · ·+ wkfk(u) = 0. Then λw
is either q(Nw − 1) or at most 2n(q −Nw)

√
q.

In the case when 3 6 k 6 q+ 1, fi(X) = X i−1 and gi(X) = X2n+1 for all i, 3 6 i 6 k,
the conclusion of Theorem 2.3 can be stated in a slightly weaker form:

λ2
(
S(k, q)

)
6 max{q(k − 3), 2n(q − 1)

√
q}.

Actually, for fixed q, if k is sufficiently large, λ2
(
S(k, q)

)
= q(k − 3) for all n > 1.

Remark 7.3. The quantity Mq = max
a,b∈F∗

q

εax3+bx in Theorem 2.3 and Theorem 2.4 is at

most 2
√
q by Weil’s bound. From the computational results, Mq > 2

√
q− 2 for q 6 1331.

Interestingly, when q = 53 or 55, Weil’s bound is tight.

Remark 7.4. Let k > 3 be an integer and let fi, gi ∈ Fq[X], 3 6 i 6 k + 1, be 2k − 2
polynomials of degree at most q−1 such that gi(−X) = −gi(X) for each i, 3 6 i 6 k+1. If
S(k+1, q) = S(k+1, q; f3, g3, . . . , fk, gk, fk+1, gk+1) and S(k, q) = S(k, q; f3, g3, . . . , fk, gk),
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then it is not hard to show that S(k + 1, q) is a q-cover of S(k, q) (see, e.g., [10, Section
6]). This implies that the spectrum of S(k + 1, q) is a submultiset of the spectrum of
S(k, q) and, in particular, λ2(S(k + 1, q)) > λ2(S(k, q)).

Interestingly, in the case when fi(X) = X i−1 and gi(X) = X3 for each i > 3, we actu-

ally have equality in the inequality above for (q, k) whenever k <
q − 1

q
Mq + 2 (immediate

from Theorem 2.3).
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