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Abstract

First we develop the theory of local rules for coboundary categories. Then we
describe the local rules in two main cases. First for the quantum groups in general
and in the seminormal representations of the Hecke algebras. Then for crystals in
general and specifically for crystals of minuscule representations. Finally we show
how growth diagrams can be extended to construct the action of the cactus group
on highest weight words.

Mathematics Subject Classifications: 05E10, 18D10

1 Introduction

Coboundary categories were originally defined by Drinfel′d and were used to construct
the braiding for quantum groups. This approach fell into relative decline compared to the
alternative approach due to Jimbo. More recently, there has been a renewed interest in
coboundary categories since the combinatorial categories of crystals are coboundary (but
not braided).

The cactus groups are related to coboundary categories in the same way as the braid
groups are related to braided categories. In particular, for any crystal C, the cactus group
Cr acts on the set of highest weight words in ⊗rC preserving the weight.

The basic example is to take C to be the crystal of the vector representation of GL(n).
This gives an action of Cr on standard tableaux of size r preserving the shape. This
action encompasses much of the standard combinatorics of standard tableaux: each of
the following operations on standard tableaux is given by the action of a specific element
of the cactus group,

• evacuation

• promotion
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• dual Knuth moves

The coboundary structure on crystals, and other coboundary categories, gives a natural
generalisation of these operations.

There are two constructions of the coboundary structure on crystals. One uses the
Lusztig involutions and the other the Kashiwara involution on the crystal B∞. The
construction using the Lusztig involutions gives a coboundary structure on the category of
highest weight representations of the quantised enveloping algebra of a finite dimensional
semisimple Lie algebra. The construction using the Kashiwara involution is more general
since it gives a coboundary structure on the category of integrable representations of the
quantised enveloping algebra of a symmetrisable Kac-Moody algebra.

These two constructions are both technical. The aim of this paper is to develop an
effective construction of the action of the cactus groups. This approach is based on
the theory of local moves. In the basic example of tableaux this approach recovers the
construction of promotion and evacuation using Fomin growth diagrams. These were in-
troduced as an effective construction of these operations and have superseded the previous
constructions using jeu-de-taquin.

The local rules for crystals of minuscule representations and their growth diagrams
are applied in [16].

This paper is organised as follows. Section 2 gives the basic definitions of coboundary
categories and cactus groups. Then section 3 follows [15] and develops the theory of local
moves in an arbitrary coboundary category. In section 4 we describe the local rules for
quantum groups using Drinfel′d unitarisation, [6], and we give an implicit construction of
the homomorphisms from cactus groups to Hecke algebras by giving the local rules in the
seminormal representations. In section 5 we give the local rules for the path models of
crystals following [23]. These local rules are particularly effective for crystals of minuscule
representations. Finally in section 6 we show that constructions of operations on standard
tableaux using growth diagrams generalise to crystals.

2 Coboundary categories

Coboundary categories are monoidal categories with extra structure which implies that
taking the tensor product of two objects in the two possible orders gives two objects
which are naturally isomorphic. We assume, for simplicity of exposition, that a monoidal
category means a strict monoidal category.

2.1 Coboundary categories

The original definition of a coboundary category from [6] is:

Definition 2.1. A coboundary category is a monoidal category together with commutors
σA,B : A ⊗ B → B ⊗ A for all objects A,B. These commutors are natural maps and are
required to satisfy the three conditions

• σA,I = 1A and σI,B = 1B
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• σA,B ◦ σB,A = 1B⊗A

• the following diagram commutes

A⊗B ⊗ C
1A⊗σB,C−−−−−→ A⊗ C ⊗B

σA,B⊗1C
y yσA,C⊗B

B ⊗ A⊗ C −−−−→
σB⊗A,C

C ⊗B ⊗ A

(1)

These conditions imply that the following diagram commutes

C ⊗B ⊗ A
σC⊗B,A−−−−→ A⊗ C ⊗B

σC,B⊗A

y y1A⊗σC,B

B ⊗ A⊗ C −−−−−→
σB,A⊗1C

A⊗B ⊗ C
(2)

2.2 Cactus groups

The finite presentations of the cactus groups were originally given in [5].

Definition 2.2. The r-fruit cactus group, Cr, has generators sp, q for 1 6 p < q 6 r and
defining relations

• s2p, q = 1

• sp, q sk, l = sk, l sp, q if [p, q] ∩ [k, l] = ∅

• sp, q sk, l = sp+q−l, p+q−k sp, q if [k, l] ⊆ [p, q]

Let Sr be the symmetric group on r letters. There is a homomorphism Cr → Sr

defined by sp, q 7→ ŝp, q where ŝp, q is the permutation

ŝp, q(i) =

{
p+ q − i if p 6 i 6 q

i otherwise
(3)

Note that Cr is generated by s1,q for 2 6 q 6 r, since

sp, q = s1, qs1, q−ps1, q (4)

A different set of generators are the elements σp, s, q defined by

σp,s,q = sp, q ss+1, q sp, r (5)

Let σ̂p, s, q be the image of σp, s, q under the homomorphism Cr → Sr. Then σ̂p, s, q is the
permutation

σ̂p,s,q(i) =


i if 1 6 i < p

q − s+ i if p 6 i 6 s

p− s+ i− 1 if s < i 6 q

i if q < i 6 r

(6)
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The following relations between the two sets of generators are given in [7, Lemma 3].

σp,q,r sk, l =

{
sk+q−r, l+q−rσp, q, r if [k : l] ⊆ [p : r]

sk+p−r−1, l+p−r−1σp, q, r if [k : l] ⊆ [r + 1 : q]
(7)

sp, q = σp, r, q sp, r sr+1, q (8)

Part of the relation between coboundary categories and the cactus groups is the fol-
lowing two connections. First, for each r > 0 and each object A of a coboundary category,
there is a natural action of Cr on ⊗rA. Secondly, the free coboundary category on the
category with one morphism is the groupoid

∐
r>0 Cr. This gives the generators in (5).

3 Local rules

First we define local rules in a coboundary category, following [15].

Definition 3.1. The local rules, τAB,C : A ⊗ B ⊗ C → A ⊗ C ⊗ B, are defined to be the
composite

A⊗B ⊗ C
σA,B⊗1C−−−−−→ B ⊗ A⊗ C

σB,A⊗C−−−−→ A⊗ C ⊗B (9)

The coboundary structure is recovered by taking σB,C = τ IB,C . The coboundary con-
dition can then be rewritten as

τCA,B σA,C ⊗ 1B 1A ⊗ σB,C = σB,C ⊗ 1A τ
B
A,C σA,B ⊗ 1C

as maps A⊗B ⊗ C → C ⊗B ⊗ A.
In the rest of this section we give some further properties of local rules.

Lemma 1. For all A,B,C, τAB,C τ
A
C,B = 1A⊗B⊗C.

Proof. The following diagram is commutative

A⊗B ⊗ C
σA,B⊗1C−−−−−→ B ⊗ A⊗ C

σB,A⊗C−−−−→ A⊗ C ⊗B

1A⊗σB,C
y σB⊗A,C

y yσA,B⊗1C
A⊗ C ⊗B −−−−→

σA,C⊗B
C ⊗B ⊗ A

1C⊗σB,A−−−−−→ C ⊗ A⊗B

1A⊗σC,B
y yσC,B⊗1A yσB,A⊗C

A⊗B ⊗ C −−−−→
σA,B⊗C

B ⊗ C ⊗ A −−−−→
σB⊗C,A

A⊗B ⊗ C

(10)

This completes the proof since the top edge is τAB,C , the right edge is τAC,B, the left edge is
1A⊗B⊗C and the bottom edge is 1A⊗B⊗C .

Lemma 2. For all A,B,C,D,

τAB,C⊗D = τA⊗CB,D τAB,C ⊗ 1D (11)
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Proof.

τA⊗CB,D τAB,C ⊗ 1D =
(
σB,A⊗C⊗D σA⊗C,B ⊗ 1D

) (
σB,A⊗C ⊗ 1D σA,B ⊗ 1C⊗D

)
= σB,A⊗C⊗D

(
σA⊗C,B ⊗ 1D σB,A⊗C ⊗ 1D

)
σA,B ⊗ 1C⊗D

= σB,A⊗C⊗D σA,B ⊗ 1C⊗D = τAB,C⊗D

Lemma 3. For all A,B,C,D,

τAB⊗C,D = τAB,D ⊗ 1C τ
A⊗B
C,D (12)

Proof. By Lemma 2 we have

τAD,B⊗C = τA⊗BD,C τAD,B ⊗ 1C

Taking the inverse of both sides using Lemma 1 gives the result.

The next Lemma constructs the commutors σB,⊗r+1B for r > 0 from the local rules

τ⊗
r−1B

B,B .

Lemma 4. For each object B and r > 0,

σB,⊗r+1B = τ⊗
rB

B,B τ⊗
r−1B

B,B · · · τ⊗BB,B τ
I
B,B

Proof. The proof is by induction on r. The base of the induction is the case r = 0 which
is the observation that τ IB,C = σB,C .

Substitute A = I, C = ⊗rB, D = B in Lemma 2, 3. This gives

σB,⊗r+1B = τ⊗
rB

B,B σB,⊗rB ⊗ 1B

3.1 Relations

The BK-group was introduced [12] as the group generated by the Bender-Knuth involu-
tions on standard tableaux. This was then shown to be a quotient of the cactus group in
[4].

Consider the free group generated by τi. Define qi by

qi = τ1(τ2τ1) · · · (τiτi−1 . . . τ1)

Proposition 3.2. For r > 0, the group Cr is generated by τi for 1 6 i 6 r− 1 and defining
relations are

τ 2i = 1

τiτj = τjτi for |i− j| > 1

(τiqk−1qk−jqk−1)
2 = 1 for i+ 1 < j < k
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The inverse isomorphisms are defined on the generators as follows. In one direction

si, j 7→ qj−1qj−iqj−1

and in the other direction by

τi 7→


s1, 2 if i = 1

s1, 2s1, 3s1, 2 if i = 2

s1, is1, i+1s1, is1, i−1 if i > 2

It is shown in [4] that the BK-groups are proper quotients of the cactus groups. How-
ever there is no known presentation of the BK groups. We conjecture that the BK-groups
are the groups in [13]. These are the quotients of the cactus group under the six term
relations.

4 Quantum groups

The aim of this section is to compute τ⊗
nV

V,V for V a highest weight representation of a
quantised enveloping algebra. This calculation is based on Drinfeld unitarisation

σV,W = RV,W (RW,VRV,W )−1/2 (13)

where R is the R-matrix which gives the braiding.

Definition 4.1. The r-string braid group, Br, is generated by ti for 1 6 i 6 r − 1 and the
defining relations are

ti ti+1 ti = ti+1 ti ti+1

ti tj = tj ti for |i− j| > 1

Definition 4.2. For 1 6 n 6 r the Jucys-Murphy element Jn ∈ Br is defined by

Jn = (tn . . . t2t1)(t1t2 . . . tn)

Theorem 4.3. For n > 0,
τn = J

1/2
n−1 tn J

−1/2
n

Proof. Put W = ⊗nV . Then we have

RV,W = t1t2 . . . tn and RV,W = tn . . . t2t1

Then, by Drinfeld unitarisation,

σ1, 1, n = (t1t2 · · · tn)J−1/2n (14)

Then, by Lemma 4, the local rule satisfies

σ1, 1, n = σ1, 1, n−1 τn
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Substituting from (14) gives

τn = σ−11, 1, n−1 σ1, 1, n

= J
1/2
n−1(t1t2 · · · tn−1)−1(t1t2 · · · tn)J−1/2n

= J
1/2
n−1 tn J

−1/2
n

4.1 Hecke algebras

For each r > 0 there is a Hecke algebra Hr(q). This is an algebra over the field of rational
functions, Q(q).

The quantum integers are the Laurent polynomials given by

[n] =
qn − q−n

q − q−1

For example, [2] = q + q−1.

Definition 4.4. The Hecke algebra Hr(q) is generated by ui for 1 6 i 6 r − 1 and the
defining relations are

u2i = −[2]ui

ui ui+1 ui − ui = ui+1 ui ui+1 − ui+1

ui uj = uj ui for |i− j| > 1

The algebra homomorphisms Q(q)Br → Hr(q) are given by

t±1i 7→ q±1 + ui

Let Uq(N) be the quantised enveloping algebra of type AN . Let V be the vector
representation; this is a fundamental representation of dimension N + 1. Then quantum
Schur-Weyl duality, [8], is the statement that we have surjective homomorphisms

Hr(q)→ EndUq(N)(⊗rV )

These are isomorphisms for r 6 dimV .
We also have homomorphisms Cr → EndU(⊗rV ) since Uq(N)-mod is a coboundary

category. These homomorphisms can be lifted to a homomorphism Cr → Hr(q) which is
independent of N .

Lemma 5. The cactus commutor σV,V is the involution

t1(t
2
1)
−1/2 = 1 +

2

[2]
u1
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Proof. We have
t1 = q + u1 t21 = q2 + (q − q−1)u1

The spectral decomposition of t21 is

t21 = q2
(

1 +
1

[2]
u1

)
+ q−2

(
− 1

[2]
u1

)
Hence

(t21)
−1/2 = q−1

(
1 +

1

[2]
u1

)
+ q

(
− 1

[2]
u1

)
= q−1 −

(
q − q−1

q + q−1

)
u1

Note that t−11 = q−1 + u1, so (t21)
−1/2 6= t−11 .

Then multiplying by t1 = q + u1 gives the result.

This shows that the homomorphism Q(q)Cr → Hr(q) is surjective; answering [10,
§ 10, Question 2].

4.2 Seminormal form

Young’s seminormal forms are representations of the symmetric groups. These were in-
troduced in [25, Theorem IV]. Here we give the analogous construction for the Hecke
algebras following [19] and [18].

Fix a shape λ of size r. Then we construct a representation of Hr(q). The represen-
tation has basis the set of standard tableaux of shape λ. For a standard tableau, T , let
siT be the tableau obtained from T by interchanging i and i + 1. If siT is not standard
then put siT = 0.

The content vector of a standard tableau T of size n is a function cT : [1, 2, . . . , n]→ Z.
The entry cT (k) ∈ Z is given by cT (k) = j− i if k is in box (i, j) in T . The content vector
of T is the sequence [cT (1), . . . , cT (r)]. The content vector of T determines T . The axial
distance is aT (i) = cT (i+ 1)− cT (i).

The following is [17, Theorem 3.22].

Definition 4.5. Then we define the action of ui by

ui T =

{
− [a−1]

[a]
T + siT if cT (i+ 1) > cT (i)

− [a−1]
[a]

T + [a−1][a+1]
[a]2

siT if cT (i) > cT (i+ 1)

where a is the axial distance aT (i).

If T is standard and siT is not standard then a = ±1. Then uiT = −[2]T if a = 1 and
ui T = 0 if a = −1. Assume T and siT are standard and a > 1. Then on the subspace
with ordered basis (T, siT ).

ui =

 − [a−1]
[a]

1

[a−1][a+1]
[a+1]2

− [a+1]
[a]

 ti =

 qa

[a]
1

[a−1][a+1]
[a+1]2

−q−a
[a]
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Then The Jucys-Murphy elements are represented by diagonal matrices in seminormal
representations.

This is based on the result, see [14].

Proposition 4.6.
Ji T = q2ci(T ) T

Theorem 4.7. The action of τi is given by

τiT =

{
− 1

[a]
T + siT if cT (i+ 1) > cT (i)

− 1
[a]
T + [a−1][a+1]

[a]2
siT if cT (i) > cT (i+ 1)

Assume T and siT are standard and aT (i) > 1. Then on the subspace with ordered
basis (T, siT ).

τi =

 1
[a]

1

[a−1][a+1]
[a+1]2

− 1
[a]


Proof. It is sufficient to check the relation in Theorem 4.3.

By Proposition 4.6,
J
±1/2
i T = q±ci(T ) T

All the matrices are simultaneously block diagonal. Therefore it is sufficient to check
this on each block. The check for the 2× 2 blocks is the identity that, for r + s = a,[

qr 0

0 q−s

] 1
[a]

1

[a−1][a+1]
[a+1]2

− 1
[a]

 =

 qa

[a]
1

[a−1][a+1]
[a+1]2

−q−a
[a]

[ q−s 0

0 qr

]

5 Crystals

For each finite type Cartan matrix there is a monoidal category of finite crystals. These
were shown to be coboundary categories in [7]. In this section we describe the local rules.

5.1 Crystals

In this section we give a summary of the basic theory of crystals. This is based on [9,
Chapter 5].

If X is a set then X∗ is the pointed set X
∐
{0}. A partial function X 9 Y can be

identified with a map of pointed sets X∗ → Y∗.
The minimal data for a normal crystal is a finite set B together with partial functions

ei : B 9 B for i ∈ I. Each ei is injective and nilpotent.
A morphism B → B′ is a partial function F : B∗ 9 B′∗ such that F ◦ ei = e′i ◦ F for

i ∈ I.
The minimal data for a crystal is usually presented as a directed graph with vertex

set B and edges labelled by I. There is an i-edge from x→ y if and only if ei x = y. The
directed graph of a crystal has no oriented cycles.
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The minimal data we have presented determines additional data. In most presentations
of the theory of crystals this data is included in the definition.

The first additional data we add are the partial functions fi : B 9 B for i ∈ I. These
are defined by fi x = y if and only if ei y = x. These are also injective and nilpotent.

Now we define functions εi, ϕi : B → N by

εi(x) = max{k|eki 6= 0}
ϕi(x) = max{k|fki 6= 0}

The weight function is given by

wti(x) = 〈ε(x)− ϕ(x), α∨i 〉

An element x ∈ B is highest weight if ei(x) = 0, or, equivalently, if εi(x) = 0 for all
i ∈ I.

A homomorphism between crystals induces a weight-preserving partial function be-
tween the highest weight elements and is determined by this partial function.

The tensor product of crystals B and C is constructed as follows:
The set underlying B⊗C is B×C. The partial functions, ei, for i ∈ I, are defined by

ei(x⊗ y) =

{
ei(x)⊗ y if ϕ(x) > ε(y)

x⊗ ei(y) otherwise

The functions εi and ϕi are defined by

εi(x⊗ y) = εi(x) + max{0, εi(y)− ϕi(x)}
ϕi(x⊗ y) = ϕi(x) + max{0, ϕi(x)− εi(y)}

Then we have wt(x⊗ y) = wt(x) + wt(y).
The highest weight elements of B⊗C are the elements x⊗y such that x ∈ B is highest

weight and εi(y) 6 ϕi(x) for i ∈ I.
The main result of [7] is that the monoidal category of crystals is a coboundary cate-

gory. This gives a natural action of Cr on the set B(ω) for each dominant weight, ω.
There is a second construction of the coboundary structure in [11] using the Kashiwara

involution. This construction is given on highest weight elements by the formula

σBλ,Bµ(bλ ⊗ c) = bµ ⊗ ∗c

5.2 Words

Let C be a crystal of a finite type Cartan matrix. For r > 0, let ⊗rC be the crystal of
words in C of length r. Then we have an isomorphism of crystals

⊗r C ∼=
∐
ω

C(ω)×B(ω) (15)
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where B(ω) is a set and C(ω) is a connected crystal. This isomorphism is canonical if
we take B(ω) to be the set of highest weight words of length r and weight ω (since an
automorphism of a connected crystal is trivial).

This is an isomorphism of crystals so for w ↔ (P,Q) we have eiw ↔ (eiP,Q) and
fiw ↔ (fiP,Q) for all α ∈ I.

Let w ↔ (P,Q) under this correspondence. Then P generalises the insertion tableau
and Q generalises the recording tableau. For w ↔ (P,Q) and w′ ↔ (P ′, Q′); then P = P ′

means w and w′ are in the same position in isomorphic components; and Q = Q′ means
w and w′ are in the same component.

In special cases there is a combinatorial construction of the sets B(ω) and a corre-
sponding insertion algorithm.

5.3 Tableaux

Take C to be the crystal of the vector representation of GL(n). Then the decomposition
(15) is the Robinson-Schensted correspondence with B(ω) the set of standard tableaux of
shape ω.

Let ω be a partition of size r. Then we have an action of the r-fruit cactus group, Cr,
on the set of standard tableaux of shape ω. The group Cr is generated by the elements
s1, p for 2 6 p 6 r; so the action of Cr is determined by the action of these elements.
For 2 6 p 6 r, the action of s1, p is given by applying evacuation to the subtableau with
entries 1, . . . , p leaving the remaining entries fixed.

Example 5.1. Take C to be the crystal of the two dimensional representation of SL(2).
The set B(0) is the set of noncrossing perfect matchings on r points. The action of s1, p
is given by the rule that each pair (i, j) with i < j gives a pair

(p− j + 1, p− i+ 1) if i < j 6 p

(p− i+ 1, j) if i 6 p < j

(i, j) if p < i < j

The case r = 6 is shown in Figure 1.

Then we have the following properties:

• evacuation is given by the action of s1, r

• promotion is given by the action of s1, r s2, r

• the elements sp, p+1 act trivially

• the dual Knuth move Di is given by the action of si, i+2
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1 2 3

4 5 6

1 2 4

3 5 6

1 3 4

2 5 6

1 3 5

2 4 6

1 2 5

3 4 6

(2, 4)

(3, 5) (1, 3)

(3, 5)(2, 4)

(1, 3)

(1, 4)

(2, 5)

(1, 6)

(1, 5)

(1, 5)

Figure 1: Representation of C6

5.4 Local rules

Fix a crystal C. Then the action of Cr on ⊗rC is determined by the involutions τBC,C where
B is arbitrary. These involutions are crystal homomorphisms and so are determined by
the restriction to highest weight elements.

Definition 5.2. A representation is minuscule if the Weyl group acts transitively on the
weights of the representation.

The non-trivial minuscule representations are known and, for the convenience of the
reader, we give the list here:

type An All exterior powers of the vector representation.

type Bn The spin representation.

type Cn The vector representation.

type Dn The vector representation and the two half-spin representations.

type E6 The two fundamental representations of dimension 27.

type E7 The fundamental representation of dimension 56.

There are no nontrivial minuscule representations in types G2, F4 or E8.

Definition 5.3. For each weight λ, there is a unique weight which is both dominant and
in the Weyl group orbit of λ. Denote this element by domW (λ).
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Example 5.4. For GL(n), the corner labels are weakly decreasing sequences of integers of
length n. The Weyl group is Sn and domSn takes a sequence of integers of length n and
rearranges into weakly decreasing order. In this case domSn is denoted by sort.

Example 5.5. For Sp(2n), the corner labels are partitions of length n. The Weyl group is
a hyperoctahedral group. The map domW takes a sequence of integers of length n, forms
the absolute values, and rearranges into weakly decreasing order.

The following interpretation of [23, Rule 4.1.1] is given in [15, Proposition 4.1].

Theorem 5.6. Using the notation in Figure 2; for minuscule crystals B and C the following
are equivalent

τAB,C(b, h, v) = (a, v′, h′) µ = domW (κ+ ν − λ)

τAC,B(b, v′, h′) = (a, h, v) λ = domW (κ+ ν − µ)

5.5 Bender-Knuth

In this section we relate the Bender-Knuth involutions, introduced in [2], to local rules.
Denote the i-th exterior power of the vector representation of GL(n) by Λi. A tableau

is semistandard if the entries weakly increasing along the rows and strictly decrease down
the columns. A tableau is dual semistandard if the entries strictly increasing along the
rows and weakly decrease down the columns.

It follows from the dual Pieri rule that the set of highest weight elements in the crystal
of the tensor product

Λi1 ⊗ Λi2 ⊗ · · · ⊗ Λir

of weight λ corresponds to dual semistandard tableaux of shape λ with entries in [r],
weight (i1, i2, . . . , ir). Hence the coboundary structure on the category of crystals gives
an action of the r-fruit cactus group, Cr, on the set of dual semistandard tableaux with
entries in [r] and shape λ.

Semistandard tableaux correspond to Gelfand-Tsetlin patterns. A Gelfand-Tsetlin
pattern of length r is a sequence of partitions,

∅ = λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(r)

such that each skew shape λ(k)/λ(k−1) is a horizontal strip. The length is r and the shape
is the final shape λ(r).

Similarly, dual semistandard tableaux correspond to sequences of partitions,

∅ = λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(r) (16)

such that each skew shape λ(k)/λ(k−1) is a vertical strip. The length is r and the shape is
the final shape λ(r).

The exterior powers of the vector representation of GL(n) are all minuscule. Hence
the local moves are given by Theorem 5.6. The local move, τi, acting on the sequence
(16), changes λ(i) to

sort(λ(i−1) − λ(i) + λ(i+1)) (17)
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and does not change the remaining partitions. These local rules determine the action of
Cr on dual semistandard tableaux with entries in [r].

Denote the conjugate of a tableau T by T t. The Bender-Knuth involutions are involu-
tions on semistandard tableaux. The Bender-Knuth involution bi acts by changing some
of the entries i of the tableau to i + 1, and some of the entries i + 1 to i, in such a way
that the numbers of elements with values i or i+ 1 are exchanged. The relation between
the local rules τi acting on dual semistandard tableaux and the Bender-Knuth involution
acting on standard tableaux is:

Lemma 6. For any dual semistandard tableau, T ,

bi(T
t) = τi(T )t

Example 5.7. We apply b2 to the tableau

T = 1 1 1 2

2 3

4

The Gelfand-Tsetlin pattern is the sequence of partitions

[], [3], [4, 1], [4, 2], [4, 2, 1], [4, 2, 1], . . .

Taking conjugates gives the sequence of partitions

[], [1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [3, 2, 1, 1], [3, 2, 1, 1], . . .

Now apply the local rule

sort([1, 1, 1, 0]− [2, 1, 1, 1] + [2, 2, 1, 1]) = sort([1, 2, 1, 0]) = [2, 1, 1]

Replace the partition [2, 1, 1, 1] by [2, 1, 1] to get the sequence

[], [1, 1, 1], [2, 1, 1], [2, 2, 1, 1], [3, 2, 1, 1], [3, 2, 1, 1], . . .

Take conjugates to get the sequence

[], [3], [3, 1], [4, 2], [4, 2, 1], [4, 2, 1], . . .

This is the Gelfand-Tsetlin pattern of the tableau

b2(T ) = 1 1 1 3

2 3

4
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5.6 Continuous crystals

The theory of continuous crystals for any Coxeter group is developed in [3]. This is an
extension of the Littelmann path model. In particular they construct an analogue of the
Lusztig involution in §4.10. This then gives a coboundary structure on the category of
continuous crystals by the construction in [7].

The local moves for these coboundary categories are given in [23, § 5].
The following is [23, 5.1 Rule].

Definition 5.8. Let f : [0, 1]× [0, 1]→ XQ be a piecewise linear function. The function f
satisfies the local rules if, for every pair of intervals [s0, s1], [t0, t1] ⊆ [0, 1] such that f is
linear on {s0} × [t0, t1] and [s0, s1]× {t1} one has

f(s, t) = domW (f(s0, t) + f(s, t1)− f(s0, t1))

The following is [23, 5.3 Theorem].

Theorem 5.9. Let κ, λ, ν be dominant weights. Let π′ be a κ-dominant path with π′(1) =
λ−κ and p a λ-dominant path with p(1) = ν−λ. Then there is a unique f : [0, 1]×[0, 1]→
XQ which satisfies the local rules and such that f(0, t) = κ + π′(t) for 0 6 t 6 1 and
f(s, 1) = λ+ p(s) for 0 6 s 6 1.

Putting µ = f(1, 0) we define a κ-dominant path, π, with π(1) = µ − κ by π(s) =
f(s, 0)−κ for 0 6 s 6 1 and a µ-dominant path, p′, with p′(1) = ν−µ by p′(t) = f(1, t)−µ
for 0 6 t 6 1.

Theorem 5.10. Let κ, λ, ν be dominant weights. Let π′ be a κ-dominant path with
π′(1) = λ− κ and p a λ-dominant path with p(1) = ν − λ. Then

τ
C(κ)
C(λ),C(µ)(a, π

′, p) = (a, π, p′)

τ
C(κ)
C(µ),C(λ)(a, π, p

′) = (a, π′, p)

where a ∈ C(κ) is highest weight.

6 Growth diagrams

The local rules are used to build growth diagrams. Growth diagrams are used to define
operations. The main examples are:

• promotion; two row growth diagrams

• evacuation; triangular growth diagrams

• rectification; rectangular growth diagrams

Our notation for a highest weight element x⊗ y ∈ B ⊗ C is λ
y−→ µ where λ = wt(x)

and µ = wt(x ⊗ y). This notation extends to highest weight words. Given a word
w = x1⊗x2⊗· · ·⊗xr define the weights λk for 0 6 k 6 r by λ0 = 0 and λi = λi−1+wt(xi)
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λ ν

κ µ

h

v

v′

h′

Figure 2: Local rule

for 1 6 k 6 r. Then the word w is highest weight if and only if λk−1 6 ϕi(xk) for i ∈ I
and 1 6 k 6 r. This implies that λk is dominant for 0 6 k 6 r. The word w is then
represented by

0
x1−−→ λ1

x2−−→ · · · xr−1−−−→ λr−1
xr−−→ λr (18)

If C is minuscule then we can safely omit the edge labels in (18) and Figure 2 as these
are determined by the corner labels.

Definition 6.1. A cell is a square as shown in Figure 2. The directed edges represent
highest weight words using the notation in (18).

We say that this cell satisfies the local rules if the following two conditions are satisfied.
These two conditions are equivalent by Lemma 1.

τAB,C(a, h, v) = (a, v′, h′) τAC,B(a, v′, h′) = (a, h, v)

where a is the highest weight element of A.
A growth diagram is then a diagram of cells in which each cell satisfies the local rules.

Definition 6.2. Let B be a crystal and w ∈ B. Then the rectification of w, rect(w), is the
unique highest weight element in B such that w and rect(w) are in the same connected
component of B.

Lemma 7. Let B be a crystal and w ∈ B. Choose a crystal A and u ∈ A such that
u⊗ w ∈ A⊗B is highest weight. Then σA,B(u,w) = (rect(w), u′).

Remark 6.3. The element u′ is also given by the Kashiwara involution on the crystal B∞.

Proof. Put σA,B(u,w) = (w′, u′). Then w′ is highest weight because w′u′ is highest weight.
Also w and w′ are in the same component because σ is a crystal morphism.

In terms of diagrams, we have that Lemmas 2 and 3 say that these are equal and
similarly for two squares stacked vertically.

λ ν σ

κ µ ρ

h

u v

u′ v′

h′′h′

λ σ

κ ρ

h

u⊗ v

u′ ⊗ v′

h′′

(19)
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Figure 3: A triangular diagram

This shows that rectification is given in terms of local rules by a rectangular growth
diagram. This generalises the construction of rectification of skew tableaux using Fomin
growth diagrams given in [22, Chapter 7: Appendix 1 Figure A1-11].

6.1 Evacuation

In this section we give the growth diagram description of evacuation. We show that the
result of applying s1 r to a highest weight word, as in (18), can be read off a triangular
diagram. The triangular diagram for the case r = 3 is shown in Figure 3.

Define evacuation to be the action of s1, r. The growth diagram for evacuation is
triangular.

Definition 6.4. A triangular growth diagram is a triangular diagram with vertices labelled
by dominant weights and edges labelled by elements of crystals such that the labels of
each cell satisfy the local rules as represented in Figure 2. We also require that the first
vertex on each row is labelled by the zero weight.

These conditions imply that a triangular growth diagram can be reconstructed from
the top edge viewed as a highest weight word.

Proposition 6.5. Given a triangular growth diagram let w be the top edge viewed as a
highest weight word and let w′ be the right edge viewed as a highest weight word. Then
w′ = s1 r(w).

This generalises the construction of the Schützenberger involution (aka evacuation) of
tableaux in [22, Figure A1-13].

Proof. The proof is by induction on r. The basis of the induction is the case r = 2.
The inductive step is based on the relation s1, r+1 = σ1, r, r+1 s1, r which is a special case

of (7). The inductive step is given by interpreting this in terms of growth diagrams. The
inductive hypothesis gives the growth diagram for s1, r and (19) (with the squares stacked
vertically) gives the growth diagram for σ1, r, r+1.

Note that it follows from the symmetry of the local rules that the reflection of a
triangular growth diagram is also a triangular growth diagram. This shows that w′ =
s1 r(w) if and only if w = s1 r(w

′) so evacuation is an involution.
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Figure 4: A two row diagram

6.2 Promotion

In this section we give the growth diagram description of promotion. Define promotion
to be the action of s1, r s2, r. The growth diagram for promotion consists of two rows.

The two row diagram for the case r = 3 is shown in Figure 4.

Definition 6.6. A two row growth diagram is a two row diagram with vertices labelled by
dominant weights and edges labelled by elements of crystals such that the labels of each
cell satisfy the local rules as represented in Figure 2. We also require that the first vertex
on each row is labelled by the zero weight.

These conditions imply that a two row growth diagram can be reconstructed from the
top edge viewed as a highest weight word.

Proposition 6.7. Given a two row growth diagram let w be the top edge viewed as a
highest weight word and let w′ be the bottom edge viewed as a highest weight word.
Then w′ = s1, r s2, r(w).

This generalises the construction of promotion on tableaux given in [20, Figure 6].

6.3 Cylindrical diagrams

Cylindrical growth diagrams for GL(N) are used to describe the action of various elements
of Cr on standard tableaux of size r. This construction is given in [21, § 6], [24] and [1].
In this section we use local rules to generalise this construction to any crystal.

Definition 6.8. Let I ⊂ Z2 be the subset consisting of pairs (i, j) such that 0 6 j − i 6 r.
A cylindrical growth diagram of shape λ is a function γ from I to highest weights such
that

• γ(i, j) = 0 if j − i = 0

• γ(i, j) = λ if j − i = r

• Every unit square satisfies the local rule.

The type is the sequence of dominant weights λ(i) = γ(i, i + 1). The set of growth
diagrams of type λ(i) and shape λ corresponds to highest weight elements of C(λ(1)) ⊗
C(λ(2))⊗ · · · ⊗C(λ(r)) of weight λ. This follows because all horizontal edges in the same
column are labelled by the same crystal and all vertical edges in the same row are labelled
by the same crystal. Furthermore these two sequences agree.
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∅

∅

∅

Figure 5: A cylindrical growth diagram

Example 6.9. A cylindrical growth diagram is shown in Figure 5. The rows are standard
tableaux.

Definition 6.10. A path through I is a sequence (i0, j0), (i1, j1), . . . , (ir, jr) of elements of I
such that i0 = j0 and, for 0 6 k < r, the difference (ik+1, jk+1)− (ik, jk) is either (−1, 0)
or (0, 1).

Given a cylindrical growth diagram, γ and a path we can restrict γ to the path by
taking the sequence γ(i0, j0), γ(i1, j1), . . . , γ(ir, jr) to get a highest weight vector. For a
fixed path this is a bijection between cylindrical growth diagrams and paths. The inverse
map is giving by extending using the boundary conditions and the local rules.

Each path defines an operation on highest weight words. These operations on a highest
weight word w are constructed by taking the cylindrical growth diagram with w on the
top edge. Then the result of applying the operation to w is given by reading the path as a
highest weight word. For example, the horizontal paths give the powers of the promotion
operator.

The following is a generalisation of [24, Proposition 3.31]. This is an extension of the
description of wall crossing in [21, § 6.1]. This is illustrated in [24, Figure 4].

Definition 6.11. Define an operator [p : q] on cylindrical growth diagrams of length r and
shape λ. The action of [p : q] on γ satisfies

([p : q]γ)(i, j) =


γ(i, j) if [i : j] ∩ [p : q] = ∅
γ(i, j) if [p : q] ⊂ [i : j]

γ(i′, j′) if [i : j] ⊂ [p : q]

(20)

where i′ = p + q − j and j′ = p + q − i. These conditions specify ([p : q]γ) on the path
(p, j), j > p and so determine ([p : q]γ).

Theorem 6.12. The map sp,q 7→ [p : q] extends to an action of Cr on highest weight words
of length r and shape λ.

Proof. This follows from Proposition 6.7 and the identity (4).

Example 6.13. An example of a cylindrical growth diagram for a symplectic group is
shown in Figure 6. The rows are oscillating tableaux.

If we start with the oscillating tableau on the first row
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∅ ∅

Promotion is given by the second row

∅ ∅

Evacuation is given by the column with head ∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

Figure 6: A symplectic cylindrical growth diagram

Example 6.14. In this example we give the action of s3,6 on the oscillating tableau in
Example 6.13. We start by filling in the third row or the sixth column. Then we complete
the diagram using the local rules. This gives Figure 7. Then we take the oscillating
tableaux on the first row.
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