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Abstract

One important problem in a network G is to locate an (invisible) moving en-
tity by using distance-detectors placed at strategical locations in G. For instance,
the famous metric dimension of a graph G is the minimum number k of detectors
placed in some vertices {v1, · · · , vk} such that the vector (d1, · · · , dk) of the dis-
tances d(vi, r) between the detectors and the entity’s location r allows to uniquely
determine r for every r ∈ V (G). In a more realistic setting, each device does not get
the exact distance to the entity’s location. Rather, given locating devices placed in
{v1, · · · , vk}, we get only relative distances between the moving entity’s location r
and the devices (roughly, for every 1 6 i, j 6 k, it is provided whether d(vi, r) >, <,
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or = to d(vj , r)). The centroidal dimension of a graph G is the minimum number
of devices required to locate the entity, in one step, in this setting.

In this paper, we consider the natural generalization of the latter problem, where
vertices may be probed sequentially (i.e., in several steps) until the moving entity is
located. Roughly, at every turn, a set {v1, · · · , vk} of vertices are probed and then
the relative order of the distances between the vertices vi and the current location
r of the moving entity is given. If it not located, the moving entity may move along
one edge. Let ζ∗(G) be the minimum k such that the entity is eventually located,
whatever it does, in the graph G.

We first prove that ζ∗(T ) 6 2 for every tree T and give an upper bound on
ζ∗(G�H) for the cartesian product of graphs G and H. Our main result is that
ζ∗(G) 6 3 for any outerplanar graph G. We then prove that ζ∗(G) is bounded by
the pathwidth of G plus 1 and that the optimization problem of determining ζ∗(G)
is NP-hard in general graphs. Finally, we show that approximating (up to a small
constant distance) the location of the robber in the Euclidean plane requires at most
two vertices per turn.

Mathematics Subject Classifications: 05C57, 91A46, 68R10

1 Introduction

The problem of locating or capturing an intruder in a graph has been widely studied using
many different approaches. One approach is to place detection devices at some vertices
of the graph such that these devices precisely determine the position of the intruder at
any moment and wherever it is. For instance, this is the approach taken by identifying
codes, metric bases and centroidal bases.

Recall that a dominating set D ⊆ V of a graph G = (V,E) is a set such that any
vertex of V is in the closed neighborhood of some vertex of D. That is, V =

⋃
v∈DN [v],

where N(v) = {u ∈ V : {u, v} ∈ E} and N [v] = N(v) ∪ {v} for any v ∈ V . A vertex
u separates two vertices v and w if it is in the closed neighborhood of exactly one of
them. A set D ⊆ V separates the vertices of a set X if, for every two vertices v, w ∈ X,
there exists u ∈ D which separates them. A set D is an identifying code of a graph G
if it is dominating and separates all vertices from V (G) [11]. Similarly, Slater defined
the notion of locating-dominating set, that is a dominating set D separating vertices of
V (G) \D [16, 17] (see [12] and the references therein). Both previous approaches model
the situation when the detection devices can detect an intruder at distance at most one
from them.

The case when the devices have a longer range of detection has also been considered.
For instance, Slater considered the case of an infinite range of detection. Precisely, a locat-
ing set is a vertex set L = {w1, . . . , wk} ⊆ V (G) such that, for each vertex v ∈ V (G), the
ordered k-tuple (d(v, w1), d(v, w2), . . . , d(v, wk)) of distances between the detectors and
the intruder vertex v is unique [15, 9] (i.e., the vector of distances allows to determine
uniquely the vertex v). The minimum cardinality of a locating set is called metric dimen-
sion of a graph, denoted by MD(G), and a locating set of minimal cardinality is called a
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metric basis of G. For more details on the complexity of computing the metric dimension
and on bounds on metric dimension of various graph classes, see for instance [7, 8].

The concept of centroidal bases (see eg. [6]) is similar to the one of metric bases.
Once again, detecting devices placed at the vertices C = {c1, . . . , ck} ⊆ V (G) are assume
to have have unlimited range, but they do not determine the exact distance from the
intruder. Instead, the devices report in an order: if ci is closer to the intruder than cj,
then ci reports before cj and, if they are at the same distance from the intruder, then they
report simultaneously. In other words, the received information is an ordered partition
of C (ordered by nondecreasing distance from the intruder and ties noted). If, for any
intruder position v ∈ V (G), the received information allows us to uniquely determine v,
then C is called a centroidal locating set. If C is a centroidal locating set of minimal
cardinality, then it is said to be a centroidal basis of G, and its cardinality is called the
centroidal dimension of G, denoted by CD(G). For instance, it is known that, for any n-
node graph G with maximum degree at least 2, then (1 +o(1)) lnn

ln lnn
6 CD(G) 6 n−1 [6].

We note that additional information, whether for some checked vertex the distance from
the intruder is 0, allows to remove the degree restriction.

All above mentioned models aim at locating the intruder at any moment of time or,
equivalently, at any turn. Another approach consists in locating it in a finite number of
turns. This is in the vein of the famous Cops and Robber games where a team of cops
must capture a (generally) visible robber by moving alternately in a graph (e.g., see the
book [2]).

The localization game [13, 3, 10] somehow generalizes the notion of metric dimension of
a graph by allowing to probe several sets (of bounded size) instead of only one. Of course,
between any two probes, the intruder may move (since otherwise, it would be sufficient to
check every vertex one by one). Precisely, the localization game is defined as follows. Let
G = (V,E) be a simple undirected graph and let k > 1 be a fixed integer. Two players,
the Cop-player and the Robber-player (the robber), play alternately as follows. In the first
turn, the robber chooses a vertex r ∈ V but keeps it in a secret. Then, at every turn,
first the Cop-player picks (or probes) k vertices B = {v1, v2, . . . , vk} ∈ V k and, in return,
gets the vector D(B) = (d1, d2, . . . , dk) where di = dG(r, vi) is the distance (in G) from r
to vi for every i = 1, 2, . . . , k. If the location of the robber is uniquely identified thanks
to this information, the game ends with the victory of the Cop-player. Otherwise, the
robber may move along one edge. The robber wins if its location is never known. Let the
localization number of G, denoted by ζ(G), be the least integer k for which the cops have
a winning strategy whatever be the strategy of the robber.

This game restricted to k = 1 has been introduced by Seager [13], and studied further
in [4, 5, 14]. The parameter ζ(G) can be seen as the game theoretic variant of MD(G)
and, by the definition, ζ(G) 6 MD(G) in any graph G. The localization game with many
cops has been introduced recently by the authors of this paper in [3] and, independently,

in [10]. For instance, in [10], it was shown that ζ(G) 6 b (∆+1)2

4
c + 1 for any graph G

with maximum degree ∆. The main result in [3] is that ζ(G) is unbounded in the class
of planar graphs (more precisely, in the class of graphs obtained from a tree by adding a
universal vertex). Moreover, computing ζ(G) is NP-hard [3].
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The goal of this paper is to propose and study a “generalization” of the centroidal
dimension, in the same way as the localization game somehow extends the notion of
metric dimension. This is inspired by localization problems in wireless networks (such as
the network of Wi-Fi access points). We are interested in locating a person with a mobile
device, who may walk along the network changing his position in time. The strength
of the signal from the mobile device is proportional to its distance to particular access
points. Unfortunately the signal may be easily disturbed by various factors, hence its
strength depends highly on the circumstances. On the other hand, the relative order of
the strengths of two signals is expected to be invariant regardless of the circumstances.

The centroidal localization game is a turn-by-turn 2-Player game that proceeds as
follows. First an invisible robber is placed at some vertex r. Then, at every turn, first
the Cop-player probes a set {v1, · · · , vk} of k vertices. In return, the Cop-player receives,
for any 1 6 i < j 6 k, the information whether d(vi, r) = 0 or d(vi, r) = d(r, vj) or
d(vi, r) < d(r, vj) or d(vi, r) > d(r, vj). If the location of the robber is uniquely identified
thanks to this information, the game ends with the victory of the Cop-player. Otherwise,
the robber may move along one edge. The robber wins if its location is never known. Note
that it is not necessary for the Cop-player to probe the vertex occupied by the robber to
win.

The centroidal localization number of G, denoted by ζ∗(G), is the minimum k that
ensures the victory for the Cop-player whatever be the strategy of the robber. Note that
ζ∗(G) may be viewed as game-theoretical version of the centroidal dimension, and the
inequality ζ∗(G) 6 CD(G) obviously holds for every graph G. Note also that ζ(G) 6
ζ∗(G) holds by definition. Hence, by [3], ζ∗(G) is unbounded on planar graphs (even in
the class of graphs obtained from a tree by adding a universal vertex), while any upper
bound proven in this paper holds for ζ(G) as well. It is also interesting to note that, some
results obtained in the context of the localization game, have been proved without using
the exact distances but only their relative order. For this reason, from the proof of [10],
it is possible to directly derive that

Corollary 1. For any graph G with maximum degree ∆, ζ∗(G) 6 b (∆+1)2

4
c+ 1.

Our results. As a warm-up, we give easy results on the centroidal localization number
(Section 2). Then, we show that ζ∗(T ) 6 2 for any tree T (Section 3) and we provide
an upper bound on ζ∗(G�H) (where � denotes the cartesian product) in Section 4. Our
main result is that ζ∗(G) 6 3 for any outerplanar graph G (Section 5), which also gives the
best known bound for ζ(G) in this class of graphs. Then we show that deciding whether
ζ∗(G) 6 k is NP-hard in the class of graphs G with diameter 2 (Section 6). Finally, we
show that approximating (up to a small constant distance) the location of the robber in
the Euclidean plane requires to probe at most two vertices per turns (Section 7). In the
final section (Section 8) we set several open problems for future research.

2 Warm-up

Let us start with very simple observations.
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Proposition 2. ζ∗(G) = 1 if and only if G is a graph with at most one edge.

Proof. First let G be a graph with at most one edge. Then G is a collection of isolated
vertices and possibly one pair of vertices connected by the edge e = {u, v}. Note that if
the robber starts the game in one of the isolated vertices, then he will remain in the same
location throughout the whole game. The strategy for the Cop-player is to first check all
isolated vertices one by one. If by doing so she doesn’t catch the robber then he is in u
or v. Then the Cop-player checks u and either immediately catches the robber, or knows
that he is in v.

It is easy to see that if G has more than 1 edge, then the robber should choose one of
the edges and move between between its vertices. the Cop-player can locate the robber
only if she checks the exact vertex with the robber, which can always be avoided.

Proposition 3. For any graph G, ζ∗(G) = max{ζ∗(C) : C is connected component of G}
or ζ∗(G) = 2 if |E(G)| > 1 and every connected component of G has at most one edge.

Proof. The result is obvious if the graph G has at most one edge. Otherwise, by the above
Proposition, we may assume that the Cop-player can probe at least two vertices per turn.
We show that, by checking two vertices in each round the Cop-player can determine the
component of G containing the robber.

Assume G has more than one component. First note that the robber will never
leave the component of the vertex of his first location. Moreover only vertices from this
component are at finite distance from him. Say the Cop-player chooses vertices c1, c2,
each from different components. Then at most one of c1, c2 are at finite distance from
the robber. If their distances from the robber are equal, then both are from different
component than the robber. Otherwise the component of vertex with smaller distance
contains the robber. Once such a component C has been detected, it is then sufficient to
probe at most ζ∗(C) vertices per turn in C to locate the robber.

Proposition 4. Every bipartite graph G with partition classes of size a and b satisfies
ζ∗(G) 6 max(2,min(a, b)).

Proof. As the Cop-player can probe at each round at least 2 vertices, by Proposition 3
we may assume that G is connected. Assume a 6 b.

When a = 1 the Cop-player may use the following strategy. Check at each round the
vertex of the smaller partition class, which forces the robber not to move (otherwise he
will be caught immediately). Second probed vertex is chosen from another partition class
checking the whole class in a sequence. Eventually exact location of the robber will be
checked.

When a > 1 at first round the Cop-player probes all a vertices from the smaller
partition class. Either the robber is caught or there is some vertex, say v, that is adjacent
with the robber’s position and hence it minimizes the distance. In the latter case, the
robber must occupy a vertex in the neighborhood of v. In further rounds of the game the
Cop-player probes a−1 vertices from the smaller partition class except v and step by step
one vertex, say ui, from N(v). Note, that when the robber moves, he can either go to
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some probed vertex (he is then caught immediately) or to vertex v. But then d(ui, v) = 1,
while other distances are at least 2, hence the robber is located at v. Therefore, the robber
is forced to stay in a vertex chosen at the first round. Eventually exact location of the
robber will be checked.

It is easy to note, that for a path Pn for n > 3 there is ζ∗(Pn) = 2. Indeed, the
Cop-player wins sweeping the path from one of its ends probing at each step 2 adjacent
vertices. Since paths are precisely the graphs with pathwidth one, this remark can be
generalized as follows.

A path-decomposition of a graph G = (V,E) is a sequence X = (X1, · · · , Xt) of subsets
of V , called bags, such that, for every edge {u, v} ∈ E, there exists a bag containing both
u and v, and such that, for every 1 6 i 6 k 6 j 6 t, Xi∩Xj ⊆ Xk. The width of X equals
max16i6t |Xi| − 1 and the pathwidth of G, denoted by pw(G), is the minimum width of
its path-decompositions. Pathwidth and path-decompositions are closely related to some
kind of pursuit-evasion games [1].

Proposition 5. Every graph G satisfies ζ∗(G) 6 pw(G) + 1.

Proof. By Proposition 3 we may assume that G is connected (as pw(G) = 0 means that
E(G) = ∅). Let (X1, · · · , Xt) be an optimal path-decomposition (of width pw(G)) of G
and such that, for every 1 < i 6 t, |Xi−1 \Xi| > 1 (note that if Xi−1 ⊆ Xi, removing Xi−1

from the sequence leads to a path-decomposition with same width). The strategy for the
Cop-player is to probe Xi for i = 1 to t step by step. As, for k, j such that k 6 i 6 j,
the robber cannot move from any vertex v ∈ Xj to a vertex u ∈ Xk without being caught
then eventually (for i = t), he will be located.

3 Trees

Following results of Seager [13, 14] one can deduce that for any tree, say T , ζ(T ) is either
1 or 2. More precisely, she proved that one cop is sufficient to locate a robber on any
tree when robber is not allowed to move to a vertex just checked by the Cop-player (in
the previous round) and that this restriction is necessary for trees that contains a ternary
regular tree of height 2 as a subtree. The same bound holds true for ζ∗(T ) which can be
easily proven.

Theorem 6. If T is a tree with at least 3 vertices, then ζ∗(T ) = 2.

Proof. We will describe a simple recursive strategy for the Cop-player (see Figure 1). In
the first round, a pair of adjacent vertices c1 and c2 is chosen. Assuming the robber is not
immediately caught, he says which of distances d1 and d2 from his current position to c1,
respectively to c2, is smaller. As each edge of the tree is a bridge (cut-edge) it splits the
tree into 2 subtrees and information about d1 and d2 allows the Cop-player to determine
the subtree in which the robber is hiding. W.l.o.g., let us assume that d1 > d2. Then the
robber is staying in the subtree containing c2, denoted by T2, otherwise he is staying in
some subtree containing other neighbor of c1.
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d1>d2 d1<d2

c1

c2

c3

c2

c1

c3

Figure 1: Cop’s strategy for trees.

Suppose he is in T2. Then in the second round the Cop-player will pick again c2 and
some neigbor c3 of c2 in T2. Either the robber will be located immediately or after getting
a response from him, Cop will know if the robber is hiding in a subtree of T2 containing
c3 or in some subtree of T2 containing other neighbor of c2. Note that the robber cannot
move through c2 without being located. The process goes on, decreasing the size of the
subtree where the robber can be, until the robber is caught.

4 Cartesian product of graphs

Another result concerns the Cartesian product of graphs. Recall that the Cartesian prod-
uct of graphs G and H, is the graph G�H with vertex set V (G�H) = V (G)× V (H) in
which (u, v) is adjacent to (u′, v′) if and only if either {u, u′} ∈ E(G) and v = v′ or u = u′

and {v, v′} ∈ E(H).

Theorem 7. For any graphs G and H there is

ζ∗(G�H) 6 max{∆(G) + ∆(H) + 1,∆(G) + ζ∗(H), ζ∗(G) + ∆(H)}.

Proof. Let G,H be two graphs. The winning strategy for the Cop-player is divided into
2 phases. During the first phase, probing at most ∆(G) + ∆(H) + 1 vertices per turn, the
Cop-player will chase the robber to know the exact value of at least one coordinate of his
position. Suppose that known coordinate is the one from the graph G (the second case
is symmetric). Then, in the second phase, probing at most ∆(G) + ζ∗(H) vertices per
turn, the Cop-player will locate the robber using the strategy for graph H while always
maintaining its knowledge on the G’s coordinate of the robber.
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Details goes as follows. Let us describe the first phase. Suppose the robber is hidden
at vertex (rG, rH). Let (u, v) ∈ V (G�H). Probing at most ∆(G)+∆(H)+1 vertices, the
Cop-player probes each vertex in the setNG�H [(u, v)]. Note that, for all uG ∈ NG(u), there
is dG�H((u, v), (rG, rH)) < dG�H((uG, v), (rG, rH)) if and only if u = rG. Symmetrically,
dG�H((u, v), (rG, rH)) < dG�H((u, vH), (rG, rH)) for all vH ∈ NH(v) if and only if v = rH .
Therefore, the Cop-player can recognize when she has found one of the coordinate of
the robber’s location and, in this case, the second phase starts. Let us show that the
Cop-player eventually achieves this situation. Suppose u 6= rG and v 6= rH . Comparing
distances of vertices (·, v) and (u, ·) with distance to (u, v), the Cop-player may recognize
the first step of a shortest path to the robber position in both graphs G and H. Suppose
dG(uG, rG) < dG(u, rG) and dH(vH , rH) < dH(v, rH) for some uG ∈ NG(u) and some
vH ∈ NH(v). Note that

dG�H ((uG, vH), (rG, rH)) = dG�H ((u, v), (rG, rH))− 2.

Therefore even after the robber move the Cop-player is able to decrease the distance from
the robber by choosing to probe NG�H [(uG, vH)] in the next round. So, eventually, at
least one coordinate of the robber position will be known by the Cop-player.

Now, the second phase proceeds as follows. Suppose, w.l.o.g., that the known coor-
dinate is the one from the graph G, say rG ∈ V (G), while the coordinate rH ∈ V (H) is
unknown. Now, the Cop-player uses the winning strategy in the graph H probing ζ∗(H)
vertices at each round, say (rG, v1), (rG, v2), . . . , (rG, vζ∗(H)) and at most ∆(G) vertices of
the form (u, v1) for u ∈ N(rG). When the robber does not move on G-coordinate, this
is simply a winning strategy. If the robber moved, then exactly one vertex of the form
(·, v1), say (u, v1), shows the minimal distance. Hence, the Cop-player is able to control
such a move changing base G-coordinate to u in next round. Cop-player must also check
whether H-coordinate of some probed vertex is not equal to H-coordinate of the robber
position which may be a part of the winning strategy on H1. Fortunately, moving on G
the robber does not change his H-coordinate, which allow Cop-player to skip one move
in the strategy on H. Therefore, now and every second step when the robber continues
moving on G-coordinates, if exactly one vertex of the form (rG, ·), say (rG, v) shows the
minimal distance (which is necessary condition for rH = v), then in the next round Cop-
player probes (at most ∆(G) + ∆(H) + 1) vertices of the closed neighborhood of vertex
(u, v). This guarantees to localize the robber if in the last round rH = v, otherwise it
allows the Cop-player to recognize where the robber has moved if he moved on G once
again. Otherwise, if more than one vertex has the minimal distance on H-coordinate, and
every other second step, the Cop-player picks new vertices changing both coordinates: on
G according to the knowledge of the last move of the robber and on H according to the
winning strategy there. When the robber stops moving on G-coordinates the Cop-player
returns to the described above strategy localizing the robber on H and keeping localiza-
tion on G. Therefore, as the Cop-player still goes forward with the winning strategy on
H, the robber will eventually be located.

1The authors are grateful to anonymous referee of pointing this out.
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Mimicking the proof we get immediately an analogue for the (metric) localization
game. In this case the second phase is easier as the Cop-player can simply guess the
robber location when the robber moved on G-coordinate while Cop-player probed a vertex
with H-coordinate of the robber’s position.

Corollary 8. For any graphs G and H there is

ζ(G�H) 6 max{∆(G) + ∆(H) + 1,∆(G) + ζ(H), ζ(G) + ∆(H)}.

By a trivial induction on d ∈ N∗, we also get:

Corollary 9. For any hypercube Qd = K2�Qd−1, d > 1, ζ∗(Qd) 6 d+ 1.

5 Outerplanar graphs

In this section we prove that ζ(G) 6 ζ∗(G) 6 3 for any outerplanar graph G = (V,E).
We first recall some basic notions of graphs. For any S ⊆ V , let N(S) = {v ∈ V \S : ∃u ∈
S, {u, v} ∈ E}. A set S is a separator if G \ S has at least two connected components.
A set S is a minimal separator if there exist two vertices a and b in distinct connected
components of G \ S and no proper subset of S separates a and b. Any connected
component A of G \ S is called a full component (with respect to S) if N(A) = S. A set
S is a minimal separator if and only if it has at least two full components.

Definition 10. A graph is outerplanar if it has a planar embedding such that every vertex
stands on the outer-face.

Let us recall basic properties of outerplanar graphs. A minor of G is any graph that
can be obtained from a subgraph H of G by contracting some edges of H. Recall that an
outerplanar graph does not admit K2,3 as a minor (since the class of outerplanar graphs
is minor-closed and K2,3 is not outerplanar). In particular, this implies that any minimal
separator of an outerplanar graph has at most two vertices (since otherwise, there would
be a K2,3 minor). Moreover, for any minimal separator S of an outerplanar, if |S| = 2,
then G \ S has exactly two full connected components (otherwise there would be a K2,3

as minor).

Theorem 11. Every outerplanar graph G satisfies ζ∗(G) 6 3. Moreover, if G has n
vertices, then there is a cop strategy using 3 probes per turn that takes O(n2) turns.

Proof. From now on, let us assume that an outerplanar embedding of G is given (this can
be computed in polynomial-time) and fixed. Note that, once the embedding is fixed, it
defines a cyclic ordering (that may be clockwise or counter-clockwise) of the neighbors of
each vertex.

The algorithm proceeds as follows, gradually reducing the set of vertices where the
robber may be hidden. Initially, the Cop-player probes any vertex v and knows that the
robber stands at some vertex of R = V \ {v} (unless the robber is immediately located).
Then, after the robber’s move, it can be only at some vertex of R ∪ {v}.

Now, let us assume that we have reached one of the following two possible situations:
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Situation 1 There is a vertex v and R ⊆ V \ v, where R is a union of connected com-
ponent(s) of V \ {v}, such that the robber stands at some vertex of R ∪ {v} and
this is the turn of the Cop-player (note that we are in such situation after the first
turn); or

Situation 2 There are two vertices {u, v} and R ⊆ V \ {u, v}, where R is a union of
connected component(s) of V \ {u, v} such that the robber stands at some vertex
of R ∪ {u, v} and this is the turn of the Cop-player. Moreover, there is at most one
connected component of R that is full with respect to {u, v} and there is a uv-path
in G \R (possibly u and v are adjacent).

We present an algorithm that, starting from one such situation,reaches a new such situa-
tion while strictly reducing the size of R. The algorithm uses O(n) probes. This ensures
the localization of the robber in O(n2) turns.

First, let us consider the Situation 1.

• If R is not connected, let X be any connected component of R, the Cop-player
checks whether the robber is located in X. For this purpose, let {v1, · · · , vd} be the
neighbors of v in X in the order they appear in the outer-face (w.l.o.g., clockwise).
Note that, by outer-planarity, for any connected component Y of X \ {v1, · · · , vd},
N(Y ) ⊆ {vi, vi+1} for some 0 6 i < d.

The Cop-player sequentially probes {v, vi, vi+1} for i from 1 to d− 1.

If, for some 1 6 i < d, the probe at {v, vi, vi+1} indicates that the robber is closer to
vi or vi+1 than it is to v, then the robber is necessarily in X and we reach Situation
1 for v and X ( R.

Otherwise, we show that the robber cannot be in X. Indeed, for every 1 6 i < d,
let Yi be the union of the connected components Y of X \ {v1, · · · , vd} such that
N(Y ) ⊆ {v, v1, · · · , vi+1} (in particular, N(Yi) ⊆ {v, v1, · · · , vi+1}). Note that
Yd−1 = X \ N(v). By induction on i, let us assume that {v, vj, vj+1} have been
probed sequentially for j from 1 to i − 1 and that the robber cannot be in Yi−1.
When {v, vi, vi+1} is probed, if the robber occupies a connected component Z of
X \ N(v) such that N(Z) ⊆ {vi, vi+1} (i.e., in Yi \ Yi−1), then its distance to vi or
vi+1 should be strictly less than its distance to v. Moreover, if the robber was in
X \ Yi before the probe, it must still be the case since {v, vi+1} separates Yi from
X \ Yi (and also from G \ X). Hence, unless the robber is caught or detected in
Yi \ Yi−1, it cannot be in Yi after this probe.

Eventually, either the robber is detected in X and we reach Situation 1 (for v and
X as described above) or we can certify that the robber cannot be in X, and we
reach the Situation 1 where v keeps its role and R \X plays the role of R.

• Otherwise, if R is connected and v has a unique neighbor w in R (note that this is
the case if and only if {v, w} is a cut-edge/bridge), the Cop-player probes {v, w}.
Then, the robber is immediately located or occupies some vertex in R \ {w}. We
are back to Situation 1 where w plays the role of v and R \ {w} plays the role of R.
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• Finally, let us assume that R is connected and v has d > 2 neighbors v1, · · · , vd in
R where these neighbors are ranked in the order (w.l.o.g., clockwise) they appear in
the outer-face. Then, the Cop-player probes {v, v1}. Clearly, since R is connected,
the connected component C of R \ {v1} containing v2 is full with respect to {v, v1}
(i.e., N(C) = {v, v1}) and because v1 is the first (in clockwise order) neighbor of v
and by outer-planarity, there is at most one full component. Hence, we have reached
Situation 2 for the edge {v, v1} and R \ {v1}.

Now, let us consider Situation 2, i.e., it is the turn of the Cop-player and the robber is
at some vertex of R∪{u, v} where R is a union of connected components of V \{u, v} for
some vertices u and v. Moreover, at most one connected component F of R is full with
respect to {u, v} (by definition of Situation 2). In that case, the Cop-player first probes
u and v. If the robber is located (at u or v), we are done. Otherwise, after the move of
the robber, we reach exactly the same Situation 2 with the additional information that u
and v have been probed last.

• First, let us assume that there is a connected component X of R such that N(X) =
{v}. Note that during the previous probe of u and v, the distance between v and
the robber must have been strictly less than the distance between u and the robber,
since otherwise it is already clear that the robber cannot be in X. In particular,
it means that the distance between u and the robber was at least two (during the
previous probe).

Let {v1, · · · , vd} be the neighbors of v in X in the order (w.l.o.g., clockwise) they ap-
pear in the outer-face. The Cop-player sequentially probes {v, vi, vi+1} (odd turns)
and {u, v, vi+1} (even turns) for i from 1 to d− 1.

The fact that u and v are probed every two turns prevents the robber to reach a
vertex in G\R without being located. Indeed, at every such even turn, the distance
between the robber and v must be strictly less than the distance between the robber
and u (otherwise, it becomes sure that the robber is not in X, in which case we
reach the Situation 2 for {u, v} and R \X plays the role of R). In particular, this
implies that the robber is at distance at least two from u and so cannot cross u in
two turns.

The fact that v and vi+1 are probed both during the odd and even ith turns allows
the proof of first case of Situation 1 to apply (because {v, vi+1} separates Yi from
X \ Yi, where Yi is defined as in the first case of Situation 1).

Therefore, as for the first case of Situation 1, the robber must be in X if and only
if there is some odd turn i < d such that the distance between vi or vi+1 and the
robber’s location r is less than the distance between v and r. If the robber is in X,
we reach the Situation 1 for v and X ( R plays the role of R. Otherwise, we reach
the Situation 2 for {u, v} and R \X plays the role of R.

• The case is symmetric (exchanging u and v) if there is some connected component
of R that is adjacent only to u.
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• Hence, if neither of the above cases occurs, we may assume that R is connected and
that it is full with respect to {u, v}. Let P = (v = w0, w1, · · · , wd, wd+1 = u) be
the shortest path among the paths from v to u with internal vertices in R (let us
emphasize that we consider the paths with at least one vertex in R, even if u and v
may be adjacent). Such a path exists because R is a full component and is unique
by both outer-planarity and the existence of a uv-path in G \ R. Note that, by
outer-planarity, for any connected component Y of R \ P , there is 0 6 i 6 d such
that N(Y ) ⊆ {wi, wi+1}.
If there is no connected component Y of R \ P such that N(Y ) = {v, w1}, then the
Cop-player probes {u, v, w1} and (unless the robber is located), we reach Situation
2 for {w1, u} and R \ {w1}. Hence, let L be the (unique) component of R \ P that
is full with respect to {v, w1}. Let R′ = R \ (L ∪ {w1}).
The Cop-player first probes {u, v, w1}. Let r be the (unknown) position of the
robber during this probe. Let us discuss the result of such a probe.

Claim 12. Either d(w1, r) < min{d(u, r), d(v, r)} or Situation 2 is reached for
{w1, u} and R′ or for {w1, v} and L.

Proof of the claim. There are three cases to be considered.

– if d(u, r) < d(v, r) and d(u, r) 6 d(w1, r), then r must be in R′ = R\(L∪{w1})
and therefore, we reach Situation 2 for {w1, u} and R′.

– if d(v, r) < d(u, r) and d(v, r) 6 d(w1, r), then r must be in L and therefore,
we reach Situation 2 for {w1, v} and L.

– if d(v, r) = d(u, r), it can be checked that w1 must be strictly closer to r than
u and v (by outer-planarity and by uniqueness of P in R) unless the robber
is located. In particular (unless the robber is at w1 and then is located), it
implies that the robber is at distance at least 2 from u and v.

�

Let us then assume that we are in the former case (w1 closer to the robber when
probing {u, v, w1}). The aim of the following strategy is to decide whether the robber
is in L or in R′ = R \ (L ∪ {w1}). An important ingredient for the correctness of
the strategy is that u, v and w1 will be probed every second step (even turns) which
will prevent the robber to leave R without being caught (since u and v separate R
from the rest of the graph). Indeed, as described above, each time u, v and w1 are
probed, either the robber is located either in L or R′, or it must be at distance at
least 2 from u and v, and therefore, probing u and v every two steps is sufficient to
avoid the robber crossing them.

W.l.o.g., let us assume that, when going clockwise along the outer-face (recall that
the embedding is fixed), we first meet v, then w1 and finally u. Let s1, · · · , st be the
neighbors (in clockwise order) of w1 in L. By outer-planarity, for every connected
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Figure 2: Schematic representation of Situation 2 in the proof of Theorem 11. Bold lines
are edges and dotted lines represent paths.

component Y of L \ {s1, · · · , st}, there is 1 6 i < t such that N(Y ) ⊆ {si, si+1},
or N(Y ) = {v, s1}. Let Y0 be the (unique if any) component of L \ {s1, · · · , st}
that is full with respect to {v, s1}, and for any 1 6 i 6 t, let Yi be the union of the
connected components Y of L \ {s1, · · · , st} such that N(Y ) ⊆ {v, s1, · · · , si} (see
Figure 2).

The strategy of the Cop-player proceeds as follows. First the Cop-player probes
{v, s1, w1} (odd turn) and then {u, v, w1} (even turn) and, then, for 1 6 i < t, the
Cop-player probes {si, si+1, w1} (odd turns) and then {u, v, w1} (even turns). Note
that, since w1 is probed at every step, the robber can never go from L to R′ or vice
versa, i.e., if the robber is in L (resp., in R′), he must remains in L (resp., in R′).

We will show the following claim which is sufficient to conclude.

Claim 13. The robber is in L if and only if either min{d(v, r), d(s1, r)} < d(w1, r)
(during the first odd turn), or there is an odd turn 1 6 i < t such that
min{d(si, r), d(si+1, r)} 6 d(w1, r).

Proof of the claim. Let us start with some important observations.

As already mentioned, at every even turn, d(w1, r) < min{d(u, r), d(v, r)} since
otherwise, the robber is located either in L (in which case, we reach a Situation 2
for {v, w1} and L) or in R′ = R \ (L ∪ {w1}) (in which case, we reach a Situation
2 for {w1, u} and R′). Hence, at every odd turn, d(w1, r) 6 d(v, r) + 1 (since the
robber moves along at most one edge).

Moreover, if the robber is in R′ = R\ (L∪{w1}), then at every odd turn, d(w1, r) 6
d(v, r). Indeed, let Q be a shortest path from r ∈ R′ to v. If Q does not pass
through w1 (otherwise it would hold that d(v, r) > d(w1, r)), then it passes through

the electronic journal of combinatorics 25(4) (2018), #P4.62 13



u and d(v, r) > d(u, r). However, let d∗(x, r) denote the distance between r and
a vertex x during the previous even turn (after the probe but before the possible
move of the robber), we have that d∗(w1, r) < d∗(u, r) (as mentioned above) and that
d(w1, r) 6 d∗(w1, r)+1 and d(u, r) > d∗(u, r)−1 (since the robber has moved along at
most one edge). Altogether d(v, r) > d(u, r) > d∗(u, r)−1 > d∗(w1, r) > d(w1, r)−1.

So, if at some odd turn d(v, r) < d(w1, r), then the robber is located in L and the
Situation 2 is reached for {v, w1} and L. Let us assume that d(v, r) > d(w1, r) at
every odd turn.

Now, let us prove the claim by considering the odd turns one by one.

When probing {v, s1, w1}, if d(v, r) < d(w1, r), then the robber is in L by previous
paragraph. Otherwise, if d(s1, r) < d(w1, r), then the robber must be in L (since
every path from R′ to s1 crosses w1 or v, and d(v, r) > d(w1, r)). On the other hand,
if the robber is in Y1 ⊆ L either d(s1, r) < d(w1, r) or d(v, r) < d(w1, r). Hence,
after this probe, either the robber is located in L (and we reach the Situation 2 for
{v, w1} and L) or the robber is known not to occupy a vertex in Y1.

Now, let us assume by induction on i > 1 that, after the previous odd turn, it
was ensured that the robber was not in Yi and that the Cop-player now probes
{si, si+1, w1}. Note that {v, w1, si} separates Yi from the rest of the graph.

After previous odd and even turns, the robber may (moving twice) only have reached
Yi by crossing si (since if it crosses v or w1, it is immediately located). If such a case
occurs, the robber must be at a neighbor of si in Yi when {si, si+1, w1} are probed.
In that case, d(si, r) 6 d(w1, r) < d(v, r) and the robber can only be in L. Hence,
the Situation 2 is reached for {v, w1} and L.

Now, if the robber is in Yi+1 \ Yi when {si, si+1, w1} are probed, then clearly
min{d(si, r), d(si+1, r)} < d(w1, r).

It only remains to prove that, if min{d(si, r), d(si+1, r)} 6 d(w1, r), then the robber
must be in L. For purpose of contradiction, let us assume that the robber is in R′

and min{d(si, r), d(si+1, r)} 6 d(w1, r): any shortest path from r to si or si+1 must
pass through v, and hence d(v, r) < d(r, w1) which is a contradiction has shown
above. �
Therefore, after these 2(t + 1) = O(n) rounds, either the robber has been located
in L, in which case we are in Situation 2 for {w1, v} and L, or the robber is known
not to be in Yt = L and we reach Situation 2 for {w1, u} and R′.

In all cases, we have reached a Situation 1 or 2, strictly reducing the number of the
possible locations of the robber.

6 Complexity

In this section, we prove that the centroidal localization game (i.e., computing ζ∗) is NP-
hard. At first let us introduce some related properties. A set L ⊆ V of vertices is called
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a locating set if, for every u, v ∈ V \ L, N [u] ∩ L 6= N [v] ∩ L. Note that a locating set
must “see” almost all vertices. Formally, for any locating set L, |V \N [L]| 6 1. Indeed,
otherwise, there would be two vertices u, v such that N [u] ∩ L = N [v] ∩ L = ∅.

In [3] it was proven than the localization game (i.e., computing ζ) is NP-hard. At first
it was proven the following

Lemma 14. [3] Computing a minimum locating set is NP-hard in the class of graphs
with diameter 2.

Then, for any n-node graph G with diameter 2, a graph G′ was constructed by adding
n + 1 pairwise non-adjacent vertices x1, · · · , xn+1, each of them being adjacent to every
vertex of V (G). Note that, because G has diameter 2, then G is an isometric subgraph
of G′ (i.e., distances are preserved). Finally it was proven that ζ(G′) = k + 1, where k is
the minimum size of a locating set of G.

Since ζ(G′) 6 ζ∗(G′), it only remains to prove that ζ∗(G′) 6 k + 1. However, in [3],
the proof that ζ(G′) 6 k + 1 only relies on the relative order of the distances and not on
the exact distances. Therefore, the proof in [3] actually shows that ζ∗(G′) 6 k + 1.

It follows that:

Theorem 15. The centroidal localization game is NP-hard.

7 Euclidean plane

In this section, we study the centroidal localization game on the infinite graph with a
vertex in every point of the Euclidean plane and edges between points at distance at most
1. In such a graph, the graph distance between a vertex and the robber is the ceiling of
their Euclidean distance. We will show that the Cop-player can locate the robber with
an error of at most 2

√
2 + ε by probing only two vertices in each round.

First, let us consider the possible three results of a single round. Firstly, the Cop-
player may probe the vertex in which the robber stays, in which case the Cop-player
wins immediately. Secondly, the Cop-player may probe two vertices such that their graph
distances from the robber are the same. In this case the Cop-player could conclude that
the robber is within a strap of width at most 2 (see Figure 3). Last, the Cop-player may
probe two vertices such that their distances to the robber differ. In this case, the Cop-
player can draw a line between those two vertices (consisting of all points of the plane
with equal distance from the two chosen vertices) and say that the robber must be on one
side of the “bounding” line - the side with vertex with smaller distance from the robber
(see Figure 4).

Lemma 16. There exists a strategy allowing the Cop-player to determine a rectangle
containing the robber, in a finite number of turns and probing two vertices each time.

Proof. For the convenience of the proof, let us denote the vertices chosen by the Cop-
player as c1 and c2, and their graph distances from the robber as d1 and d2. Let ∆ > 1 be
any constant. We will show that, in a finite number of rounds, the Cop-player can find
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Figure 3: Location of the robber when distances are the same

c1 c2

l

Figure 4: Location of the robber when distances differ

a rectangle, bounding the location of the robber, by first bounding his location by two
vertical lines, and then by two horizontal lines.

To bound the location of the robber by two vertical lines the Cop-player will choose
c1 and c2 from x axis (let c1 have smaller x coordinate than c2). Let us denote by l1 and
l2 the lines bounding location of the robber. The strategy is as follows:

• if both l1 and l2 are already set, then move l1 to the left by 1, and move l2 to the
right by 1, and end the procedure;

• if d1 = d2 then location of the robber is now bounded by the two vertical lines (the
robber is within a strap of width at most 2 (see Figure 3));

• if d1 < d2 then set l2 to be the bounding line created by all points of equal Euclidean
distance from both c1 and c2, and in the next round choose c1−(∆, 0) and c2−(∆, 0)
(see Figure 5). In case l1 is already set, shift it to the left by one;

• if d1 > d2 then set l1 to be the bounding line created by all points of equal Euclidean
distance from both c1 and c2, and in the next round choose c1+(∆, 0) and c2+(∆, 0).
In case l2 is already set, shift it to the right by one;

Note that this procedure will end, since ∆ is strictly bigger than 1. Indeed, let us assume
for purpose of contradiction that the strategy always consider the case when d1 < d2 (the
case d1 > d2 is symmetric). Then, at each round, our procedure moves the bounding line
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Figure 5: Strategy of Cop, when d1 < d2

l2 to the left by ∆ > 1, while the robber moves by at most 1 to the left. Hence, at some
point, the bounding line l2 must be further to the left than the robber, which means that
the procedure has reached the case d1 > d2 (and now, the second line l1 will be defined).
At the end of the procedure, we move lines l1 and l2 by one (first item above) since one
of them bounded location of the robber in previous round.

When location of the robber is bounded by two vertical lines l1 and l2, then the Cop-
player can repeat the bounding procedure with choosing c1 and c2 from y axis and thus
bounding the robbers location by two horizontal lines, with an extra operation of moving
the two bounding vertical lines by one at each round (l1 to the left and l2 to the right).

Lemma 17. For any ε > 0, in finite number of rounds with choosing 2 vertices, the
Cop-player may show a point P such that the distance between the robber and P is at
most 3

√
2 + ε.

Proof. For the convenience of the proof, let us denote the two vertices chosen by the Cop-
player as c1 and c2, and their distances to the robber as d1 and d2. By the previous lemma,
we know that, in a finite number of rounds, the Cop-player can bound the area where the
robber is located by a rectangle A0. After the next move the robber will be located in
A′0 = {p ∈ R2 : ∃z ∈ A0 dist(p, z) 6 1}. At every round, let us denote the minimal and
maximal x coordinates of the bounding area by x1 and x2, and the minimal and maximal
y coordinates of the bounding area by y1 and y2. The strategy for the Cop-player is as
follows.

Probe c1 = (x1, 0) and c2 = (x2, 0). If d1 = d2, then the robber is in the intersection
of the resulting stripe of width at most 2 and the area A′0. Otherwise the Cop-player
knows that the robber is either on the “left” or “right” side of the vertical line with x
coordinate equal to (x1 + x2)/2. Hence, he is in one half of the previous bounding area.
Let A1 denote the new bounding area of the current location of the robber. Then, in the
next round, the robber is in the area A′1 = {p ∈ R2 : ∃z ∈ A1 dist(p, z) 6 1}.

In the next round choose c1 = (0, y1) and c2 = (0, y2). If d1 = d2, then the robber is in
the intersection of the resulting stripe of height at most 2 and the area A′1. Otherwise, the
Cop-player knows that the robber is either on the “upper” or “lower” side of a horizontal
line with y coordinate equal to (y1+y2)/2. Hence, he is in one half of the previous bounding
area. Let us denote by A2 the bounding area of current location of the robber. Then, in
the next round, the robber is in bounding area A′2 = {p ∈ R2 : ∃z ∈ A2 dist(p, z) 6 1}.
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The strategy simply repeats these two steps. Let us denote the maximal widths of
the bounding areas An, A′n as wn, w

′
n, respectively. Notice that for even n we have:

w′n = wn + 2, wn+1 = w′n/2, w′n+1 = wn+1 + 2 and wn+2 = w′n+1 (unless d1 = d2 in step
n + 1, in which case wn+1 = 2 and wn+2 = w′n+1 = 4). Hence 1 6 wn+2 6 wn/2 + 3. By
similar analysis for odd values of n, we again obtain 1 6 wn+2 6 wn/2 + 3. Analogously
for all n we get 1 6 hn+2 6 hn/2 + 3, where hn denotes the maximal height of An.
Note that the limit of the sequence satisfying the recursive formula an+2 = an/2 + 3 is
6. Therefore, for any ε, there exists an integer n such that wn 6 6 + ε and hn 6 6 + ε.
Hence, the bounding area An is contained in a rectangle with side lengths at most 6 + ε.
So, the distance between every point of An and the point P = (x2−x1

2
, y2−y1

2
) is at most

(6+ε)
√

2
2
6 3
√

2 + ε.

8 Further Work

There are many interesting questions, yet to be asked, about Centroidal Coding Game.
One would be to find bounds on ζ∗(G) for special classes of graphs (e.g., hypercube,
partial cubes, chordal graphs, disk intersection graphs etc.). In particular: is the bound
given by Theorem 11 tight? One can notice without any effort that ζ(C4) = ζ∗(C4) = 2,
but are there outerplanar graphs which require 3 cops?

Another problem worth to be considered is the game without the immediate catch rule.
That is, a variant of the game where the robber could go into checked vertex unnoticed.
It is easy to see that, in case of the Euclidean plane, the game does not change. For trees,
let us note that the Cop-player can win such a game by probing at most ∆(T ) vertices in
each round (by checking all neighbors of a vertex we can tell in which subtree the robber
is).

Finally, we ask what happens if the Cop-player is given a set of vertices S ⊂ V (G)
such that she can only choose vertices from this set, meaning in each round C ⊂ S. Such
approach might be useful for practical applications.

The question of the computational complexity of ζ∗ in various graph classes such
as bipartite graphs, bounded treewidth graphs. . . is also of interest. Finally, most of
the interesting turn-by-turn two-player games are known to be PSPACE-hard or even
EXPTIME-complete. The exact status of the complexity of the centroidal localization
game is still open.
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