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Abstract

For any Coxeter system (W,S) of rank n, we study an abstract boolean complex
(simplicial poset) of dimension 2n−1 that contains the Coxeter complex as a relative
subcomplex. For finite W , this complex is first described in work of Hultman. Faces
are indexed by triples (I, w, J), where I and J are subsets of the set S of simple
generators, and w is a minimal length representative for the parabolic double coset
WIwWJ . There is exactly one maximal face for each element of the group W . The
complex is shellable and thin, which implies the complex is a sphere for the finite
Coxeter groups. In this case, a natural refinement of the h-polynomial is given by
the “two-sided” W -Eulerian polynomial, i.e., the generating function for the joint
distribution of left and right descents in W .

Mathematics Subject Classifications: 05E15, 20F55

1 Introduction

Coxeter groups were developed to study symmetries of regular polytopes, and they play
a major role in the study of Lie algebras (the Weyl group of a root system is a Coxeter
group). The Coxeter complex is a simplicial complex associated with the reflection rep-
resentation of the group, but which can also be defined abstractly via cosets of parabolic
subgroups. The goal of this paper is to study a “two-sided” analogue of the Coxeter
complex by considering double cosets of parabolic subgroups. This complex was first
described, in the case of finite W , by Hultman [11]. See Remark 8.

Before turning to the two-sided case, let us recall some definitions and important
properties of the usual Coxeter complex. We assume the reader has some familiarity with
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the study of Coxeter groups. For background, see Section 2 or books by Humphreys [12]
or Björner and Brenti [6].

Fix a finitely generated Coxeter system (W,S), and let WJ denote the standard
parabolic subgroup generated by a subset of simple generators J ⊆ S. The Coxeter
complex is the set of all cosets of these parabolic subgroups and is denoted by

Σ = Σ(W,S) = {wWJ : w ∈ W,J ⊆ S}.

It is well known that Σ has the structure of an abstract simplicial complex, with the
inclusion of faces corresponding to reverse inclusion of cosets, i.e.,

wWJ 6Σ w
′WJ ′ if and only if wWJ ⊇ w′WJ ′ .

Note that this means maximal faces are singleton sets: wW∅ = {w}, and there is a unique
minimal element: wWS = W . Some well-known features of the Coxeter complex are
highlighted in the following result. Most of these statements can be found in work of
Björner [5] (see also Abramenko and Brown [1, Chapter 3]), though some of these facts
were known earlier. See, e.g., Bourbaki [7].

Theorem 1. For any Coxeter system (W,S) with |S| = n <∞ we have the following.

1. The Coxeter complex Σ is a balanced simplicial complex of dimension n− 1.

2. The facets (maximal faces) of Σ are in bijection with the elements of W .

3. The Coxeter complex is shellable and any linear extension of the weak order on W
gives a shelling order for Σ.

4. If W is infinite then Σ is contractible.

5. If W is finite,

(a) the geometric realization of Σ is a sphere, and

(b) the h-polynomial of Σ is the W -Eulerian polynomial,

h(Σ; t) =
∑
w∈W

tdesR(w),

where desR(w) denotes the number of right descents of the element w.

We will try to emulate all these properties for a “two-sided” version of the Coxeter
complex, denoted Ξ = Ξ(W,S).

Definition 2 (Two-sided Coxeter complex). Fix a Coxeter system (W,S), with |S| <∞.
Define the two-sided Coxeter complex as

Ξ = {(I,WIwWJ , J) : w ∈ W, I, J ⊆ S},

which we think of as the set of marked double cosets. The partial order on faces is given
by component-wise refinement.
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More will be said about this definition in Section 2, but let us comment on one matter.
Although its faces are related to parabolic double cosets WIwWJ , Ξ is not merely the set
of such cosets ordered by reverse inclusion. See Remark 4. Our main results for Ξ are
summarized in the following theorem. Parts (1), (3), and (5a) are proved by Hultman in
the case of finite W . See Remark 8 and [11, Section 5].

Theorem 3. For any Coxeter system (W,S) with |S| = n <∞, we have the following.

1. The complex Ξ is a balanced boolean complex of dimension 2n− 1.

2. The facets (maximal faces) of Ξ are in bijection with the elements of W , and the
Coxeter complex Σ is a relative subcomplex of Ξ.

3. The complex Ξ is shellable and any linear extension of the two-sided weak order on
W gives a shelling order for Ξ.

4. If W is infinite then Ξ is contractible.

5. If W is finite,

(a) the geometric realization of Ξ is a sphere, and

(b) a refined h-polynomial of Ξ is the two-sided W -Eulerian polynomial,

h(Ξ; s, t) =
∑
w∈W

sdesL(w)tdesR(w),

where desL(w) denotes the number of left descents of w and desR(w) denotes
the number of right descents of the element w.

The main contrasts between Ξ and Σ lie in the fact that Ξ is roughly twice the
dimension of Σ and in the fact that Ξ is not a simplicial complex. While all the faces of
Ξ are simplices, many of these simplices share the same vertex set. Even for the rank one
Coxeter group A1, Ξ is realized by two edges whose endpoints are paired off to form a
circle:

eW = {e, s} We = {e, s}

{e}

{s}

The labels on the faces are given by double cosets.
We remark that our approach in this work is combinatorial, not geometric. There are

two different approaches to proving the topological results for the Coxeter complex listed
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in Theorem 1. One way (following Bourbaki [7]) is to study the reflection hyperplane
arrangement for the Coxeter group. For example, in the finite case, intersecting this
arrangement with a sphere realizes the Coxeter complex. Thus in this situation the
topology of the Coxeter complex is manifest in the ambient space. On the other hand,
Björner showed in [5] how to use poset-theoretic tools to study the topology of the complex
with only the abstract definition of the face poset.

The approach of this paper mirrors that of Björner. We define the face poset of Ξ
abstractly, and use Björner’s techniques to deduce Theorem 3. We hope to uncover a
more geometric description of Ξ in the future.

The paper is structured as follows.
The first few sections introduce Ξ and establish the various parts of our main theorem.

In Section 2 we provide the definition of Ξ and the proof of parts (1) and (2) of Theorem
3. In Section 3 we prove parts (3), (4), and (5a) of Theorem 3. Section 4 discusses face
enumeration in the case of finite groups W , and establishes part (5b) of Theorem 3.

In Section 5 we define, for any finite Coxeter group W , the “two-sided” Eulerian
polynomials

W (s, t) :=
∑
w∈W

sdesL(w)tdesR(w).

These polynomials have pleasant properties and we offer a generalization of a conjecture
of Gessel that asserts that these polynomials expand positively in the basis

{(st)a(s+ t)b(1 + st)n−2a−b}062a+b6n,

where n is the rank of the group. See Conjecture 16. Gessel’s original conjecture, in the
case of the symmetric group, was recently resolved by Lin [13].

Finally in Section 6 we discuss a combinatorial model for faces of Ξ in the case of
the Coxeter group of type An−1, i.e., the symmetric group Sn. Here the faces of Ξ can
be encoded by two-way contingency tables. These tables are nonnegative integer arrays
whose entries sum to n and whose row and column sums are positive. The partial order
on faces in this case is simply refinement ordering on contingency tables. Maximal tables
are permutation matrices and the minimal element is the unique one-by-one array. Such
arrays were studied by Diaconis and Gangolli [9], but they did not study this partial
ordering on the arrays.

We finish the introduction by saying that, in essence, this paper revolves around a
new definition (Definition 2). The rest of the paper attempts to make the case that
this is a good definition. Theorem 3 argues that Ξ is natural by analogy with Theorem 1,
Conjecture 16 makes the argument that Ξ has interesting enumerative properties, and the
connection with contingency tables suggests that Ξ may have connections to combinatorial
Hopf algebras. See Remark 21.

2 A two-sided Coxeter complex

Throughout this section we assume familiarity with basic Coxeter group concepts and
terminology. We mostly follow the definitions and notational conventions of [6] and [12].
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Fix a Coxeter system (W,S) with |S| = n. We call the elements s ∈ S the simple
generators of W . Every element w ∈ W can be written as a product of elements in S,
w = s1 · · · sk, and if this expression is minimal, we say the length of w is k, denoted
`(w) = k. An expression of minimal length is called a reduced expression.

Recall that a cover relation in a partially ordered set (“poset” for short) is a pair
x < y such that if x 6 z 6 y, then x = z or z = y. A partial ordering of a set can be
defined as the transitive closure of its cover relations. One important partial order on W
is known as the weak order. The weak order comes in two equivalent types: “left” and
“right” weak order. We will also have reason to mention the ordering obtained from the
union of the covers in left weak order and right weak order, which we call the “two-sided”
weak order. We now describe these orderings in terms of their cover relations.

• The left weak order on W says v covers u if and only if `(v) = `(u)+1 and vu−1 ∈ S.

• The right weak order on W says v covers u if and only if `(v) = `(u) + 1 and
u−1v ∈ S.

• The two-sided weak order on W says v covers u if and only if `(v) = `(u) + 1 and
vu−1 or u−1v is in S.

The left and the right weak orders are obviously subposets of the two-sided weak order.
We write u 6L v if u is below v in the left weak order, we write u 6R v if u is below v in
the right weak order, and we write u 6LR v if u is below v in the two-sided weak order.
The identity is the unique minimum in these partial orderings. When W is finite, there
is also a unique maximal element denoted w0, and each poset is self-dual, i.e., isomorphic
to its reverse partial ordering.

Though will do not use the fact, we mention that all three of these posets are subposets
of the strong Bruhat order on W , whose covers have u−1v or vu−1 equal to a conjugate
of an element of S.

The left (resp. right) descent set of an element w is the set of all simple generators
that take us down in left (resp. right) weak order when multiplied on the left (resp. right).
We denote the left and right descent sets by DesL(w) and DesR(w), respectively, i.e.,

DesL(w) = {s ∈ S : `(sw) < `(w)} and DesR(w) = {s ∈ S : `(ws) < `(w)}.

We define the corresponding ascent sets as the complements of the descent sets in S:

AscL(w) = S −DesL(w) = {s ∈ S : `(sw) > `(w)},

and
AscR(w) = S −DesR(w) = {s ∈ S : `(ws) > `(w)}.

Intuitively, we move up and down in left (resp. right) weak order by multiplying
elements on the left (resp. right) by simple generators. We move up and down in the
two-sided weak order by multiplying on either side by simple generators. For Bruhat
order, we move up and down by inserting simple generators anywhere in a given reduced
expression.
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Suppose J is a subset of simple generators, J ⊆ S, and let WJ denote the group
generated by the elements of J , i.e., WJ = 〈s : s ∈ J〉. This group is a Coxeter group in
its own right, and we call such a subgroup a standard parabolic subgroup. The Coxeter
complex arises when considering the quotients of the form W/WJ . That is, the faces of
the Coxeter complex are identified with left cosets of parabolic subgroups, wWJ . To be
precise, let

Σ =
⋃
J⊆S

W/WJ = {wWJ : w ∈ W,J ⊆ S}.

We partially order the elements of Σ by reverse containment of sets, i.e., by declaring

wWJ 6Σ w
′WJ ′ ,

if and only if
wWJ ⊇ w′WJ ′ .

The dimension of a face wWJ is given by dim(wWJ) = |S − J | − 1, so that vertices
correspond to cosets of the form wWS−{s}, and maximal faces are singleton cosets of the
form wW∅ = {w}.

For our two-sided analogue, we consider elements from all double quotients WI\W/WJ ,
so the faces will be related to double cosets of parabolic subgroups WIwWJ , where I and
J are subsets of S. However, the faces of Ξ are not simply the double cosets of this form.

Remark 4. A first guess to define a two-sided Coxeter complex is to consider the set of
all double cosets WIwWJ , ordered by reverse inclusion. Such a poset does indeed exist,
but it is difficult to analyze. It is not even obvious when this poset is ranked. For
one thing, there are many subtle equalities of cosets, e.g., with w fixed, we might have
WIwWJ = WI′wWJ ′ and yet I 6= I ′ or J 6= J ′. For an extreme case, notice that for any
I ⊆ J , we have WIeWJ = WJ . Enumeration of the number of distinct parabolic double
cosets is the topic of work of Billey, Konvalinka, Petersen, Slofstra, and Tenner [3].

An essential fact about cosets of parabolic subgroups is that each coset wWJ has
a unique element of minimal length, call it u, such that J ⊆ AscR(u), or equivalently,
DesR(u) ⊆ S − J . In fact, the same is true for double cosets, and we record this in the
following lemma, which can be found in [7, Chapter 4, Exercise 1.3].

Lemma 5. Each double coset WIwWJ has a unique element of minimal length, call it u,
such that

DesL(u) ⊆ S − I and DesR(u) ⊆ S − J,

or equivalently,
I ⊆ AscL(u) and J ⊆ AscR(u).

Moreover, for each v ∈ WIwWJ , u is below v in the two-sided weak order: u 6LR v.

Let IW J denote the set of minimal representatives for WI\W/WJ , i.e.,

IW J = {w ∈ W : I ⊆ AscL(w) and J ⊆ AscR(w)}.
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If I = ∅ we have ∅W J = W J is the set of left coset representatives.
In Definition 2, we defined Ξ as the set of marked double parabolic cosets,

Ξ = {(I,WIwWJ , J) : I, J ⊆ S,w ∈ W},

but with Lemma 5 in mind, we can fix our attention on minimal representatives for the
cosets and to streamline notation, we write

Ξ = {(I, w, J) : I, J ⊆ S and w ∈ IW J}.

We partially order the elements of Ξ by reverse inclusion of the index sets I and J as well
as the corresponding double coset, i.e.,

(I, w, J) 6Ξ (I ′, w′, J ′) if and only if


I ⊇ I ′,

J ⊇ J ′, and

WIwWJ ⊇ WI′w
′WJ ′ .

We refer to the Ξ as the two-sided Coxeter complex.
Likewise, we could just as easily replace the cosets wWJ in the definition of the usual

Coxeter complex Σ with pairs (w, J) such that w ∈ W J , i.e.,

Σ ∼= {(w, J) : J ⊆ S,w ∈ W J},

with (w, J) 6Σ (w′, J ′) if and only if wWJ ⊇ w′WJ ′ .
Note that when wWJ ⊇ w′WJ ′ , this implies J ⊇ J ′, but for double cosets, WIwWJ ⊇

WIw
′WJ ′ implies neither I ⊇ I ′ nor J ⊇ J ′.

Example 6. In Figure 1 we see the poset of faces of the two-sided Coxeter complex
Ξ(A2). Faces are written as triples (I, w, J), where I, J ⊆ {s1, s2}. We write only the
subscripts for brevity, e.g., ({s1}, e, {s1, s2}) is written (1, e, 12).

The maximal elements in Ξ are those of the form (∅, w, ∅), and there is a unique
minimum, (S, e, S). The rank one elements are those of the form (S − {i}, e, S) and
(S, e, S − {j}), i.e., those obtained by omitting a single element from S on either the left
or on the right.

While each face of Ξ is a simplex, it is not a simplicial complex, since distinct faces may
share the same vertex set. In fact, we will see that for any (W,S), Ξ has the property that
every facet (maximal face) has the same vertex set. Let us denote the facet corresponding
to an element w by Fw = (∅, w, ∅).

We will see in Theorem 9 that the dimension of a face is given by one less than its
rank in the poset, i.e., if F = (I, w, J),

dimF = |S − I|+ |S − J | − 1.

In particular, if |S| = n, then Ξ has 2n vertices, each of the form (S − {i}, e, S) or
(S, e, S − {j}). The dimension of Ξ is the dimension of a maximal face, i.e., dim Ξ =
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(12, e, 12)

(1, e, 12) (2, e, 12) (12, e, 2)(12, e, 1)

(∅, e, 12) (1, e, 2) (1, e, 1) (2, e, 2) (2, e, 1) (12, e, ∅) (2, s1, 2) (1, s2, 1) (2, s1s2, 1) (1, s2s1, 2)

(∅, e, 2) (∅, e, 1) (1, e, ∅) (2, e, ∅) (∅, s1, 2) (2, s1, ∅) (∅, s2, 1) (1, s2, ∅) (∅, s1s2, 1) (2, s1s2, ∅) (∅, s2s1, 2) (1, s2s1, ∅)

(∅, e, ∅) (∅, s1, ∅) (∅, s2, ∅) (∅, s1s2, ∅) (∅, s2s1, ∅) (∅, s1s2s1, ∅)

Figure 1: The poset of faces of two-sided Coxeter complex Ξ(A2). Highlighted edges
indicate the shelling.

dim(∅, w, ∅) = 2n− 1. By contrast, Σ has many more vertices, of the form (w, S − {j}),
where DesR(w) ⊆ {j}. In the symmetric group, for example, Σ(An−1) has 2n−n vertices.

Before we move on to prove the various properties of Ξ given in Theorem 3, we include
some remarks.

Remark 7. If we fix a choice of I and J , we can restrict the Bruhat order on W to give a
partial ordering on the elements IW J , or on the double quotient WI\W/WJ . Stembridge
gives a geometric construction of this partial order in terms of root systems [18]. Diaconis
and Gangolli did the same in the case of the symmetric group, realized as a partial order
on contingency tables with prescribed row and column sums [9].

Remark 8. As mentioned earlier, the two-sided Coxeter complex Ξ appeared first in work
of Hultman [11] in the case of finite W . In that paper, Hultman studies “twisted involu-
tions” of Coxeter groups. Given a Coxeter group W and an involutive automorphism θ,
the set of twisted involutions is

I(θ) = {w ∈ W : θ(w) = w−1}.

Hultman shows how I(θ) has a partial ordering analogous to the weak order.
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Moreover, in [11, Section 5], he shows that for a finite Coxeter system (W,S) this
ordering gives rise to a boolean sphere of dimension |S| − 1, denoted ∆θ. The facets of
∆θ are in bijection with I(θ), and its faces in general correspond to certain pairs (w, J)
with J ⊆ S. Moreover, any linear extension of the weak order on I(θ) is a shelling order
for ∆θ.

We can obtain our complex Ξ(W,S) from the construction of ∆θ in the following
way. Let us consider the direct product of a Coxeter group with itself, i.e., the group
W = W ×W , with generating set S = {(s, e), (e, s) : s ∈ S}. Define an involution θ on
W by θ(u, v) = (v, u). The set of twisted involutions is then the set

I(θ) = {(u, v) ∈ W : θ(u, v) = (u−1, v−1)} = {(w,w−1) : w ∈ W}.

Thus for this choice of θ on W , I(θ) can be placed in bijection with W . Moreover,
Hultman’s weak order on I(θ) corresponds precisely to the two-sided weak order on W
[11, Example 5.2]. The faces of ∆θ are easily seen to correspond to the triples (I, w, J)
defining Ξ. We have Ξ ∼= ∆θ is a sphere of dimension |S| − 1 = 2|S| − 1. Since any
linear extension of the weak order for I(θ) gives a shelling order of ∆θ, we see that linear
extensions of the two-sided weak order on W give shelling orders for Ξ.

Thus, we can use Hultman’s results to establish much of Theorem 3 in the case of
finite W . It would be interesting to look at other special cases of ∆θ for W , e.g., with a
different choice of involution θ.

2.1 Ξ is boolean

We will now prove that lower intervals in the poset Ξ are isomorphic to boolean algebras.
Since the face poset of a simplex is the boolean algebra on its vertex set, a poset with
this property is known as a simplicial poset, or as a boolean complex.

Theorem 9. The poset Ξ is a simplicial poset. In particular, the interval below the
element (I, w, J) ∈ Ξ isomorphic to the set of all subsets of (S − I)× (S − J).

Proof. Fix an element F = (I, w, J) of Ξ and consider any element below F in the partial
order, i.e., suppose we have an element (I ′, w′, J ′) 6Ξ F . Then by definition, S ⊇ I ′ ⊇ I
and S ⊇ J ′ ⊇ J , so (I ′− I, J ′− J) is an element of (S− I)× (S− J). To finish the proof
we must show that every pair of subsets (I ′ − I, J ′ − J) in (S − I)× (S − J) corresponds
to a unique element below F .

Suppose (I ′ − I, J ′ − J) is a pair of subsets in (S − I) × (S − J), i.e., S ⊇ I ′ ⊇ I
and S ⊇ J ′ ⊇ J . If C = WI′vWJ ′ is a coset that contains WIwWJ , then in particular
w ∈ C and we can write C = WI′wWJ ′ . Thus for fixed I ′ and J ′, there is one such coset.
By Lemma 5 there exists a unique element w′ ∈ C such that DesL(w′) ⊆ S − I ′ and
DesR(w′) ⊆ S − J ′. This identifies the unique triple G = (I ′, w′, J ′) such that G 6Ξ F ,
completing the proof.

Theorem 9 means that each element of Ξ can be thought of as an abstract simplex.
As such, we will refer to the elements as faces. We say a face (I, w, J) is represented by
w.
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2.2 Ξ is balanced

A (n − 1)-dimensional simplicial complex is balanced if there is an assignment of colors
from the set {1, 2, . . . , n} to its vertices such that no two vertices that lie in the same
face have the same color. An important feature of the Coxeter complex Σ is that it is
balanced; a balanced coloring is given by declaring the color of the pair F = (w, J) is
col(F ) = S − J , where we fix an identification between S and the set {1, 2, . . . , n}.

To show Ξ is balanced we will assign each vertex a color via

col((S − {i}, e, S)) = ({i}, ∅) and col((S, e, S − {j})) = (∅, {j}),

and for a general face F , col(F ) is the union of the colors of its vertices, i.e., if F =
(I, w, J), then

col(F ) = (S − I, S − J).

Since there are 2n colors and only 2n vertices, we see that Ξ is trivially balanced, i.e.,
no face has two vertices of the same color since every vertex has a unique color. We have
now established part (1) of Theorem 3.

2.3 Σ is a relative subcomplex of Ξ

We have already mentioned that maximal faces of Ξ, denoted Fw, are in bijection with
elements of W . If we consider fixing I = ∅ and letting J vary, we get a subposet of Ξ that
corresponds to a facet of the usual Coxeter complex. That is, consider the interval

[(∅, e, S), Fw] = {G ∈ Ξ : (∅, e, S) 6Ξ G 6Ξ (∅, w, ∅)}.

We can represent elements G ∈ [(∅, e, S), Fw] as G = (∅, u, J), such that J ⊆ S, u ∈ ∅W J ,
and w ∈ uWJ .

Similarly, a facet of Σ can be represented as an interval

[(e, S), (w, ∅)] = {G ∈ Σ : (e, S) 6Σ G 6Σ (w, ∅)},
= {(u, J) : J ⊆ S, u ∈ W J , w ∈ uWJ}.

Thus as posets
[(∅, e, S), Fw] ∼= [(e, S), (w, ∅)] ∈ Σ.

(Of course the same idea would work with right cosets, so we could also identify facets of
Σ with intervals of the form [(S, e, ∅), Fw] if we wish.)

Taking the union of all such intervals we get a full copy of Σ as an upper order ideal
(also known as an order filter) inside of Ξ.

Σ = {(w, J) : J ⊆ S,w ∈ W J} ∼= {(∅, w, J) : J ⊆ S,w ∈ ∅W J},
= {F ∈ Ξ : (∅, e, S) 6Ξ F}.

To phrase this result another way, we say that Σ is a relative subcomplex of Ξ. This
establishes part (2) of Theorem 3.
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2.4 Ξ is partitionable

The faces represented by a given element w form an upper interval in Ξ, i.e., they form
an interval whose maximal element has maximal rank in the face poset. To be specific,
let Rw = (AscL(w), w,AscR(w)), which we call the restriction of w. Then the interval
[Rw, Fw] in Ξ consists of all faces represented by w, and moreover this interval is boolean:

[Rw, Fw] = {(I, w, J) : I ⊆ AscL(w), J ⊆ AscR(w)},
∼= AscL(w)× AscR(w).

The union of all such intervals partitions the faces of Ξ, i.e.,

Ξ =
⋃
w∈W

[Rw, Fw], (1)

and this union is disjoint. See Figure 1, where these intervals are highlighted for the
case of A2. Moreover, since each interval in the partition is an upper ideal isomorphic
to a boolean algebra, Ξ is partitionable in the topological sense as well. This property
foreshadows the shellability result of the next section. See [16, Section III.2] for the
relevant definitions.

3 Topology

In this section we will prove parts (3) and (4) of Theorem 3.

3.1 Ξ is shellable

We first make the following simple observation. If (I, u, J) is a face of Ξ below the face
(I ′, v, J ′), then in particular WI′vWJ ′ ⊆ WIuWJ , and v ∈ WIuWJ . But by Lemma 5 this
means u is below v in the two-sided weak order. From this simple observation it follows
that any choice of linear extension of the two-sided weak order for W yields a shelling
order for Ξ, as we now explain.

First recall the definition of a shelling of a boolean complex. This is an ordering of
the facets F1, F2, . . . such that the intersection of the boundary of each new facet with the
union of the boundaries of the prior facets is a pure codimension one complex. That is,
for each k, we must show

∂Fk+1 ∩

(
k⋃
i=1

∂Fi

)
is a pure codimension one complex. Here ∂Fi denotes the boundary of Fi, i.e., all proper
faces of Fi.

To apply this thinking to Ξ, consider all the codimension one faces of the facet Fw =
(∅, w, ∅). These come in four types:

• ({s}, sw, ∅) if s ∈ DesL(w),
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• (∅, ws, {s}) if s ∈ DesR(w),

• ({s}, w, ∅) if s ∈ AscL(w),

• (∅, w, {s}) if s ∈ AscR(w).

In the first two cases, the elements sw and ws are below w in the two-sided weak order.
Now consider a linear extension of the two-sided weak order:

w1 < w2 < · · · < wk < w < · · · ,

and let Fi = wi denote the facet corresponding to the ith element in this linear extension.
If we order the facets of Ξ accordingly:

F1, F2, . . . , Fk, Fk+1, . . . ,

then the intersection of the boundary of Fk+1 = Fw with the union of the prior facets is
given by those faces below Fw in Ξ that are not represented by w, i.e.,

∂Fw ∩

(
k⋃
i=1

∂Fi

)
=

⋃
s∈DesL(w)
t∈DesR(w)

[(S, e, S), ({s}, sw, ∅)] ∪ [(S, e, S), (∅, wt, {t})].

Because all maximal faces have codimension one, we have proved the following proposition.

Proposition 10 (Shelling order). Any linear extension of the two-sided weak order on
W is a shelling order for Ξ. In particular, any linear extension of the Bruhat order is a
shelling order.

This proves part (3) of Theorem 3. A shelling of Ξ(A2) is indicated in Figure 1. The
highlighted edges represent the intervals [Rw, Fw], and with facets taken left to right, we
have a linear extension of the two-sided weak order.

3.2 Consequences of shelling

A simplicial complex is a psuedomanifold if every codimension one face is contained in
exactly two maximal faces. A result of Björner tells us about shellable pseudomanifolds.

Theorem 11 (Björner [5, Theorem 1.5]). Suppose ∆ is a shellable pseudomanifold. If ∆
is infinite, it is contractible. If ∆ is finite it is a sphere.

While Ξ is not a simplicial complex, its barycentric subdivision is. Let Ξ′ denote this
simplicial complex, whose faces are chains

F ′ = ∅ <Ξ F1 <Ξ F2 <Ξ · · · <Ξ Fk, Fi ∈ Ξ.

The dimension of such a face is k− 1, and inclusion of faces in Ξ′ is given by inclusion of
the sets of faces, i.e., F ′ 6Ξ′ G

′ = ∅ <Ξ G1 <Ξ · · · <Ξ Gl if and only if

{F1, . . . , Fk} ⊆ {G1, . . . , Gl}.
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A poset is called thin if every interval of length two has exactly four elements. Since Ξ
is a boolean complex, every interval in its face poset is boolean, and Ξ is clearly thin. The
nice thing about being thin is that the barycentric subdivision Ξ′ is a pseudomanifold.
Indeed if F ′ is a codimension one face of Ξ′ it has the form

F ′ = ∅ <Ξ F1 <Ξ F2 <Ξ · · · <Ξ Fj−1 <Ξ Fj+1 <Ξ · · · <Ξ Fd,

where dim(Fi) = i− 1 and d = 2n. Since Ξ is thin the interval

[Fj−1, Fj+1] = {Fj−1, H,H
′, Fj+1}

has exactly four elements, so there are exactly two choices for how to fill the gap in F ′ to
create a facet of Ξ′; either Fj−1 <Ξ H <Ξ Fj+1 or Fj−1 <Ξ H

′ <Ξ Fj+1.
Here we are tacitly assuming j = 1, . . . , d− 1, but we also need to consider the j = d

case, i.e., faces in Ξ′ of the form

F ′ = ∅ <Ξ F1 <Ξ F2 <Ξ · · · <Ξ Fd−1.

But if Fd−1 is a codimension one face of Ξ, we saw from Section 3.1 it has the form
({s}, w, ∅) or (∅, w, {s}), whose corresponding double cosets are W{s}wW∅ = {w, sw} or
W∅wW{s} = {w,ws}. In either case, the coset has exactly two elements, so the face
({s}, w, ∅) is only contained in the facets (∅, w, ∅) and (∅, sw, ∅), while (∅, w, {s}) is only
contained in (∅, w, ∅) and (∅, ws, ∅).

Thus we have shown that every codimension one face F ′ of Ξ′ is contained in exactly
two maximal faces, i.e., Ξ′ is a pseudomanifold.

Having established that Ξ′ is a pseudomanifold, we also claim that Ξ′ inherits shella-
bility from Ξ. This is well-known for finite posets, see, e.g., [4, Proposition 4.4(a)], and is
easily generalized to arbitrary simplicial posets whose facets all have the same dimension.

To summarize, the barycentric subdivision of Ξ is a shellable pseudomanifold. Since
barycentric subdivision respects topology, we obtain the following corollary, establishing
parts (4) and (5a) of Theorem 3.

Corollary 12. The barycentric subdivision of Ξ is a shellable pseudomanifold, and hence:

• Ξ is contractible when W is infinite,

• Ξ is a sphere when W is finite.

Remark 13. Let Ξ̂ = Ξ∪ {1̂} be the poset obtained by adding a unique maximal element
1̂ to the poset Ξ. Our argument for showing that Ξ′ is a pseudomanifold is essentially
the argument that the poset Ξ̂ is thin. The fact that Ξ is a sphere in the finite case
thus follows from [4, Proposition 4.5]. This is the argument used by Hultman in [11,
Corollary 5.8].
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4 Face enumeration for finite W

Throughout this section we assume W is finite and fix an ordering on the generating
set, S = {s1, . . . , sn}. In this way we can identify subsets of S with subsets of [n] :=
{1, 2, . . . , n}. Let x1, . . . , xn and y1, . . . , yn be indeterminates. If I ⊆ [n], let xI =

∏
i∈I xi,

and similarly for yI .
For a face F = (I, w, J) in Ξ, the face monomial for F is

m(F ) = x[n]−Iy[n]−J =
∏

i∈[n]−I

xi
∏

j∈[n]−J

yj.

Notice this encodes the color of the face F ; the x variables encode the left sided vertices,
the y variables encode the right sided vertices.

Let f(x,y) = f(x1, . . . , xn, y1, . . . , yn) denote the generating function for colors of
faces, i.e.,

f(x,y) =
∑
F∈Ξ

m(F ) =
∑
I,J

fI,JxIyJ .

Notice that the coefficient fI,J is the number of faces (S − I, w, S − J), i.e., it counts the
cardinality of the corresponding double quotient:

fI,J = |S−IW S−J | = |WS−I\W/WS−J |. (2)

By Lemma 5 this is

fI,J = |{w ∈ W : DesL(w) ⊆ I,DesR(w) ⊆ J}|.

Now define the quantities

hI,J =
∑
K⊆I
L⊆J

(−1)|I−K|+|J−L|fK,L,

= |{w ∈ W : DesL(w) = I,DesR(w) = J}|,

and the corresponding generating function

h(x1, . . . , xn, y1, . . . , yn) =
∑
I,J

hI,JxIyJ ,

=
∑
w∈W

xDesL(w)yDesR(w).

Recall that for a fixed element w ∈ W , the interval [Rw, Fw] contains all the faces rep-
resented by w, and this interval is isomorphic to the boolean interval AscL(w)×AscR(w).
This means the generating function for faces in this interval has the following form:∑

Rw6F6Fw

m(F ) = m(Rw) ·
∏

i∈AscL(w)

(1 + xi) ·
∏

j∈AscR(w)

(1 + yj),
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= xDesL(w)yDesR(w) ·
∏

i∈AscL(w)

(1 + xi) ·
∏

j∈AscR(w)

(1 + yj),

=

(
n∏
i=1

(1 + xi)(1 + yi)

) ∏
j∈DesL(w)

xj
1 + xj

∏
k∈DesR(w)

yk
1 + yk

,

where the final equality comes from the fact that ascent sets and descent sets are comple-
mentary.

Now using the partitioning of faces of Ξ given in (1), we get

f(x,y) =
∑
F∈Ξ

m(F ),

=
∑
w∈W

∑
Rw6F6Fw

m(F ),

=
n∏
i=1

(1 + xi)(1 + yi)
∑
w∈W

∏
j∈DesL(w)

xj
1 + xj

∏
k∈DesR(w)

yk
1 + yk

,

=
n∏
i=1

(1 + xi)(1 + yi)h

(
x1

1 + x1

, . . . ,
xn

1 + xn
,

y1

1 + y1

, . . . ,
yn

1 + yn

)
. (3)

That is, we obtain the f -polynomial as a multiple of a certain specialization of the h-
polynomial. Putting identity (3) the other way around, we can write

h(x,y) =
n∏
i=1

(1− xi)(1− yi)f
(

x1

1− x1

, . . . ,
xn

1− xn
,

y1

1− y1

, . . . ,
yn

1− yn

)
. (4)

Setting xj = x and yk = y, we have

f(x, y) =
∑
F∈Ξ

xl(F )yr(F ),

where if F = (J, w,K), l(F ) = |S − J | and r(F ) = |S −K|, which counts faces according
to the number of “left” and “right” vertices. The h-polynomial specializes to

h(x, y) =
∑
w∈W

xdesL(w)ydesR(w).

In other words, the polynomial h(x, y) is a “two-sided” Eulerian polynomial. This estab-
lishes the claim in part (5b) of Theorem 3.

The usual f - and h-polynomials of Ξ can be obtained by the further specialization of
x = y:

f(x) =
∑
F∈Ξ

x|F |, h(x) =
∑
w∈W

xdesL(w)+desR(w).

Hultman observed this expression for the h-polynomial in [11, Example 5.9].
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Example 14. We can see in Figure 1 that

f(A2; x,y) = 1 + (x1 + x2 + y1 + y2)

+ (x1x2 + 2x1y1 + 2x1y2 + 2x2y1 + 2x2y2 + y1y2)

+ (3x1x2y1 + 3x1x2y2 + 3x1y1y2 + 3x2y1y2) + 6x1x2y1y2,

Which after a bit of rearranging equals

(1 + x1)(1 + x2)(1 + y1)(1 + y2)

+ x1y1(1 + x2)(1 + y2) + x1y2(1 + x2)(1 + y1)

+ x2y1(1 + x1)(1 + y2) + x2y2(1 + x1)(1 + y1)

+ x1x2y1y2.

The elements of A2 have the following descent sets,

w DesL(w) DesR(w)
e ∅ ∅
s1 {1} {1}
s2 {2} {2}
s1s2 {1} {2}
s2s1 {2} {1}

s1s2s1 = s2s1s2 {1, 2} {1, 2}

so we can see that

f(A2; x,y) =
∑
w∈A2

xDesL(w)yDesR(w)

∏
i∈AscL(w)

(1 + xi) ·
∏

j∈AscR(w)

(1 + yj),

= h

(
A2;

x1

1 + x1

,
x2

1 + x2

,
y1

1 + y1

,
y2

1 + y2

)
.

The coarser polynomials are then

f(A2;x, y) = 1 + 2(x+ y) + x2 + 8xy + y2 + 6(x2y + xy2) + 6x2y2,

and
h(A2;x, y) = 1 + 4xy + x2y2.

5 Two-sided Eulerian polynomials

With finite W , we can define the two-sided W -Eulerian polynomial, denoted W (x, y), as
the joint distribution of left and right descents:

W (x, y) =
∑
w∈W

xdesL(w)ydesR(w) =
∑

06i,j6n

〈
W

i, j

〉
xiyj,
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A1 A2 A3 A4

 1 0
0 1




1 0 0
0 4 0
0 0 1




1 0 0 0
0 10 1 0
0 1 10 0
0 0 0 1





1 0 0 0 0
0 20 6 0 0
0 6 54 6 0
0 0 6 20 0
0 0 0 0 1



[
1
] [

1 0
0 2

] [
1 0 0
0 7 1

]  1 0 0
0 16 6
0 0 16



Table 1: Arrays of two-sided Eulerian numbers
〈
An

i,j

〉
above the corresponding arrays of

integers γAn
a,b .

where
〈
W
i,j

〉
denotes the number of elements in W with i left descents and j right descents.

(This polynomial is defined independent of the two-sided Coxeter complex, but the inter-
pretation as an h-polynomial provides an interesting context for its study.) We call

〈
W
i,j

〉
a

two-sided W -Eulerian number. In Tables 1, 2, 3 4, and 5 we have the arrays of coefficients[〈
W

i, j

〉]
06i,j6n

,

for some finite Coxeter groups of small rank, including all exceptional types.
In type An, these numbers were first studied by Carlitz et al. [8], but have been recently

revisited by the author [15] and Visontai [20] (who also discussed type Bn Coxeter groups).
The recent interest in these polynomials stems from a conjecture of Gessel that we will
now describe and generalize from the symmetric group to all finite Coxeter groups.

To state Gessel’s conjecture, one must first make note of certain symmetries in the
two-sided Eulerian numbers. Notice that the map w 7→ w−1 swaps left and right descents,
DesL(w) = DesR(w−1), so we get symmetry in i and j:〈

W

i, j

〉
=

〈
W

j, i

〉
. (5)

Also recall that left multiplication by the long element w0 complements the right descent
set:

DesR(w0w) = S −DesR(w),

while conjugation by w0 conjugates the elements of the right descent set:

DesR(w0ww0) = {w0sw0 : s ∈ DesR(w)} = w0 DesR(w)w0.
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B2 B3 B4


1 0 0
0 6 0
0 0 1




1 0 0 0
0 19 4 0
0 4 19 0
0 0 0 1





1 0 0 0 0
0 45 30 1 0
0 30 170 30 0
0 1 30 45 0
0 0 0 0 1



[
1 0
0 4

] [
1 0 0
0 16 4

]  1 0 0 0
0 41 30 1
0 0 80 0



Table 2: Arrays of two-sided Eulerian numbers
〈
Bn

i,j

〉
above the corresponding arrays of

integers γBn
a,b .

D4 D5 D6



1 0 0 0 0
0 30 12 2 0
0 12 78 12 0
0 2 12 30 0
0 0 0 0 1





1 0 0 0 0 0
0 69 69 18 1 0
0 69 486 229 18 0
0 18 229 486 69 0
0 1 18 69 69 0
0 0 0 0 0 1





1 0 0 0 0 0 0
0 135 262 117 16 0 0
0 262 2433 2330 510 16 0
0 117 2330 5982 2330 117 0
0 16 510 2330 2433 262 0
0 0 16 117 262 135 0
0 0 0 0 0 0 1



 1 0 0 0
0 26 12 2
0 0 16 0

  1 0 0 0 0
0 64 69 18 1
0 0 248 88 0




1 0 0 0 0
0 129 262 117 16
0 0 1668 1496 276
0 0 0 832 0



Table 3: Arrays of two-sided Eulerian numbers
〈
Dn

i,j

〉
above the corresponding arrays of

integers γDn
a,b .
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E6



1 0 0 0 0 0 0
0 232 584 389 64 3 0
0 584 4785 5440 1310 64 0
0 389 5440 13270 5440 389 0
0 64 1310 5440 4785 584 0
0 3 64 389 584 232 0
0 0 0 0 0 0 1




1 0 0 0 0 0
0 226 584 389 64 3
0 0 3088 3496 520 0
0 0 0 3104 0 0



E7



1 0 0 0 0 0 0 0
0 945 5414 7693 3208 367 8 0
0 5414 64905 143036 83491 12756 367 0
0 7693 143036 484551 401936 83491 3208 0
0 3208 83491 401936 484551 143036 7693 0
0 367 12756 83491 143036 64905 5414 0
0 8 367 3208 7693 5414 945 0
0 0 0 0 0 0 0 1




1 0 0 0 0 0 0
0 938 5414 7693 3208 367 8
0 0 44808 111756 58944 6300 0
0 0 0 174464 107712 0 0



E8



1 0 0 0 0 0 0 0 0
0 8460 113241 338944 318372 94540 8103 92 0
0 113241 2348364 9509809 11520216 4360423 476192 8103 0
0 338944 9509809 48819660 72638788 33260660 4360423 94540 0
0 318372 11520216 72638788 131292998 72638788 11520216 318372 0
0 94540 4360423 33260660 72638788 48819660 9509809 338944 0
0 8103 476192 4360423 11520216 9509809 2348364 113241 0
0 92 8103 94540 318372 338944 113241 8460 0
0 0 0 0 0 0 0 0 1




1 0 0 0 0 0 0 0
0 8452 113241 338944 318372 94540 8103 92
0 0 1619736 7988488 9786280 3364792 286560 0
0 0 0 19362528 34500160 9750496 0 0
0 0 0 0 17111296 0 0 0



Table 4: Arrays of two-sided Eulerian numbers
〈
En

i,j

〉
above the corresponding arrays of

integers γEn
a,b .

the electronic journal of combinatorics 25(4) (2018), #P4.64 19



F4 H3 H4 I2(m)


1 0 0 0 0
0 108 112 16 0
0 112 454 112 0
0 16 112 108 0
0 0 0 0 1




1 0 0 0
0 43 16 0
0 16 43 0
0 0 0 1




1 0 0 0 0
0 756 1600 280 0
0 1600 5926 1600 0
0 280 1600 756 0
0 0 0 0 1




1 0 0
0 2(m− 1) 0
0 0 1



 1 0 0 0
0 104 112 16
0 0 208 0

 [
1 0 0
0 40 16

]  1 0 0 0
0 752 1600 280
0 0 3856 0

 [
1 0
0 2(m− 2)

]

Table 5: The two-sided Eulerian numbers for finite Coxeter groups of types F , H, and I.

These facts follow, e.g., from [6, Section 2.3].
Taken together, we see that left multiplication by w0 complements the conjugate of

the left descent set:

DesL(w0w) = DesR(w−1w0),

= DesR(w0(w0w
−1w0)),

= S −DesR(w0w
−1w0),

= S − w0 DesR(w−1)w0,

= S − w0 DesL(w)w0.

Hence we have desL(w0w) = n−desL(w) and desR(w0w) = n−desR(w), implying the
following symmetry: 〈

W

i, j

〉
=

〈
W

n− i, n− j

〉
. (6)

Phrasing symmetries (5) and (6) in terms of generating functions, we have the following
observation about the two-sided W -Eulerian polynomials.

Observation 15. For any finite Coxeter group W of rank n,

1. W (x, y) = W (y, x), and

2. W (x, y) = xnynW (1/x, 1/y).

Integer polynomials that possess symmetries (1) and (2) have an expansion in the
following basis:

Γn = {(xy)a(x+ y)b(1 + xy)n−2a−b}062a+b6n.

The generalized Gessel conjecture is that the two-sided Eulerian polynomials expand
positively in this basis.
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Conjecture 16 (Generalized Gessel’s conjecture). For any finite Coxeter group W of
rank n, there exist nonnegative integers γWa,b such that

W (x, y) =
∑

062a+b6n

γWa,b(xy)a(x+ y)b(1 + xy)n−2a−b.

The integers γWa,b for W of small rank are shown in Tables 1, 2, 3 4, and 5.

Remark 17. Gessel’s original conjecture (for W = An = Sn+1) was proved by Lin in [13].
The method of proof is a careful induction argument using a recurrence for the γAn

a,b given
by Visontai [20]. The other cases have been verified for small rank (n 6 10). Type Bn is
governed by similar combinatorics, so perhaps a similar induction proof can be found. In
all cases, it would be nice to know what the numbers γWa,b count.

Remark 18. In practice, traversing the group W to compute the polynomial W (x, y) is
not very efficient, as the cardinality of the group is roughly factorial in the rank.

From Equation (2) we know that fS−I,S−J is the cardinality of the double quotient
|WI\W/WJ | and from [17, Exercise 7.77a] we can compute this cardinality with an inner
product of trivial characters on the parabolic subgroups induced up to W . That is,

|WI\W/WJ | =
〈
indWWI

1WI
, indWWJ

1WJ

〉
, (7)

where 1WJ
denotes the trivial character on WJ . Stembridge has a nice implementation of

this character computation in Maple [19].
Having computed the numbers fI,J for all pairs of subsets I, J ⊆ S, we obtain the

polynomial f(x,y) and we can use Equation (4) to compute the polynomial h(x,y), which
then specializes to W (x, y). To put it succinctly, we have

W (x, y) =
∑
I,J⊆S

fI,Jx
|I|y|J |(1− x)n−|I|(1− y)n−|J |.

Roughly speaking, this method reduces the problem of computing W (x, y) from that of
traversing the |W | elements of W to one of traversing 4n pairs of subsets. The two-sided
Eulerian numbers for E8 were computed in about half an hour on a standard desktop
machine in this manner, without too much care given to optimization.

6 Contingency tables

Throughout this section we consider the special case where W = Sn is the symmetric
group. The generating set is S = {s1, s2, . . . , sn−1}, where si is the ith adjacent transpo-
sition.

As shown in Diaconis and Gangolli [9], for fixed I and J the double cosets WIwWJ are
in bijection with arrays of nonnegative integers. (They attribute the idea to N. Bergeron.)
To see how this connection is made, we draw double cosets as diagrams of “balls in boxes.”
First, we draw permutations as two-dimensional arrays, with a ball in column i (left to
right), row j (bottom to top), if w(i) = j, then we insert some vertical and horizontal

the electronic journal of combinatorics 25(4) (2018), #P4.64 21



bars in gaps between balls. The group Sn acts on the left by permuting rows; it acts on
the right by permuting columns.

For example, w = 7142536 is drawn in Figure 2. To indicate a parabolic double coset
WIwWJ , we draw solid horizontal bars in gaps that correspond to S− I and solid vertical
bars in gaps that correspond to S−J . In Figure 2, I = {s1, s2, s3, s5} and J = {s2, s3, s6}.
We can get all elements of WIwWJ by swapping columns and rows that are not separated
by a solid bar. Notice that the balls cannot leave the boxes formed by the bars.

The minimal representative for the double coset corresponds to the permutation ob-
tained by sorting the balls in increasing order from left to right and from bottom to top,
such that each row and column contains exactly one ball. The minimal representative for
the coset illustrated in Figure 2 would then be u = 7123546. Notice that both the right
descents and left descents of u occur in barred positions.

Given the diagram for a double coset as in Figure 2, we can map the diagram to an
array of nonnegative integers by merely counting the number of balls in each box. Let
Ξ(n) denote the set of all such arrays, which are known as two-way contingency tables.
More precisely, define Ξ(n) to be the set of all nonnegative integer arrays whose entries
sum to n and whose row sums and column sums are positive.

To move up in the partial order, we refine our balls and boxes picture by inserting more
bars. On the contingency table side, this means our arrays get more rows and columns.
Each cover relation corresponds to adding or deleting a single bar, so rank is given by the
total number of bars. A balls-in-boxes picture with k horizontal bars and l vertical bars
will correspond to a (k + 1)× (l + 1) contingency table.

Notice that we can permute the balls before insertion, so more than one cover relation
can arise from inserting the same bar. For example, using the balls and boxes diagram
of Figure 2, there are two covers that come from inserting a horizontal bar in the gap

s2 s3 s6

s1

s2

s3

s5  1 0 0 0
0 0 1 1
0 3 0 1



Figure 2: A double coset in A6 mapping to a contingency table in Ξ(7).
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[3]

[
1
2

] [
2
1

] [
1 2

][
2 1

]

 1
1
1

 [
0 1
1 1

] [
0 1
2 0

] [
0 2
1 0

] [
1 1
1 0

] [
1 1 1

] [ 1 1
0 1

] [
1 0
1 1

] [
2 0
0 1

] [
1 0
0 2

]

 0 1
0 1
1 0

  0 1
1 0
1 0

[ 0 0 1
1 1 0

][
0 1 1
1 0 0

] 0 1
1 0
0 1

[ 1 0 1
0 1 0

] 1 0
0 1
1 0

[ 0 1 0
1 0 1

]  1 0
1 0
0 1

 [
1 1 0
0 0 1

]  1 0
0 1
0 1

 [
1 0 0
0 1 1

]

 0 0 1
0 1 0
1 0 0

  0 0 1
1 0 0
0 1 0

  0 1 0
0 0 1
1 0 0

  0 1 0
1 0 0
0 0 1

  1 0 0
0 0 1
0 1 0

  1 0 0
0 1 0
0 0 1



Figure 3: The partial order on contingency tables Ξ(3) is isomorphic to the two-sided
Coxeter complex Ξ(A2). Highlighted edges indicate the Coxeter complex Σ(A2).
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corresponding to s5:

s2 s3 s6

s1

s2

s3 and

s2 s3 s6

s1

s2

s3 ,

corresponding to 
1 0 0 0
0 0 0 1
0 0 1 0
0 3 0 1

 and


1 0 0 0
0 0 1 0
0 0 0 1
0 3 0 1

 ,
respectively.

Downward covers in the partial order correspond to removing a single bar from the
balls in boxes picture, which therefore adds all the entries in two adjacent rows or two
adjacent columns of the corresponding contingency tables. In Figure 4 we see all the
upper and lower covers of the table from Figure 2. The reader might like to translate
these arrays into pictures of balls in boxes. In Figure 3 we see the full refinement order
on Ξ(3).

We finish by stating what should be clear at this point.

Proposition 19. The two-sided Coxeter complex of the symmetric group Sn is isomorphic
to Ξ(n) under refinement order.

It is well-known that the faces of the Coxeter complex for the symmetric group are
modeled by ordered set partitions of {1, 2, . . . , n}. Ordered set partitions are in bijection
with contingency tables that have n rows (or by those with n columns). To see the corre-
spondence, we simply record, from left to right in each column, the rows that have nonzero
entries (counting from bottom to top). For example, the following array corresponds to
the ordered set partition ({4, 5}, {3, 6}, {1}, {2}):

0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Remark 20. The number of two-way contingency tables, i.e., the number of cells of Ξ(n),
can be computed by summing (7) over all I and J . However, using recurrences found in
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 1 0 0 0
0 0 1 1
0 3 0 1




1 0 0 0
0 0 1 0
0 0 0 1
0 3 0 1




1 0 0 0
0 0 0 1
0 0 1 0
0 3 0 1




1 0 0 0
0 0 1 1
0 0 0 1
0 3 0 0




1 0 0 0
0 0 1 1
0 1 0 0
0 2 0 1




1 0 0 0
0 0 1 1
0 1 0 1
0 2 0 0




1 0 0 0
0 0 1 1
0 2 0 0
0 1 0 1




1 0 0 0
0 0 1 1
0 2 0 1
0 1 0 0




1 0 0 0
0 0 1 1
0 3 0 0
0 0 0 1


 1 0 0 0 0

0 0 0 1 1
0 1 2 0 1



 1 0 0 0 0
0 0 0 1 1
0 2 1 0 1



 1 0 0 0 0
0 0 1 0 1
0 3 0 1 0



 1 0 0 0 0
0 0 1 1 0
0 3 0 0 1



[
1 0 1 1
0 3 0 1

]

[
1 0 0 0
0 3 1 2

]

 1 0 0
0 1 1
3 0 1



 1 0 0
0 1 1
0 3 1



 1 0 0
0 0 2
0 3 1



Figure 4: The upper and lower covers of an element of Ξ(7). (The order increases left to
right.)
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[15] or [20], we can compute this number more efficiently. The sequence of such numbers
is entry A120733 of the On-Line Encyclopedia of Integer Sequences [14], which begins

1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161, 3581539973, . . . .

Indeed, it was through OEIS that the author learned of the connection with contingency
tables.

In type Bn we can use recurrences from [20] to compute

(|Ξ(Bn)|, n > 2) : 41, 509, 8469, 176217, 4400325, 128203049, 4268957449, . . . .

The analogous sequence for the type Dn groups begins

(|Ξ(Dn)|, n > 4) : 4569, 94213, 2339629, 67910709, 2255287461, . . . .

We have trouble computing the number of faces in Ξ(Dn) beyond n = 8 because we know
of no way to compute the number of type Dn faces that is faster than summing (7) over
all pairs of subsets. It would be nice to find a recurrence for counting faces more efficiently
in type Dn.

Remark 21. The dual of the type An Coxeter complex is the permutahedron, which plays
an interesting role in the study of combinatorial Hopf algebras, such as the Malvenuto-
Reutenauer algebra and the algebra of quasisymmetric functions. See work of Aguiar and
Sottile, for example [2].

Suggestively, two-way contingency tables provide an indexing set for a bialgebra known
as the set of matrix quasisymmetric functions, which contains many well-known combina-
torial bialgebras as subalgebras or quotients. See work of Duchamp, Hivert, and Thibon
[10, Section 5]. It would be interesting to explore whether Ξ(n) might play a role for
the matrix quasisymmetric functions similar to the role the permutahedron plays for the
Malvenuto-Reutenauer algebra.

Remark 22. We finish this article by remarking that refinement ordering on contingency
tables makes sense not only for two-way tables. A k-way contingency table of n objects
is an array of nonnegative integers

A = [ai1,...,ik ],

such that the sum of the entries is n and all marginal sums

mr =
∑

i1,...,ij−1,ij+1,...,ik

ai1,...,ij−1,r,ij+1,...,ik ,

are positive. In practical terms, a contingency table involves the study of a population
according to several criteria that partition the population, say gender versus age versus
income. Requiring the marginal sums to be positive means each criterion is satisfied by
at least one member of the population. This seems reasonable, for otherwise the criterion
gives no information.
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We can inductively define k-way contingency tables for k > 2 by considering (k − 1)-
way tables whose entries are nonnegative integer vectors of the same size, such that when
all the vectors with nonzero entries are put into the columns of an array they form a
2-way table. Refinement order on k-way contingency tables whose entries sum to n has
maximal elements given by arrays whose marginal sums all equal to 1. By induction we
see there are (n!)k−1 maximal tables.

For any k, let the set of k-way contingency tables whose entries sum to n be denoted
by Ξ(k;n). It is not hard to check the partial ordering given by refinement is ranked
and boolean, just as in the 2-way case. (Downward covers are given by adding adjacent
entries in some coordinate.) It seems reasonable to expect that we get a shelling order
from any linear extension of some sort of natural analogue of two-sided weak order on the
facets. If so, refinement ordering on the set of k-way contingency tables of [n] defines a
thin, shellable simplicial poset and the geometric realization of Ξ(k;n) is a sphere.
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