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Abstract

We prove that the first homology group of every planar locally finite transitive
graph G is finitely generated as an Aut(G)-module and we prove a similar result
for the fundamental group of locally finite planar Cayley graphs. Corollaries of
these results include Droms’s theorem that planar groups are finitely presented and
Dunwoody’s theorem that planar locally finite transitive graphs are accessible.

Mathematics Subject Classifications: 05C63, 05C38

1 Introduction

A finitely generated group is planar if it has some locally finite planar Cayley graph.
Droms [2] proved that finitely generated planar groups are finitely presented. In this
paper, we shall present an alternative proof of his result. Whereas Droms’s proof uses an
accessibility result of Maskit [9] for planar groups, our self-contained proof does not. We
will prove the following theorem directly, in which, for a set S, we denote by FS the free
group with free generating set S.

Theorem 1. Let G be a locally finite planar Cayley graph of a finitely generated group Γ =
〈S | R〉. Then the fundamental group of G has a generating set consisting of finitely many
FS-orbits.

Note that Droms’s theorem about the finite presentability of planar groups follows
directly from Theorem 1.

Another result about the fundamental group of planar graphs that we obtain is The-
orem 2 for which we state a definition first. We call a graph finitely separable if no two
distinct vertices are joined by infinitely many edge disjoint paths, or equivalently, any two
vertices are separable by finitely many edges.
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Theorem 2. Let G be a planar 3-connected finitely separable graph. Then there is a
canonical nested set of closed walks whose homotopy classes generate the fundamental
group of G.

Our proof of Theorem 2 is constructive and this construction commutes with graph
isomorphisms, i. e. whenever we run this construction for two isomorphic graphs G and H,
then this isomorphism maps the set of closed walks in G we obtain to that of H. In
particular, the resulting set of closed walks is invariant under the automorphisms of the
graph. Nested means that we can draw the closed walks in the embedding of the planar
graph without crossings of the lines. We refer to Section 2 for the precise definition. The
definition of nested cycles is easier to state than nestedness of closed walks: Let G be a
planar graph with planar embedding ϕ : G→ R2. Two cycles C1, C2 in G are nested if no
Ci has vertices or edges in distinct faces of ϕ(C3−i). A set of cycles is nested if every two
of its elements are nested.

From our intermediate results we will be able to directly deduce the following two
results on the homology group of planar graphs.

Theorem 3. Every 3-connected finitely separable planar graph has a canonical nested set
of cycles generating the first homology group.

Theorem 4. Every planar locally finite transitive graph G has a set of cycles that gener-
ates the first homology group and consists of finitely many Aut(G)-orbits.

Note that Theorems 3 and 4 are easy to prove if the graph has no accumulation points
in the plane, i. e. if it is VAP-free, as you may then take the finite face boundaries as
generating set, see e. g. [5, Lemma 3.2].

Theorem 3 has various analogues in the literature: in [6] the author proved the corre-
sponding result for the cycle space1 of 3-connected finitely separable planar graphs and,
previously, Dicks and Dunwoody [1] proved the analogous result for the cut space2 of
arbitrary graphs.

The mentioned theorem of Dicks and Dunwoody is one of the central theorems for the
investigation of transitive graphs with more than one end and hence of accessible graphs
and of accessible groups. (We refer to Section 8 for definitions.) Even though accessibility
has a priori more in common with the cut space than with the cycle space or the first
homology group, the main result of [7] exhibited a connection between accessibility and
the cycle space:

Theorem 5. [7] Every transitive graph G whose cycle space is a finitely generated Aut(G)-
module is accessible.

As an application of our results and Theorem 5 we shall obtain Dunwoody’s [4] theorem
that locally finite transitive planar graphs are accessible.

1The cycle space of a graph is the set of finite sums of edge sets of cycles over F2.
2The cut space of a graph is the set of finite sums over F2 of minimal separating edge sets.
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The proofs for Theorems 3 and 4 and their variants for closed walks are very similar.
Therefore, we present only the proof for the more involved case of closed walks and then
discuss in Section 7 the situation for the first homology group.

In Section 2, we shall give the most important basic definitions and prove some small
results about indecomposable closed walks. In Section 3, we consider for a given cycle the
number of closed walks of a bounded length that cross this cycle. We will prove our first
main step in Section 4: we will see that in finitely separable 3-connected planar graphs
the space of all closed walks has a nested generating set (Theorem 13). In Section 5,
we will see that the spaces of closed walks of locally finite planar quasi-transitive graphs
have generating sets consisting of only finitely many orbits (Theorem 25). We will use
these two theorems to prove in Section 6 the analogues of Theorems 3 and 4 for the
fundamental groups. In Section 7, we discuss the situation for the first homology group,
and in Section 8 we apply our results to obtain the above mentioned accessibility result.

2 Indecomposable closed walks

The sum of two walks W1,W2 where W1 ends at the starting vertex of W2 is their concate-
nation. Let W = x1x2 . . . xn be a walk. By W−1 we denote its inverse xn . . . x1. For i < j,
we denote by xiWxj the subwalk xi . . . xj. If xi−1 = xi+1 for some i, we call the walk
W ′ := x1 . . . xi−1xi+2 . . . xn a reduction of W . Conversely, we add the spike xi−1xixi+1

to W ′ to obtain W . If W is a closed walk, we call xi . . . xnx1 . . . xi−1 a rotation of W . By
W(G) we denote the set of all closed walks.

Let V be a set of closed walks. The smallest set V ′ ⊇ V of closed walks that is invariant
under taking sums, reductions and rotations and under adding spikes is the set of closed
walks generated by V . We also say that any V ∈ V ′ is generated by V . A closed walk is
indecomposable if it is not generated by closed walks of strictly smaller length. Note that
no indecomposable closed walk W has a shortcut, i. e. a (possibly trivial) path between
any two of its vertices that has smaller length than any subwalk of any rotation of W
between them. Indeed, let P be a shortest shortcut of W and Q1, Q2 be two subwalks
of W whose end vertices are those of W and whose concatenation is W . Then Q1P and
P−1Q2 sum to a closed walk that has W as a reduction. As shortcuts may be trivial, we
immediately obtain the following.

Remark 6. Every indecomposable closed walk is a cycle.

Let G be a planar graph. The spin of a vertex x ∈ V (G) is the cyclic order of the set
of edges incident with x in clockwise order. Let R = x0 . . . x` and W = y1 . . . y` be two
walks in a planar graph G such that xi = yi for all 1 6 i 6 ` − 1. We call R a crossing
of W if one of the following holds:

(i) the edges x0x1, x1x2, y0x1 are contained in this order in the spin of x1 and x`−2x`−1,
x`−1y`, x`−1x` are contained in this order in the spin of x`−1;

(ii) the edges y0x1, x1x2, x0x1 are contained in this order in the spin of x1 and x`−2x`−1,
x`−1x`, x`−1y` are contained in this order in the spin of x`−1.
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These crossing are shown in Figure 1. Note that this definition is symmetric in R and W .
So R is a crossing of W if and only if W is a crossing of R.
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Figure 1: The two possible crossings

For a closed walk W and n ∈ N let W n be the n-times concatenation of W with itself.
Two closed walks R and W cross if there are i, j ∈ N such that Ri contains a crossing of
a subwalk of W j. They are nested if they do not cross.

Lemma 7. Let G be a planar graph and let W1,W2 ⊆ G be two indecomposable closed
walks of lengths n1, n2, respectively. Let P1 ⊆ W1 be a non-trivial subwalk of shortest
length that meets W2 in precisely its end vertices. Let P2 ⊆ W2 be a shortest walk with
the same end vertices as P1. Then one of the following is true.

(i) |P1| = |P2| and P2 meets W1 only in its end vertices;

(ii) |P1| > |P2| and P1P
−1
2 is a rotation of W1;

(iii) |P1| > |P2| and (W1 − P1)P2 is a rotation of W2 or W−1
2 .

Proof. Let v, w be the end vertices of P1 and recall from Remark 6 that W1 and W2 are
cycles. Let Q1 and Q2 are the two subpaths of W2 with end vertices v and w.3 Then
W2 is a reduction of a rotation of the sum of vP1wQ

−1
1 v and vQ2wP

−1
1 v. First, assume

|P1| < |P2|. By the choice of P2, we have |P2| 6 |Q1| and |P2| 6 |Q2|, so P1 is a shortcut
of W2, which is impossible. Hence, we have |P1| > |P2|.

If P2 is a subwalk of W1, then we directly have that P1P2 is a rotation of W1 and (ii)
holds. So we may assume that P2 contains an edge outside of W1.

Let us suppose that P2 has an inner vertex on W1. So any subwalk xP2y that intersects
W1 in precisely its end vertices has shorter length than P2 and hence has shorter length
than P1. Note that such a subpath exists as P2 has an edge outside W1. But xP2y cannot
be a shortcut of W1. So the distance between x and y on W1 is at most |xP2y|. The
subpath Q of W1 realising the distance of x and y on W1 together with xP2y does not
contain v and w. So it cannot be W2. As W2 is a cycle, some edge of Q does not lie on W2

and hence Q contains some subwalk that contradicts the choice of P1.
So P2 meets W1 only in its end vertices. Then W1 is a reduction of the sum of

(W1 − P1)P2 and P−1
2 P1. As W1 is indecomposable, P2 is not a shortcut of W1 and thus

we have either |P2| = |P1| or |P2| = |W1 − P1|. The first case implies (i) while, if the first
case does not hold, we have |P1| > |P2| = |W1−P1|. Thus, the minimality of |P1| implies
that W1 − P1 lies on W2. So we have that (W1 − P1)P2 is a rotation of W2 or W−1

2 as P2

meets W1 only in its end vertices. This shows (iii) in this situation.

3Strictly speaking, one is just a subwalk of a rotation of the reflection of C2.
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If C is a cycle in a planar graph G, we denote by f 0
C the bounded face of C and by f 1

C

the unbounded face.
For two closed walks C,D of G, we call a non-trivial maximal subwalk P of D that

has precisely its end vertices in C a C-path in D. By n(C,D) we denote the number of
C-paths in D.

Lemma 8. Let G be a planar graph and let C,D ⊆ G be two indecomposable closed walks.
Then there are nested indecomposable closed walks C̃ and D̃ with |C| = |C̃| and |D| = |D̃|
that are either the boundaries of f 0

C ∩ f 0
D and of f 1

C ∩ f 1
D or the boundaries of f 0

C ∩ f 1
D and

f 1
C ∩ f 0

D.

In addition, we may choose C̃ and D̃ so that, if E is a set of closed walks generating all
closed walks of length smaller than |C|, then E generates C or D as soon as it generates

C̃ or D̃.

Proof. If C and D are nested, then the assertion holds trivially. This covers the situation
that n(D,C) is either 0 or 1, as n(C,D) ∈ {0, 1} implies that C and D are nested. In
particular, we may assume that C contains some smallest D-path P1. Note that the cases
(ii) and (iii) of Lemma 7 imply n(D,C) = 1. Hence, Lemma 7 implies that D contains a
C-path Q1 with the same end vertices as P1 and with |P1| = |Q1|. By definition, neither
P1 nor Q1 has an inner vertex that lies in D or C, respectively. Let D′ := D and let C ′ be
obtained from C by replacing P1 with Q1. Recursively, we obtain two sequences (Pi)i6n
and (Qi)i6n of D-paths in C and C-paths in D, respectively, which are ordered by the
length of the paths Pi. Note that – just as above – Lemma 7 ensures |Pi| = |Qi| for all
but at most one i 6 n. (The case with |Pi| 6= |Qi| occurs if C and D are nested and either
(ii) or (iii) of Lemma 7 holds.)

Consider a cyclic ordering of C and let i1, . . . , in ∈ {1, . . . , n} be pairwise distinct such
that Pi1 , . . . , Pin appear on C in this order. Then, using planarity, it immediately follows
by their definitions as C-path or D-path, respectively, that Qi1 , . . . , Qin appear in this
order on D. Note that one face of Pi ∪ Qi contains no vertices or edges of C ∪ D. The
assertion follows except for the fact that the obtained closed walks are indecomposable
and the additional statement.

Let E be a set of closed walks generating all closed walks of length smaller than |C|.
Assume that the boundaries C ′ and D′ of f 0

C ∩ f 0
D and f 1

C ∩ f 1
D, respectively, have the

desired property up to being indecomposable. Let us assume that C ′ is generated by E .
(Note that this covers also the case that C ′ is not indecomposable.)

If all closed walks P−1
i Qi have length less than |C| and |D|, then we add every closed

walk P−1
i Qi to C ′ – after the canonical rotation – for which Qi lies on the boundary of

f 0
C ∩f 0

D and we consider the smallest reduction. Thereby, we obtain C. So C is generated
by E as C ′ and all of the added closed walks are generated by E .

If all but exactly one of the closed walks P−1
i Qi have length less than |C| and |D|, then

P−1
n Qn has largest length of all those closed walks. If Pn lies on the boundary of f 0

C ∩ f 0
D,

then we add every closed walk P−1
i Qi to C ′ for which Qi lies on the boundary of f 0

C ∩ f 0
D

and consider the smallest reduction. As before, we obtain that C is generated by E . If
Pn lies on the boundary of f 1

C ∩ f 1
D, then we add every closed walk PiQ

−1
i to C ′ for which
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Pi lies on the boundary of f 0
C ∩ f 0

D and obtain D and consider the smallest reduction. So
D is generated by E .

If at least two closed walks Pi ∪ Qi have length at least min{|C|, |D|}, then n = 2
follows immediately. Hence, the boundaries C ′′ and D′′ of f 0

C∩f 1
D and f 1

C∩f 0
D, respectively,

are cycles. So we may have chosen them instead of C ′ and D′. If one of them, C ′′ say, is
generated by E , too, then C ′(C ′′)−1 is generated by E . As this sum reduces to either C
or D, the assertion follows.

Note that it follows from the proof of Lemma 8 that there is a canonical bijection
between the C-paths in D and the D-paths in C. In particular, we have n(C,D) =
n(D,C).

3 Counting crossing cycles

Our restiction to finitely separable graphs implies that each cycle in such a planar graph
is nested with all but finitely many cycles of bounded length, which directly carries over
to indecomposable closed walks.4 Without finite separability this need not be true.

Proposition 9. Let i ∈ N. Every cycle in a finitely separable planar graph is nested with
all but finitely many cycles of length at most i.

Proof. Let us assume that some cycle C crosses infinitely many cycles of length at most i.
Then there are two vertices x1, x2 of C that lie on infinitely many of these cycles and
thus we obtain infinitely many distinct x1–x2 paths of length at most i− 1. Either there
are already infinitely many edge disjoint x1–x2 paths or infinitely many share another
vertex x3. In the latter situation, there are either infinitely many distinct x1–x3 or x2–x3

paths of length at most i− 2. Continuing this process, we end up at some point with two
distinct vertices and infinitely many edge disjoint paths between them, since we reduce
the length of the involved paths in each step by at least 1. So we obtain a contradiction
to finite separability.

Let E be a set of indecomposable closed walks of length at most i in a finitely separable
graph G and C ⊆ G be an indecomposable closed walk. We define µE(C) to be the number
of elements of E that are not nested with C. Note that Proposition 9 says that µE(C)
is finite. If F is another set of indecomposable closed walks of length at most i, we set
µE(F) as minimum over all µE(C) with C ∈ F .

Proposition 10. Let G be a finitely separable planar graph. Let E be a set of indecom-
posable closed walks in G of length at most i ∈ N and let C,D be two indecomposable
closed walks in G that are not nested. Then we have

µE(C) + µE(D) > µE(C̃) + µE(D̃),

4As cycles define closed walk canonically, nestedness of closed walks carries over to cycles in the
obvious way. Equivalently, two cycles are nested if neither has vertices or edges in both faces of the other
and vice versa.
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where C̃ and D̃ are the closed walks obtained by Lemma 8. Furthermore, if D ∈ E, then
the inequality is strict.

Proof. Using homeomorphisms of the sphere, we may assume that C̃ is the boundary of
f 0
C ∩ f 0

D and D̃ is the boundary of f 1
C ∩ f 1

D. Let F ∈ E be nested with C and D. We

may assume that F avoids f 0
C . Thus, it is nested with C̃. If F avoids f 0

D, too, then it lies

in f 1
C ∩ f 1

D with its boundary and is nested with D̃. So let us assume that it avoids f 1
D.

Thus, F does not contain any points of f 1
C ∩ f 1

D and hence is nested with D̃.
Now consider the case that F ∈ E is nested with C but not with D. We may assume

that F avoids f 0
C . Hence, it avoids f 0

C ∩ f 0
D, too, and is nested with C̃.

This shows that every F ∈ E that is not counted on the left side of the inequality is
not counted on the right side either and that every F ∈ E that is counted on the left side
precisely once is counted on the right side at most once, which implies the first part of
the assertion.

To see the additional statement, just note that D is counted on the left for µE(C) but

not for µE(D) and that both closed walks C̃ and D̃ are nested with D.

4 Finding a nested generating set

The main theorem of [6] says that the cycle space of any 3-connected finitely separable
planar graph G is generated by some canonical nested set of cycles as F2-vector space.
We shall prove the analogous result for the set W(G) of all closed walks.

Throughout this section, let G be a 3-connected planar finitely separable graph. Let
Wi := Wi(G) be the subset of W(G) generated by all closed walks of length at most i.
So W(G) =

⋃
i∈NWi. We shall recursively define canonical nested subsets Ci of Wi that

generate Wi and consist only of indecomposable closed walks of length at most i. So⋃
i∈N Ci will generate W(G). We shall define the Ci recursively. For the start, let Ci = ∅

for i 6 2. Now let us assume that we already defined Ci−1.
In order to define Ci, we construct another sequence of nested Aut(G)-invariant sets

Cκi of indecomposable closed walks. Set C0
i := Ci−1. Let κ be some ordinal such that Cλi is

defined for all λ < κ. If κ is a limit ordinal, then set Cκi =
⋃
λ<κ Cλi . So let κ be a successor

ordinal, say κ = ν + 1. Any closed walk of length i that is not generated by Cνi must
be indecomposable by definition of Ci−1. If there is not such a closed walk, set Ci := Cνi .
So in the following, we assume that there is at least one indecomposable closed walk of
length i that is not generated by Cνi . Hence, the set Dκi of all indecomposable closed walks
of length i that are not generated by Cνi is not empty.

Lemma 11. The set Dκi 6= ∅ contains a closed walk that is nested with Cνi .

Proof. Let C ∈ Dκi with minimum µCνi (C). (As all involved closed walks are indecom-
posable, µCνi (C) is well-defined.) We shall show µCνi (C) = 0. So let us suppose that
C is not nested with some D ∈ Cνi . Since C and D are indecomposable, we obtain by

Lemma 8 two indecomposable closed walks C̃ and D̃ with |C| = |C̃| and |D| = |D̃| such
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that Proposition 10 implies

µCνi (C) = µCνi (C) + µCνi (D) > µCνi (C̃) + µCνi (D̃).

Note that, if C̃ and D̃ are generated by Cνi , then C being generated by D, C̃, and D̃ is

generated by Cνi , too. But then it does not lie in Dκi . As it does, either C̃ or D̃ is not
generated by Cνi . In particular, this closed walk must lie in Dκi , a contradiction to the
choice of C.

Let Eκi be the set of all closed walks in Dκi that are nested with Cνi . By Lemma 11,
this set is not empty.

For a set E of closed walks of length at most i, we call C ∈ E optimally nested
in E if µE(C) = µE(E). Note that µE(E) is finite by Proposition 9 and, furthermore, as 3-
connected planar graphs have (up to homeomorphisms) unique embeddings into the sphere
due to Whitney [12] for finite graphs and Imrich [8] for infinite graphs, µE(C) = µE(Cα)
for all α ∈ Aut(G).

Lemma 12. The set Fκi of optimally nested closed walks in Eκi is non-empty and nested.

Proof. Since Eκi is non-empty, the same is true for Fκi . Let us suppose that Fκi contains

two closed walks C,D that are not nested. Let C̃ and D̃ be the indecomposable closed
walks obtained by Lemma 8 with |C| = |C̃| and |D| = |D̃| each of which is not generated
by Cνi and such that Proposition 10 yields

µCνi (C) + µCνi (D) > µCνi (C̃) + µCνi (D̃).

As Eκi is nested with Cνi by definition, we have µCνi (C)+µCνi (D) = 0. Note that C̃ and D̃ lie
in Dκi by definition. As both are nested with Cνi , they lie in Eκi . We apply Proposition 10
once more and obtain

µEκi (C) + µEκi (D) > µEκi (C̃) + µEκi (D̃).

Thus either C̃ or D̃ is not nested with less elements of Eκi than C. This contradiction to
the choice of C shows that Eκi is nested.

So we set Cκi := Cνi ∪Fκi . Then Cκi is nested as Cνi is nested and by the choice of Eκi all
elements of Cκi are indecomposable.

This process will terminate at some point as we strictly enlarge the sets Cκ in each
step but we cannot put in more closed walks than there are in G. Let Ci be the union of
all Cκi . Note that we made no choices at any point, i. e. all sets Ci are Aut(G)-invariant
and canonical. Thus, we proved Theorem 3. More precisely, we have proved the following
theorem.

Theorem 13. For every finitely separable 3-connected planar graph G there is a sequence
(Ci)i∈N of sets of closed walks in G such that
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(i) Ci−1 ⊆ Ci;

(ii) Ci r Ci−1 consists of indecomposable closed walks of length i;

(iii) Ci generates Wi(G);

(iv) Ci is canonical and nested.

In particular, W(G) has a canonical nested generating set.

Note that the only situation where we used 3-connectivity was when we concluded
that we have µE(C) = µE(Cα) for any closed walk C, set E of closed walks of bounded
length and automorphism α. That is, the above proof also give us the existence of a
nested generating set for lower connectivity, but we lose canonicity. Note that, in general,
not only our proof fails but the statement of Theorem 3 is false if we do not require the
graph to be 3-connected: let G be the graph obtained by two vertices joined by four
internally disjoint paths of length 2. Then all cycles have length 4 and lie in the same
Aut(G)-orbit, but it is not hard to find two of them which are not nested. So you cannot
find a canonical nested generating set of W(G) consisting only of indecomposable closed
walks. Similarly, whichever generating set you take, none of its elements is nested with
all of its Aut(G)-images.

5 Finding a finite generating set

We call a graph quasi-transitive if its automorphism group has only finitely many orbits
on the vertex set. If a group Γ acts on a graph G, we denote by |G/Γ| the number of
Γ-orbits on G. In particular, if G is quasi-transitive, then |G/Aut(G)| < ∞. If H is a
subgraph of G, we denote by StabΓ(H) the (setwise) stabiliser of H in Γ.

In this section, we give up nestedness of our generating set forW(G) in order to obtain
a generating set consisting of only finitely many orbits. More precisely, we shall prove the
following theorem.

Theorem 14. Let G be a locally finite quasi-transitive planar graph. Then W(G) has an
Aut(G)-invariant generating set that consists of finitely many orbits.

Let us introduce the notion of a degree sequence of orbits because the general idea to
prove Theorem 1 will mainly be done by induction on this notion.

Let Γ act on a locally finite graph G with |V (G)| > 1 such that |G/Γ| is finite. We call
a tupel (d1, . . . , dm) of positive integers with di > di+1 for all i < m the degree sequence
of the orbits of (G,Γ) if for some set {v1, . . . , vm} of vertices that contains precisely one
vertex from each Γ-orbit the degree of vi is di. We consider the lexicographic order on
the finite tupels of positive integers (and thus on the degree sequences of orbits), that is,
we set

(d1, . . . , dm) 6 (c1, . . . , cn)

the electronic journal of combinatorics 25(4) (2018), #P4.8 9



if either m 6 n and di = ci for all i 6 m or di < ci for the smallest i 6 m with di 6= ci.
Note that any two finite tupels of positive integers are 6-comparable.

A direct consequence of this definition is the following lemma.

Lemma 15. Any strictly decreasing sequence in the set of finite tupels of positive integers
is finite.

Lemma 15 for degree sequences of orbits reads as follows and enables us to use induc-
tion on the degree sequence of the orbits of graphs:

Lemma 16. Let (Gi,Γi) be a sequence of pairs, where Gi is a locally finite graph and Γi
acts on Gi such that |Gi/Γi| is finite. If the corresponding sequence of degree sequences
of the orbits is strictly decreasing, then the sequence (Gi,Γi) is finite.

Lemma 17. Let G be a locally finite graph and let Γ act on G so that |G/Γ| is finite. Let
S ⊆ V (G) and H ⊆ G be such that the following conditions hold:

(i) G− S is disconnected;

(ii) each Sα with α ∈ Γ meets at most one component of G− S;

(iii) no vertex of S has all its neighbours in S;

(iv) H is a maximal subgraph of G such that no Sα with α ∈ Γ disconnects H.

Then the degree sequence of the orbits of (H, StabΓ(H)) is smaller than the one of (G,Γ).

Proof. First we show that any two vertices in H that lie in a common Γ-orbit of G and
whose degrees in G and in H are the same also lie in a common StabΓ(H)-orbit. Let x, y
be two such vertices and α ∈ Γ with xα = y. Suppose that Hα 6= H. Then there is some
Sβ that separates some vertex of H from some vertex of Hα by the maximality of H. But
as y and all its neighbours lie in H and in Hα, they lie in Sβ, which is a contradiction
to (iii). Thus, we have α ∈ ΓH .

Now, we consider vertices x such that {x} ∪ N(x) lies in no Hα with α ∈ Γ and
such that x has maximum degree with this property. Let {x1, . . . , xm} be a maximal
set that contains precisely one vertex from each orbit of those vertices. If xi lies outside
every Hα, then no vertex of its orbit is considered for the degree sequence of the orbits
of (H, StabΓ(H)). If xi lies in H, then its degree in some Hα is smaller than its degree
in G. By replacing xi by xiα

−1, if necessary, we may assume dH(xi) < dG(xi). So its value
in the degree sequence of orbits of (H, StabΓ(H)) is smaller than its value in the degree
sequence of orbits of (G,Γ); but it may be counted multiple times now as the Γ-orbit
containing xi may be splitted into multiple ΓH-orbits. Nevertheless, the degree sequence
of orbits of (H, StabΓ(H)) is smaller than that of (G,Γ).

Remember that a block of a graph is a maximal 2-connected subgraph. As any in-
decomposable closed walk is a cycle and hence lies completely in some block and as any
locally finite quasi-transitive graph has only finitely many orbits of blocks, we directly
have:
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Proposition 18. Let G be a locally finite quasi-transitive graph and let Γ act on G so
that |G/Γ| is finite. Then W(G) has a Γ-invariant generating set consisting of finitely
many orbits if and only if the same is true for every block B with respect to the action
of StabΓ(B).

Remark 19. In the situation of Proposition 18 we can take the orbits of the cutvertices
one-by-one and apply Lemma 17 for each such orbit. It follows recursively that each block
has a smaller degree sequence of its orbits than the original graph. Since |G/Γ| is finite,
there are only finitely many orbits of cut vertices. So we stop at some point.

For the reduction to the 3-connected case for graphs of connectivity 2, we apply Tutte’s
decomposition of 2-connected graphs into ‘3-connected parts’ and cycles. Tutte [11] proved
it for finite graphs. Later, it was extended by Droms et al. [3] to locally finite graphs.

A tree-decomposition of a graph G is a pair (T,V) consisting of a tree T and a family
V = (Vt)t∈T of vertex sets Vt ⊆ V (G), one for each vertex of T , such that

(T1) V =
⋃
t∈T Vt;

(T2) for every edge e ∈ G there exists a t ∈ V (T ) such that both ends of e lie in Vt;

(T3) Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 lies on the t1–t3 path in T .

The sets Vt are the parts of (T,V) and the intersections Vt1 ∩ Vt2 for edges t1t2 of T
are its adhesion sets ; the maximum size of such a set is the adhesion of (T,V). Given a
part Vt, its torso is the graph with vertex set Vt and whose edge set is

{xy ∈ E(G) | x, y ∈ Vt} ∪ {xy | {x, y} ⊆ Vt lies in an adhesion set}.

If Γ acts on G, then it acts canonically on vertex sets of G. If every part of the tree-
decomposition is mapped to another of its parts and this map induces an automorphism
of T then we call the tree-decomposition Γ-invariant.

Theorem 20. [3, Theorem 1] Every locally finite 2-connected graph G has an Aut(G)-
invariant tree-decomposition of adhesion 2 each of whose torsos is either 3-connected or
a cycle or a complete graph on two vertices.

Remark 21. In addition to the conclusion of Theorem 20, we may assume that the tree-
decomposition is such that the torsos of tree vertices of degree 2 are either 3-connected or
cycles and that no two torsos of adjacent tree vertices t1, t2 are cycles if Vt1∩Vt2 is no edge
of G. (Remember that edges are two-element vertex sets.) We call a tree-decomposition
as Theorem 20 with this additional property a Tutte decomposition.

Now we reduce the problem of Theorem 14 from 2-connected graphs to 3-connected
ones.

Proposition 22. Let G be a locally finite 2-connected graph and let Γ act on G so that
|G/Γ| is finite. Then W(G) has a Γ-invariant generating set consisting of finitely many
orbits if and only if the same is true for each of its torsos B in every Tutte decomposition
with respect to the action of StabΓ(B).
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Proof. Let (T,V) be a Tutte decomposition of G. Note that every vertex lies in only
finitely many 2-separators (cf. [10, Proposition 4.2]). Thus, the graph H given by G
together with all edges xy, where {x, y} forms an adhesion set, is also locally finite, the
action of Γ on G extends canonically to an action on H and we have |H/Γ| <∞ for this
action. There are only finitely many orbits of (the action induced by) Aut(G) on T , since
any 2-separator of G uniquely determines the parts Vt of (T,V) it is contained in and since
there are only finitely many Aut(G)-orbits of 2-separators. Obviously, the restriction of
H to any Vt ∈ V is the torso of Vt.

Let us assume that W(G) has a Γ-invariant generating set consisting of finitely many
orbits and let C be a finite set of closed walks that generates together with its images
W(G). Every C ∈ C can be generated by (finitely many) indecomposable closed walks
C1, . . . , Cn in H. So the set D of all those Ci for all C ∈ C together with the images
under Γ generatesW(H). Each of the closed walks Ci lies in a unique part Vt of (T,V) as
they have no shortcut and as every adhesion set in H is complete. Note that closed walks
which lie in the same Γ-orbit and in some Vt also lie in the same orbit with respect to the
automorphisms of the torso Gt of Vt. Let Dt be the set of all closed walks in D that lie
in Gt. Let C be a closed walk in Gt. Then it is generated by C1, . . . , Cn ∈ D. Since all
Ci 6⊆ Gt add to spikes, those Ci ⊆ Gt cancel out. Thus,W(Gt) has an StabΓ(Gt)-invariant
set of closed walks consisting of finitely many StabΓ(Gt)-orbits.

For the converse, let W(Gt) for every torso Gt of (T,V) have a StabΓ(Gt)-invariant
generating set Ct of closed walks consisting of finitely many StabΓ(Gt)-orbits. We may
choose the sets Ct so that Ct = Ct′α if α ∈ Γ maps Vt to Vt′ . Let A be a set of ordered
adhesion sets (x, y) of (T,V) consisting of one element for each Γ-orbit. For every (x, y) ∈
A with xy /∈ E(G) we fix an x–y path Pxy in G. Then xPxyyx is a closed walk Cxy in H. If
xy ∈ E(G), let Pxy = xy and, for later conveniences, let Cxy = ∅ be the empty walk. Note
that for an adhesion set {x, y} we may have fixed two distinct paths Pxy and Pyx. We
canonically extend the definition of the paths Pxy and cycles Cxy to all ordered adhesion
sets (x, y), i.e. if (x, y) = (x′, y′)α with (x′, y′) ∈ A, set Pxy := P(x′y′)α and Cxy := C(x′y′)α.

Note that there are only finitely many Γ-orbits of parts of (T,V). So the union C of all
Ct is a set of closed walks in H meeting only finitely many Γ-orbits and generatingW(H),
as it has a generating set of induced closed walks, each of those lies in some Gt and thus
is generated by C. For every C ∈ C let WC be the element of W(G) that is obtained
from C by replacing its edges xy that form an adhesion set {x, y} of (T,V) by Pxy. Let
C ′ := {WC | C ∈ C}.

To see that C ′ generates W(G), let C be any closed walk of G. Thus it is also a
closed walk of H and is generated by some C1, . . . , Cm ∈ C. Now we replace each edge
xy – passed in this order on the walk – on any of these Ci that forms an adhesion set of
(T,V) by its path Pxy and obtain a closed walk C ′i. (Formally, we insert the closed walk
yxPxy directly after passing xy and remove the spike xyx.) Then C ′i lies in W(G) since
it contains no edge of H r G. We now follow the sums, reductions and rotations and
addings of spinkes we used to generate C from the Ci. Each time we removed a spike xyx
for an adhesion set {x, y} of (T,V), we instead remove many spike, namely PxyP

−1
xy . In
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that way, the C ′i generate C, too. Thus C can be generated by C ′.

Remark 23. Unfortunately, we are not able to apply Lemma 17 directly for Proposition 22
to see that the torsos in a Tutte decomposition have a smaller degree sequence of orbits,
as the orbits are not subgraphs of G. But as not both vertices of any adhesion set have
degree 2, it is possible to follow the argument of the proof of Lemma 17 for each of the
finitely many orbits of the 2-separators one-by-one to see that each torso has a smaller
degree sequence of orbits than G.

Now we are able to attack the general VAP-free case.

Proposition 24. Let G be a locally finite VAP-free planar graph and let Γ act on G so
that |G/Γ| is finite. Then W(G) has an Aut(G)-invariant generating set consisting of
only finitely many orbits.

Proof. Due to Propositions 18 and 22, it suffices to show the assertion if G is 3-connected.
As 3-connected planar graphs have (up to homeomorphisms) unique embeddings into the
sphere, every automorphism of G induces a homeomorphism of the plane. So faces are
mapped to faces and closed walks that are face boundaries are mapped to such walks.
As G is locally finite and |G/Γ| < ∞, there are only finitely many Γ-orbits of finite face
boundaries.

Since W(G) is generated by the indecomposable closed walks, it suffices to prove
that every indecomposable closed walk is generated by the face boundaries. Since every
indecomposable closed walk W is a cycle in G, it determines an inner face and an outer
face in the plane. The inner face of W contains only finitely many edges as G is VAP-free.
Let xy be an edge of W and f the face of G in the inner face of W containing e. Let
Pxy be the second x-y path apart from xy on the boundary of f . Replacing in W the
edge xy by Pxy is summing yxPxy to W and removing the spike xyx. Thus, the resulting
closed walk W ′ is generated by the face boundaries if and only if W is generated by them.
Inductively on the number of edges in the inner face of W ′, we obtain the assertion.

Now we are able to prove that W(G) has a generating set consisting of only finitely
many orbits.

Theorem 25. Let G be a locally finite planar graph and let Γ act on G so that |G/Γ|
is finite. Then W(G) has an Γ-invariant generating set consisting of only finitely many
orbits.

Proof. Due to Propositions 18 and 22, we may assume that G is 3-connected and due
to Proposition 24 we may assume that G is not VAP-free. Let ϕ : G → R2 be a planar
embedding of G. Let C be a non-empty Γ-invariant nested set of indecomposable closed
walks that generates W(G), which exists by Theorem 13. Since G is not VAP-free, there
is some cycle C of G such that both faces of R2 r ϕ(C) contain infinitely many vertices
of G. As C generates W(G), one of the indecomposable closed walks in C has the same
property as C. Hence, we may assume C ∈ C. In particular, {Cα | α ∈ Γ} is nested.

We consider maximal subgraphs H of G such that no Cα with α ∈ Γ disconnects H.
In particular, H is connected and for every Cα with α ∈ Γ one of the faces of R2 r ϕ(Cα)
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is disjoint from H. Note that there are only finitely many Γ-orbits of such subgraphs H
as we find in each orbit some element that contains vertices of C by maximality of H.
Due to Lemma 17, the pair (H, StabΓ(H)) has a strictly smaller degree sequence of its
orbits than (G,Γ) as C disconnects G. Since H is again a locally finite planar graph and
|G/Γ| <∞, we conclude by induction on the degree sequence of the orbits of such graphs
(cf. Lemma 16) with base case if G is VAP-free that W(H) has a StabΓ(H)-invariant
generating set consisting of finitely many StabΓ(H)-orbits. Let EH be such a set.

There are only finitely many pairwise non-Γ-equivalent such subgraphs H. So let H
be a finite set of such subgraphs consisting of one per Γ-orbit. Let

E :=
⋃
H∈H

⋃
α∈Γ

EHα.

Then E is Γ-invariant and has only finitely many orbits. We shall show that E gener-
ates W(G). It suffices to show that every indecomposable closed walk is generated by E .

Let D be an indecomposable closed walk of G. If D lies entirely inside some of the
subgraphs H ∈ H or its Γ-images, then, obviously, it is generated by E . So let us assume
that there is some α ∈ Γ such that both faces of Cα contain vertices or edges of D. By
considering Dα−1 instead of D, we may assume α = 1Γ. We add all vertices and edges
of C to D that lie in the bounded face of D to obtain a subgraph F of G. Then D is the
generated by all boundaries C1, . . . , Ck of bounded faces of F .

Assume that Cβ with β ∈ Γ is not nested with Ci and suppose that it is nested
with D. Remember that C and Cβ are nested. Since Cβ contains points in both faces
of Ci, there is some (possibly trivial) common walk P of Ci and Cβ such that the edges
on Cβ incident with the end vertices of P lie in different faces of Ci and also the edges
of Ci incident with the end vertices of P lie in different faces of Cβ. As Cβ is nested with
C and with D, one of these edges belongs to C and the other to D. Thus, C and D must
lie in distinct faces of Cβ and hence must be nested. This contradiction shows that every
Cβ that is not nested with Ci is not nested with D either.

As C is not nested with D but with every Ci, every Ci is not nested with less closed
walks Cβ than D and this is a finite number by Proposition 9 as all involved closed walks
are indecomposable and all closed walks Cβ have the same length. Induction on the
number of closed walks Cβ the current closed walk is not nested with implies that each
Ci is generated by E and so is D.

6 Fundamental group of planar graphs

In this section, we want to find two special generating sets for the fundamental group
of planar graphs G. In order to do that, we first prove a general statement about the
interplay of generating sets for W(G) and for π1(G). If W is a closed walk starting and
ending at a vertex v, we denote by [W ] the homotopy class of W .

Proposition 26. Let G be a planar graph, let v ∈ V (G), and let V be a generating set
for W(G) that is closed under taking inverses. Then

Vπ := {[PWWP−1
W ] | W ∈ V , PW is a v-W walk}
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generates π1(G).

Proof. Let η ∈ π1(G) and W ∈ η be a reduced closed walk. Then W is generated by
W1, . . . ,W` ∈ V . We assume that the walks Wi were used in this order to generate W , in
particular, there is a closed walk R that starts at v and is generated by W1, . . .W`−1 such
that R and W` generate W . By induction on `, we may assume that [R] ∈ π1(G).

Since R and W` generate W , there is some vertex x0 on R such that adding spikes
recursively, that is, adding a ‘large’ spike x0x1 . . . xnxn−1 . . . x0, and then inserting a ro-
tation of W` at xn results in W . (Note that we can assume that we need not take the
inverse of W` since V is closed under taking inverses.) But then W is just the same as
PR for P := vRx0 . . . xnW`xn . . . x0R

−1v. Since [R] is already generated and [P ] ∈ Vπ,
we conclude that [W ] is generated by Vπ.

For any η ∈ π1(G), let Pη ∈ η be the unique reduced closed walk in η and P ◦η be its
cyclical reduction. Similarly to the proof of the uniqueness of Pη, it is possible to show
that P ◦η is unique. If Vπ ⊆ π1(G), set

V◦π := {P ◦η | η ∈ Vπ}.

Now we are able to prove that the fundamental group of every planar 3-connected
finitely separable graph has a canonical generating set that comes from a nested generating
set of W(G).

Theorem 27. Let G be a planar 3-connected finitely separable graph. Then π1(G) has a
generating set Vπ such that V◦π is a canonical nested generating set for W(G) consisting
only of indecomposable closed walks.

Proof. Let v ∈ V (G) and V be a canonical nested set of closed walks generating W(G)
such that V consists of indecomposable closed walks. This set exists by Theorem 13.
Then the set

Vπ := {[PWWP−1
W ] | W ∈ V , PW is a v-W walk}

generates π1(G) by Proposition 26. Since V = V◦π, the assertion follows.

In the second theorem on the fundamental group, we look at the sitution in Cayley
graphs G of finitely generated groups Γ and for a generating set of π1(G) consisting of
only finitely many orbits. But in order to talk about orbits, we have to define the action
on the fundamental group. If Γ = 〈S | R〉, let FS be the free group freely generated by S.
For a word w ∈ FS, let Pw be the walk in G that starts at the vertex v and corresponds
to the word w, where v is the vertex representing the group element 1Γ. We assume that
π1(G) is defined with respect to the base vertex v. Let W be a closed walk in G that
starts at v and let Ww be the image of W under the action of the element gw ∈ Γ that is
given by w. Then Pw(Ww)P−1

w is a closed walk with first vertex v, it is the image of W
under w. In this way, FS acts on the closed walks starting at v, and as the images of
homotopy equivalent closed walks are again homotopy equivalent, FS acts on π1(G).
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Theorem 28. Let G be a locally finite planar Cayley graph of a finitely generated planar
group Γ = 〈S | R〉. Then π1(G) has a generating set consisting of finitely many FS-orbits.

Proof. Let v be the vertex of G corresponding to 1 ∈ Γ and let V be a generating set
of W(G) consisting of only finitely many FS-orbits. This exists by Theorem 25. By
Proposition 26, it suffices to show that the set

Vπ := {[PWWP−1
W ] | W ∈ V , PW is a v-W walk}

has only finitely many FS-orbits. To see this, it suffices to show that any two [PWWP−1
W ]

and [QWWQ−1
W ], where PW and QW are v-W walks, are in the same FS-orbit. But this

is immediate: just take the group element corresponding to the word w defined by the
walk PWxWyQ−1

W , where x is the end vertex of Pw and y is the end vertex of QW . Since
conjugation of [PWWP−1

W ] by W is [QWWQ−1
W ], the assertion follows.

Theorem 28 has an immediate consequence to groups: Droms [2] proved that finitely
generated planar groups are finitely presented. His proof uses an accessibility result of
Maskit [9]. As an application of Theorem 28 we obtain a self-contained proof of Droms’s
result as follows.

Let Γ = 〈S | R〉 be a group with its presentation. Then Γ ∼= FS/RN , where FS is
the free group with S as a free generating set and RN is the normal subgroup generated
by R. There is a canonical bijection between RN and the fundamental group π1(G) of the
Cayley graph of Γ with respect to S. Via this bijection, every generating set for π1(G)
leads to a generating set for RN . In particular, we obtain as a corollary of Theorem 28
Droms’s theorem on the finite presentability of planar groups.

Theorem 29. [2] Every finitely generated planar group is finitely presented.

7 Homology group of planar graphs

Instead of looking at the fundamental group, we consider in this section the first simplicial
homology group H1(G) of graphs G as a module over Z. In particular, compared to the
first section, the sum of two cycles or closed walks is no longer dependent on the question
where we insert the first in the second one but just depends on the edge sets and the
direction in which we pass the edges. E.g., adding a spike does not change an element of
the module and taking the inverse of a closed walk is just the same as taking the negative
of the corresponding element of H1(G).

Let V be a finite set of closed walks and

V ′ = {E(V ) | V ∈ V},

where E(V ) is the multiset of (oriented) edges of the closed walk V . If a closed walk W is
generated by V but by no proper subset of V , then E(W ) is the sum of V ′ with coefficients
either 1 or −1.
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We can directly translate our results from the previous sections: Theorem 27 implies
Theorem 30 and Theorem 25 implies Theorem 31. Another possibility to prove Theo-
rems 30 and 31 is to go through the proofs of the previous sections once more and see
that they stay true with the new summation.

Theorem 30. Let G be a planar 3-connected finitely separable graph. Then H1(G) has a
canonical nested generating set.

We call the Aut(G)-moduleH1(G) finitely generated if it has a generating set consisting
of finitely many Aut(G)-orbits.

Theorem 31. Let G be a locally finite planar quasi-transitive graph. Then H1(G) is a
finitely generated Aut(G)-module.

8 Accessibility

A ray is a one-way infinite path and two rays are equivalent if they lie in the same
component whenever we remove a finite vertex set. This is an equivalence relation whose
classes are the ends of the graph. We call a quasi-transitive graph accessible if there is
some n ∈ N such that any two ends can be separated by removing at most n vertices.

The cycle space of a graph G is the same as the first simplicial homology group except
that we sum over F2 instead of Z. In [7] the author proved the following accessibility
result for quasi-transitive graphs.

Theorem 32. [7, Theorem 3.2] Every quasi-transitive graph G whose cycle space is a
finitely generated Aut(G)-module is accessible.

As a corollary of Theorem 31 together with Theorem 32, we obtain Dunwoody’s the-
orem of the accessibility of locally finite quasi-transitive planar graphs, a strengthened
version of Theorem 5. (Note that any generating set of the first homology group of a
graph is also a generating set of its cycle space.)

Theorem 33. [4] Every locally finite quasi-transitive planar graph is accessible.

Note that, in order to prove Theorem 33, we do not need the full strength of a nested
canonical generating set for the first homology group. Indeed, instead of applying The-
orem 3, we could just do the same arguments as in Section 5 using a nested canonical
generating set for the cycle space obtained from [6, Theorem 1] to obtain a finite set of
cycles generating the cycle space as module.
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