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Abstract

Quasi-Yamanouchi tableaux are a subset of semistandard Young tableaux and
refine standard Young tableaux. They are closely tied to the descent set of standard
Young tableaux and were introduced by Assaf and Searles to tighten Gessel’s funda-
mental quasisymmetric expansion of Schur functions. The descent set and descent
statistic of standard Young tableaux repeatedly prove themselves useful to consider,
and as a result, quasi-Yamanouchi tableaux make appearances in many ways outside
of their original purpose. Some examples, which we present in this paper, include
the Schur expansion of Jack polynomials, the decomposition of Foulkes characters,
and the bigraded Frobenius image of the coinvariant algebra. While it would be nice
to have a product formula enumeration of quasi-Yamanouchi tableaux in the way
that semistandard and standard Young tableaux do, it has previously been shown
by the author that there is little hope on that front. The goal of this paper is to ad-
dress a handful of the numerous alternative enumerative approaches. In particular,
we present enumerations of quasi-Yamanouchi tableaux using q-hit numbers, semi-
standard Young tableaux, weighted lattice paths, and symmetric polynomials, as
well as the fundamental quasisymmetric and monomial quasisymmetric expansions
of their Schur generating function.
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1 Introduction

Schur polynomials have an elegant combinatorial description as a sum of monomials in-
dexed by semistandard Young tableaux. However, as the number of variables increases,
the number of semistandard Young tableaux rises dramatically, quickly making a com-
putation using this description intractable. Ira Gessel [7] defined the fundamental basis
for quasisymmetric polynomials and proved that Schur polynomials can instead be ex-
pressed as a sum of fundamental quasisymmetric polynomials indexed by standard Young
tableaux. Since the number of standard Young tableaux of a given shape is fixed, this
provides a significant computational improvement over the unbounded number of semis-
tandard Young tableaux. Still, when the number of variables is low enough, it turns out
that some of the standard Young tableaux contribute nothing to the expansion, indicating
that some further improvement can be made. Sami Assaf and Dominic Searles [2] intro-
duced the concept of quasi-Yamanouchi tableaux and proved that we can tighten Gessel’s
expansion by summing over these tableaux instead, which give exactly the nonzero terms.

Quasi-Yamanouchi tableaux have a natural bijection with standard Young tableaux
of the same shape. Quasi-Yamanouchi tableaux of a fixed shape can be partitioned into
sets by the largest valued labels that appear in the tableaux, and the corresponding
partitioning of standard Young tableaux groups standard Young tableaux by number of
descents. In this sense, quasi-Yamanouchi tableaux refine standard Young tableaux by
their descent statistic through this natural bijection. In general, descent statistics have
formed a rich and fruitful area, for example in the past with Solomon’s descent algebra [14]
and subsequent study of it [5] or, more recently, work on shuffle-compatible permutation
statistics by Gessel and Zhuang [8]. Descents of standard Young tableaux do not appear
to be an exception. Quasi-Yamanouchi tableaux inherit this value, and consequently,
applications are readily found. In §7, we discuss some of these applications, which involve
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the Schur expansion of Jack polynomials, the decomposition of Foulkes characters into
irreducible characters, and the bigraded Frobenius image of the coinvariant algebra.

Semistandard Young tableaux and standard Young tableaux are each enumerated by
celebrated product formulas. Since quasi-Yamanouchi tableaux of a fixed shape are in
bijection with standard Young tableaux of the same shape, we can enumerate the total
number of quasi-Yamanouchi tableaux of a given shape using the same product formula.
However, this is a somewhat trivial result, and it would be much more interesting to
find a product formula enumeration for the parts of the aforementioned partitioning of
quasi-Yamanouchi tableaux into sets by the largest value that appears in the tableaux.
Unfortunately, in [18], the author demonstrates that there is likely only such a product for-
mula for certain special cases due to large primes appearing for general shapes. The work
in this paper takes a number of alternative approaches and was inspired by the surprising
appearance of quasi-Yamanouchi tableaux in the coefficients of Jack polynomials under
a binomial coefficient basis [1] and a hit number interpretation of the same coefficients.
Comparing the two equivalent interpretations of the coefficients gives an enumeration of
quasi-Yamanouchi tableaux in terms of hit numbers of certain Ferrers boards. We repro-
duce this enumeration in §3 and prove two q-analogues involving the major index and
charge statistics. In §4, we give a summation formula in terms of semistandard Young
tableaux, and in §5 we first give an enumeration first in terms of weighted lattice paths
and then using symmetric polynomials. Finally, we consider the Schur generating func-
tion in §6 and give its fundamental quasisymmetric expansion and monomial symmetric
expansion.

2 Preliminaries

We first present the more general concepts that will be used throughout the paper; the
more specific concepts will be located at the start of their relevant section. A partition
λ = (λ1 > . . . > λk > 0) is a weakly decreasing sequence of positive integers. The size of
λ is denoted |λ| and is the sum of the integers of the sequence. The length of λ, `(λ), is the
number of integers in the partition. We also use the notation d(λ) =

∑k
i=1(i− 1)λi. We

say that a partition λ dominates a partition µ if for all i > 1, λ1 + · · ·+λi > µ1 + · · ·+µi.
We identify a partition with its diagram, where rows are counted from bottom to top,

the number of boxes in the ith row equals λi, and boxes are left justified. The conjugate
of λ is written λ′ and is obtained by reflecting the diagram across the diagonal. We
identify u = (i, j) with the box in the ith column and jth row. The content of a square
is c(u) = i − j, and the hook-length of a box is h(u), which counts the number of boxes
(a, b) such that either a > i, b = j or a = i, b > j or a = i, b = j.

We write permutations π ∈ Sn in one line notation, π = π1 · · · πn, where πi = π(i).
The descent set of π is Des(π) = {i ∈ [n−1] | πi > πi+1}, and we denote the size |Des(π)|
by des(π). The major index for a permutation is maj(π) =

∑
i∈Des(π) i.

Bases of the ring of symmetric functions are indexed by partitions, and in particular,
eλ, mλ, and sλ are the elementary symmetric, monomial symmetric, and Schur functions
respectively. We also write Fσ(x) for the fundamental quasisymmetric function, where
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−2
−1 0
0 1 2 3

1
3 1
6 4 2 1

Figure 1: From left to right, the diagram of (4, 2, 1), the cell contents, and the cell hook-
lengths.

σ ⊆ {1, . . . , n− 1} and Fσ(x) =
∑

i16···6in
j∈σ⇒ij<ij+1

xi1 · · ·xin .

A semistandard Young tableau (SSYT) of shape λ is a filling of a partition λ using
positive integers that weakly increase along rows from left to right and strictly increase up
columns, and the set of such fillings is denoted SSYT(λ). When the entries are unbounded,
there are infinitely many semistandard Young tableaux of a given shape, so it is sometimes
useful to consider instead SSYTm(λ), the set of SSYT of shape λ with entries at most m.
We can enumerate #SSYTm(λ) using Stanley’s hook-content formula, which we reproduce
below.

Theorem 1 (Hook-content formula [17]). Given a partition λ,

#SSYTm(λ) =
∏
u∈λ

m+ c(u)

h(u)
. (1)

2 2
1 1

2 3
1 1

2 3
1 2

3 3
1 1

3 3
1 2

3 3
2 2

Figure 2: All 6 elements of SSYT3(2, 2).

The weight of a semistandard Young tableau T is wt(T ) = (t1, t2, . . .), where ti is the
number of times that i appears, and given partitions λ, µ, the Kostka numbers Kλµ count
the number of SSYT of shape λ and weight µ. A standard Young tableau (SYT) of shape
λ is a semistandard Young tableau of shape λ with weight (1n), where n = |λ|, and the
set of such fillings is denoted SYT(λ). Frame, Robinson, and Thrall counted standard
fillings using the hook-length formula.

Theorem 2 (Hook-length formula [4]). Given a partition λ,

#SYT(λ) =
n!∏

u∈λ h(u)
. (2)

The descent set of T ∈ SYT(λ) is Des(T ) = {i ∈ [n− 1] | i+ 1 is above i}. If we write
the descent set as {d1, d2, . . . , dk−1} in increasing order, then the first run of the tableau
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4 5
1 2 3

3 5
1 2 4

3 4
1 2 5

2 5
1 3 4

2 4
1 3 5

Figure 3: All 5 elements of SYT(3, 2).

is the set of boxes that contain all the entries from 1 to d1. For 1 < i < k, the ith run is
the set of boxes containing entries from di−1 + 1 to di, and the kth run starts at dk + 1
and ends at n. In other words, the runs of a standard Young tableau T partition the set
[n] into the maximal increasing subsequences of the reading word of T , which is obtained
by reading entries of T along rows from left to right, then top to bottom.

9 10 12
4 5 7 11
1 2 3 6 8

Figure 4: This tableau has descent set {3, 6, 8, 11} and has the fourth run bolded.

An SSYT is a quasi-Yamanouchi tableau (QYT) if when i appears in the tableau, some
instance of i is in a higher row than some instance of i− 1 for all i. We write QYT(λ) to
denote the set of QYT of shape λ, QYT6m(λ) to denote those with largest entry at most
m, and QYT=m(λ) to denote those with largest entry exactly m. The definition implies
that any quasi-Yamanouchi tableau that has largest value m must have at least one i for
all 1 6 i 6 m. However, the reverse is not true in general.

4
2 3
1 2 2 4

4
3 3
1 2 2 5

Figure 5: The left is a quasi-Yamanouchi filling, while the right is not.

It turns out that there is a nice bijection between QYT(λ) and SYT(λ) via the following
destandardization map [2]. Given a tableau T ∈ SYT(λ), its destandardization is the
semistandard Young tableau dst(T ) constructed by changing the value of all entries in
the ith run of T to i. From the definition of runs, we see that the resulting SSYT is
quasi-Yamanouchi. A standard Young tableau is uniquely determined by the location of
its runs, so this map has a well defined inverse, which we call standardization.

Proposition 3 ([2]). For λ a partition, we have

QYT(λ) ∼= SYT(λ) (3)
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3
2 2
1 1

3
2 3
1 1

3
2 3
1 2

4
2 3
1 2

3
2 4
1 3

Figure 6: All 5 elements of QYT(2, 2, 1), showing that QYT=3(2, 2, 1) = 3 and
QYT=4(2, 2, 1) = 2.

via the destandardization map dst.

By construction, it is clear that the map sends SYT with k runs (or k− 1 descents) to
QYT with maximum value k of the same shape. In this sense, the set {QYT=m(λ)} refines
SYT(λ) by number of descents, and we will often identify a QYT with its standardization.
For further discussion on properties of QYT, see [18].

As with permutations, we define the major index of a tableau T ∈ SYT(λ) to be
maj(T ) =

∑
i∈Des(T ) i. We also have the charge statistic for standard Young tableaux:

each entry i in T has a charge defined recursively, where ch(1) = 0, ch(i + 1) = ch(i) if

i 6∈ Des(T ), ch(i + 1) = ch(i) + 1 if i ∈ Des(T ), and ch(T ) =
∑|λ|

i=1 ch(i). For a quasi-
Yamanouchi tableau, we define its descent set, major index, and charge statistic to be
those of its standardization.

There is a nice relationship between the charge of a standard Young tableau and its
destandardization. The definition of the charge statistic implies that every entry in the
ith run contributes i− 1 to the total charge. The destandardization changes every entry
in the ith run to i, so the charge of a standard Young tableau and its destandardization
is the sum of all entries in the destandardization minus the number of entries.

3 3 4
1 1 2 3
0 0 0 1 2

ch←−
9 10 12
4 5 7 11
1 2 3 6 8

dst−→
4 4 5
2 2 3 4
1 1 1 2 3

Figure 7: We have a standard Young tableau in the middle. On the left, each entry has
been replaced with its charge, and on the right, the filling has been destandardized.

3 Hit number formulas

Fix n ∈ N. A board B is a subset of [n]× [n], which we view as an n by n array of squares.
In particular, a Ferrers board is a board composed of adjacent columns whose heights are
weakly increasing from left to right. If λ is a partition of size n, then we can construct
a Ferrers board Bλ as follows. Take the contents c1, . . . , cn of the diagram λ arranged in
weakly decreasing order, then let the heights of the columns of Bλ be (ci + i − 1). Let
Bλ × 1 be the board obtained by incrementing the height of every column by one. We
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note that it is always possible to do this once for any λ, as the construction never creates
a column with height n. From the definitions, we get a relation between Bλ and Bλ′ .

Proposition 4. Given a partition λ, the complement of Bλ × 1 is Bλ′ up to rotation.

Figure 8: B(3,2), B(3,2) × 1, and B(2,2,1) rotated.

For π ∈ Sn, we let Γ(π) = {(i, πi) | 1 6 i 6 n}, and we define the number of hits
of π on a given board B to be |B ∩ Γ(π)|. We define the kth hit number hk(B) to be
the number of permutations in Sn which have exactly k hits on B. Dworkin [3] gave a
combinatorial interpretation of a q-analogue of hit numbers for boards B such that B is
a Ferrers board up to column permutation, which we use as the definition. For π ∈ Sn,
place a cross at each square in Γ(π), and for any square to the right of a cross, put a
bullet. Then from each cross, draw circles going up and wrapping around the top edge of
the [n]× [n] array, skipping over bullets, and stopping after hitting the top border of the
given board B. The q weight of π is the number of circles at the end of this process. The
kth q-hit number Tk(B) is the q weighted sum over all permutations that hit the board
exactly k times.

◦ • • •
• • • •

• •
◦ ◦ ◦ ◦
◦ ◦ ◦ •

Figure 9: The q weight of 45312 on B3,2 is 8.

• •
•

◦

• •
◦

◦ •

•
◦
• •

•
• •

Figure 10: In this example, we can compute T2(B) = 1 + 2q + q2.
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In [1], two separate interpretations of the coefficients of the Schur expansion of the one
row case of Jack polynomials are given. One is in terms of quasi-Yamanouchi tableaux,
and the other is in terms of hit numbers. By comparing these interpretations, we get the
following hit number formula for quasi-Yamanouchi tableaux.

Theorem 5. Given a partition λ of n and 0 6 k 6 n− 1,

#QYT=k+1(λ) =
hk(Bλ′)∏
u∈λ h(u)

. (4)

In this section, we prove two q-analogues of this theorem, where the first weights each
tableaux by its major index and the second by its charge. To do this, we use the theory
of posets and (P, ω)-partitions, which were introduced by Stanley [16].

For a partition λ = (λ1, . . . , λk), let Pλ be the subposet of N×N such that (i, j) ∈ Pλ
if 1 6 j 6 k, 1 6 i 6 λj. Given a poset P with n elements, a labeling ω is a bijective map
ω : P → [n]. A labeling of some Pλ is column-strict if it is order reversing on columns
and order preserving on rows.

1

3

5

8

2

4

6

9

10

7 11

Figure 11: P4,3,2,2 and a column-strict labeling of P4,3,2,2.

For a fixed labeling ω, a (P, ω)-partition of size p is a map σ : P → N>0 satisfying
1) x 6 y ∈ P =⇒ σ(x) > σ(y), meaning σ is order reversing.
2) x < y ∈ P and ω(x) > ω(y) =⇒ σ(x) > σ(y).
3) |σ| =

∑
x∈P σ(x) = p.

The values σ(x) are called the parts of σ, and a (P, ω;m)-partition is a (P, ω)-partition
with largest part at most m. A(P, ω) denotes the set of (P, ω)-partitions, and A(P, ω;m)
denotes the set of (P, ω;m)-partitions, which have generating function

Um(P, ω;m) =
∑

σ∈A(P,ω;m)

q|σ|. (5)

The ω-separator L(P, ω) is the set of permutations in Sn of the form ω(xi1) · · ·ω(xin)
where xi1 < · · · < xin forms a linear extension of P . For each 0 6 k 6 n− 1, define

Wk(P, ω) = Wk(P, ω; q) =
∑
π

qmaj(π), (6)

where the sum is over all π ∈ L(P, ω) with des(π) = k.
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3

1

4

5

2

Figure 12: We have L(P, ω) = {41235,42135,41325,41253,42153} with descents in bold.
Computing the major index of elements with two descents gives W2(P, ω; q) = q3+q4+q5.

3.1 Major index formula

We first prove the following major index q-analogue of Theorem 5.

Theorem 6. Given a partition λ and 0 6 k 6 n− 1,

∑
T∈QYT=k+1(λ)

qmaj(T ) =
qd(λ)∏

u∈λ[h(u)]
Tn−k(Bλ × 1). (7)

Proof. Fix a partition λ, and let ω be a column-strict labeling on Pλ. For each π ∈
L(Pλ, ω), we have some corresponding linear extension xk1 < · · · < xkn of Pλ. We can
identify each (i, j) ∈ Pλ with the cell (i, j) in the diagram of λ and then label the cell of
λ corresponding to xkm with the entry m. This gives a bijection between L(Pλ, ω) and
SYT(λ). Since the labeling ω is order reversing on columns and order preserving on rows,
π has a descent in position i if and only if i is a descent in the tableau corresponding to
π.

1

3

5

8

2

4

6

9

10

7 11 9 11
8 10
3 4 7
1 2 5 6

Figure 13: On the left, we have a column-strict labeling ω of P4,3,2,2. On the right, we
have a filling of (4, 3, 2, 2) corresponding to the permutation 8 9 5 6 10 11 7 3 1 4 2 ∈
L(P4,3,2,2, ω).

Therefore, we have

Wk(Pλ, ω) =
∑

T∈QYT=k+1(λ)

qmaj(T ). (8)

By Proposition 21.3 of [16],

Um(Pλ, ω;m) = qd(λ)
∏
u∈λ

[m+ c(u) + 1]

[h(u)]
. (9)
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Proposition 8.2 of [16] gives

Um(Pλ, ω) =
n−1∑
k=0

[
m+ n− k

n

]
Wk(Pλ, ω). (10)

Then since there is no restriction on m, it follows that

n−1∑
k=0

[
x+ n− k

n

]
Wk(Pλ, ω) = qd(λ)

∏
u∈λ

[x+ c(u) + 1]

[h(u)]
(11)

as polynomials over x and q. On the right hand side, we apply the following q-analogue
[10] of the Goldman, Joichi, Write identity [9]

n∏
i=1

[x+ bi − i+ 1] =
n∑
k=0

[
x+ k

n

]
Tk(B), (12)

where B is a Ferrers board with column heights bi. Comparing coefficients of
[
x+k
n

]
completes the proof.

Setting q = 1 and applying Proposition 4 to Theorem 6 recovers Theorem 5. We note
that since Tk(B) is Mahonian [3] for a Ferrers board, summing over k gives a nice (known)
q-analogue of the hook-length formula,∑

T∈SYT(λ)

qmaj(T ) =
qd(λ)[n]!∏
u∈λ[h(u)]

. (13)

We briefly attempted to prove Theorem 6 bijectively but were unsuccessful. It would be
nice to know what such a bijective algorithm might look like, and such an algorithm could
be an interesting project to revisit in the future.

3.2 Charge formula

In this section, we prove a charge statistic q-analogue of Theorem 5. Before we begin, we
first introduce some notation and prove a technical lemma.

Fix a permutation λ of size n, and let ω be a column-strict labeling on Pλ. We write
P ∗λ for the dual of Pλ and write ω∗ for the labeling defined by ω∗(xi) = n+ 1− ω(xi) for
all xi ∈ Pλ.

The algorithm for computing the q weight of a permutation π for a given board B
produces a particular arrangement of crosses, bullets, and circles on the [n] × [n] grid of
squares. We will call this arrangement the regular arrangement of π on B. We define the
dual arrangement of π on B as follows.

Starting with the regular arrangement, simultaneously turn every empty square into
a circle and every circle into an empty square by drawing circles downwards from crosses
instead of upwards, wrapping around the bottom edge of the [n]× [n] array, skipping over
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◦ • • •
• • • •
◦ •

◦ ◦ • •
◦ ◦

• • •
• • • •

◦ ◦ •
• •

◦ ◦

Figure 14: On the left, we have the regular arrangement of 45231 on B2,2,1 × 1, and on
the right, we have the dual arrangement.

bullets, and stopping after hitting the top border of the Ferrers board. This gives the
dual arrangement of π on B.

Finally, we define the polynomial T ∗k (B) on a given Ferrers board or column permu-
tation of a Ferrers board B as follows. For a permutation π that hits B exactly k times,
assign a q weight by taking the regular arrangement and giving circles a 1/q weight in-
stead of a q weight as you normally would, and then take the weighted sum over all such
permutations. Equivalently, if Tk(B) =

∑
ajq

ij , then T ∗k (B) =
∑
ajq
−ij .

Lemma 7. For a permutation λ and 1 6 k 6 n, we have

T ∗k (Bλ × 1) =
Tn−k(Bλ′)

q(
n
2)

. (14)

Proof. Observe that the number of squares containing either a cross or a bullet in the
regular arrangement of a permutation on a board is always fixed. As a result, the number
of squares that contain either a circle or nothing is also fixed, and in particular there are
always

(
n
2

)
many such squares.

We compute T ∗k (Bλ × 1) using the regular arrangement of every π for which |Bλ ×
1 ∩ Γ(π)| = k and giving each circle a 1/q weight and each empty square a q0 weight

to get the weight of π. We can therefore compute q(
n
2)T ∗k (Bλ × 1) by using the regular

arrangement for the same set of π and giving each circle a q0 weight and each empty
square a q1 weight. However, this is equivalent to using the dual arrangement for each π
and giving each circle a q1 weight and each empty square a q0 weight.

By Proposition 4, taking the complement of Bλ × 1 and reflecting vertically gives
Bλ′ with columns in reverse order, which we will call Brev

λ′ . If we start with the dual
arrangement of some π on Bλ× 1 and take the complement of Bλ× 1 and reflect squares
and their contents vertically on columns, then we get a regular arrangement of π′ on Brev

λ′ ,
where π′ is obtained from π by replacing πi with n+ 1− πi.

The correspondence between π and π′ forms a bijection between permutations that hit
Bλ×1 exactly k times and permutations that hit Brev

λ′ exactly n−k times. Furthermore, if
π is given a q weight by assigning circles a q1 weight in the dual arrangement of π on Bλ×1
and π′ is given a q weight by assigning circles a q1 weight in the regular arrangement of π′

on Brev
λ′ , then this bijection preserves q weight from π on Bλ× 1 to π′ on Brev

λ′ . This gives

q(
n
2)T ∗k (Bλ × 1) = Tn−k(B

rev
λ′ ). By Theorem 7.13 of [3], Tk(B) is invariant under column

permutations for Ferrers boards, so Tk(B
rev
λ′ ) = Tk(Bλ′) and the claim follows.
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• • •
• • • •

◦ ◦ •
• •

◦ ◦

◦ ◦
• •

◦ ◦ •
• • • •
• • •

Figure 15: On the left, we have the dual arrangement of 45231 on B2,2,1 × 1, and on the
right, we have the regular arrangement of (45231)′ = 21435 on Brev

3,2 .

Theorem 8. Given a partition λ and 0 6 k 6 n− 1,

∑
T∈QYT=k+1(λ)

qch(T ) =
qnk+d(λ

′)−(n2)∏
u∈λ[h(u)]

Tk(Bλ′). (15)

Proof. Proposition 12.1 of [16] details what effect dualization on Pλ and ω has on Wk,
which is that

Wk(P
∗
λ , ω

∗; q) = qnkWk(Pλ, ω;
1

q
). (16)

We note that since there are k descents,

qnkWk(Pλ, ω;
1

q
) =

∑
T∈QYT=k+1(λ)

qnk−maj(T ) =
∑

T∈QYT=k+1(λ)

∑
i∈Des(T )

qn−i. (17)

Then since a descent at position i increments the charge value of the n − i remaining
entries by one, we get

Wk(P
∗
λ , ω

∗; q) =
∑

T∈QYT=k+1(λ)

qch(T ). (18)

Using the facts that [k] 7→ [k] 1
qk−1 when substituting 1/q and that

∑
u∈λ h(u) = n+d(λ)+

d(λ′), we get

Wk(Pλ, ω;
1

q
) =

qd(λ
′)∏

u∈λ[h(u)]
T ∗n−k(Bλ × 1), (19)

and combining equations (16), (18), and (19) with Lemma 7 gives proves the result.

As with Theorem 6, we can substitute q = 1 to reduce Theorem 8 to Theorem 5.
Summing over k in this case also gives some sort of q-analogue of the hook-length formula,
although it does not appear to immediately give a nice form. Recalling the relationship
between charge and the destandardization map at the end of Section 2, we can also
interpret equation (15) in terms of the sum of entries of each QYT.

Corollary 9. Given a partition λ and 0 6 k 6 n− 1,

∑
T∈QYT=k+1(λ)

∏
u∈T

qentry(u) =
qn(k+1)+d(λ′)−(n2)∏

u∈λ[h(u)]
Tk(Bλ′). (20)
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4 A summation formula

We prove the following theorem in two ways, first with a q-hit number identity and then
using (P, ω)-partitions. This gives a relatively clean enumeration for quasi-Yamanouchi
tableaux compared to the product formula of [18], the downside being that it is not a
positive summation.

Theorem 10. Given a partition λ and 0 6 k 6 n− 1,

#QYT=k+1(λ) =
k∑

m=0

(
n+ 1

k −m

)
(−1)k−m#SSYTm+1(λ). (21)

First proof. We begin with equation (24) in [10], where we set t = n and where for all
cases that we consider, di = 1 and Di = i. This simplifies (24) in [10] to

Tn−k(B) =
k∑

m=0

[
n+ 1

k −m

]
(−1)k−mq(

k−m
2 )

n∏
i=1

[m+Hi − i+ 1], (22)

where Hi is the height of the ith column of B. By the way Bλ is constructed, the sequence
Hi − i for Bλ × 1 becomes exactly the cell contents of λ, so setting q = 1 gives

hn−k(Bλ × 1) =
k∑

m=0

(
n+ 1

k −m

)
(−1)k−m

n∏
i=1

(m+ ci + 1). (23)

Substituting this into Theorem 5 after applying Proposition 4 and comparing with the
hook-content formula proves Theorem 10.

Second proof. Let ω be a column-strict labeling on Pλ. The set A(Pλ, ω;m) can be nat-
urally identified with the set of fillings of the diagram λ with entries at most m + 1 and
with entries weakly decreasing along rows from left to right and strictly increasing up
columns. By replacing each entry i with m + 2 − i, we can in turn identify such fillings
with semistandard Young tableaux of shape λ with entries at most m + 1. Therefore,
setting q = 1 in Um(Pλ, ω) gives #SSYTm+1(λ). Proposition 8.4 in [16] says that

Wk(P, ω) =
k∑

m=0

(−1)mq(
n
2)
[
n+ 1

m

]
Uk−m(P, ω). (24)

Then setting q = 1, and reversing the order of summation proves Theorem 10.

5 The polynomials Pn,k

For any partition λ with |λ| = n, we can actually express #QYT=k+1(λ) using certain
symmetric functions Pn,k as follows. We begin with Lemma 4 of [10], where we set q = 1,
t = n, di = 1, ei ∈ {0, 1}, Ei the partial sums of the ei, and Di = i. We also recall
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as before that for B = Bλ × 1, we have Hi − Di = ci, the cell contents of λ in weakly
decreasing order. After all of that, we get

hn−k(Bλ × 1) =
∑

e1+···+en=k

n∏
i=1

(
ci + Ei − ei + 1

1− ei

)(
i− 1− ci − Ei + ei

ei

)
. (25)

Since exactly one of 1− ei or ei are 1 and the other is 0, we can rewrite equation (25) as

hn−k(Bλ × 1) =
∑

e1+···+en=k

n∏
i=1

(ci + Ei + 1)1−ei(i− ci − Ei)ei . (26)

This is the same as summing over weighted lattice paths with n steps from (0, 0) to
(k, n− k). Let Ei count the cumulative east steps and Ni = i− Ei count the cumulative
north steps. Then for each path, weight the ith step by xi + Ei + 1 if it is a north step
and Ni−xi if it is an east step, and let the weight of a path be the product of the weights
of its steps.

Figure 16: A path with weight (−x1)(x2 + 2)(x3 + 2)(2− x4)(2− x5).

Let Pn,k(x1, . . . , xn) denote the sum of the weights of all such paths. This gives the
following weighted lattice path interpretation for QYT enumeration.

Theorem 11. Given a partition λ of n with contents c1, . . . , cn and 0 6 k 6 n,

#QYT=k+1(λ) =
Pn,k(c1, . . . , cn)∏

u∈λ h(u)
. (27)

The set of such lattice paths can be partitioned into ones that end on an east step and
ones that end on a north step, giving the following recursion.

Proposition 12. The polynomials Pn,k satisfy the relation

Pn,k(x1, . . . , xn) = (xn + k + 1)Pn−1,k(x1, . . . , xn−1) + (n− k − xn)Pn−1,k−1(x1, . . . , xn−1).
(28)

We can use this to get a more concrete idea of what these polynomials look like. By
their construction, it is not obvious that these polynomials are symmetric, but computing
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small cases seems to indicate they are.

P1,0(x1) =e1(x1) + 1

P1,1(x1) =e1(x1)

P2,0(x1, x2) =e2(x1, x2) + e1(x1, x2) + 1

P2,1(x1, x2) =− 2e2(x1, x2)− e1(x1, x2) + 1

P2,2(x1, x2) =e2(x1, x2)

P3,0(x1, x2, x3) =e3(x1, x2, x3) + e2(x1, x2, x3) + e1(x1, x2, x3) + 1

P3,1(x1, x2, x3) =− 3e3(x1, x2, x3)− 2e2(x1, x2, x3) + 4

P3,2(x1, x2, x3) =3e3(x1, x2, x3) + e2(x1, x2, x3)− e1(x1, x2, x3) + 1

P3,3(x1, x2, x3) =e3(x1, x2, x3)

(29)

Let a(n, k,m) denote the coefficient of em in Pn,k, and assume that Pi,j is symmetric for
j 6 i < n. Using the recursion, the coefficient of the degree m monomials containing xn in
Pn,k is a(n−1, k,m−1)−a(n−1, k−1,m−1) and the coefficient of the degree m monomials
not containing xn is (k + 1)a(n− 1, k,m) + (n− k)a(n− 1, k − 1,m). Then to show that
Pn,k is symmetric, it is sufficient to show that a(n− 1, k,m− 1)− a(n− 1, k− 1,m− 1) =
(k+ 1)a(n−1, k,m) + (n−k)a(n−1, k−1,m), which can be done with a straightforward
induction argument.

Theorem 13. Given a partition λ of n with contents c1, . . . , cn and 0 6 k 6 n,

#QYT=k+1(λ) =

∑n
m=0 a(n, k,m)em(c1, . . . , cn)∏

u∈λ h(u)
. (30)

The recursion and initial conditions imply that a(n, k, 0) is the Eulerian number
A(n, k), and using the recursion, we can generate the other coefficients using the rela-
tion a(n, k,m) = a(n − 1, k,m − 1) − a(n − 1, k − 1,m − 1) for 1 < m 6 n. We also
note that for a fixed value of n−m with varying n and k, this gives something close to a
Pascal’s triangle for the coefficients.

n = 3 1 4 1
n = 4 1 3 -3 -1
n = 5 1 2 -6 2 1
n = 6 1 1 -8 8 -1 -1

Figure 17: a(n, k,m) for fixed n−m = 3 and 0 6 k 6 n− 1 increasing along rows.

Each term contributes its positive absolute value and its negative absolute value to the
next line of the triangle, so summing over a line gives 0 except when m = 0. Therefore,
summing over Pn,k for all 0 6 k 6 n leaves only the constant terms, and the hook-length
formula is easily recovered.
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6 Generating functions

We define the Schur basis generating function for quasi-Yamanouchi tableaux to be

∑
|λ|=n

n∑
k=1

#QYT=k(λ)tk−1sλ, (31)

which has a natural q-analogue∑
|λ|=n

∑
T∈QYT(λ)

qmaj(T )tdes(T )sλ. (32)

In this section, we present the fundamental quasisymmetric and monomial expansions of
this q-analogue of the generating function. We note that the fundamental quasisymmetric
expansion is an extension of Theorem 3.8 in [1].

Theorem 14. For n ∈ N,∑
π∈Sn

qmaj(π)tdes(π)FDes(π−1)(x) =
∑
|λ|=n

∑
T∈QYT(λ)

qmaj(T )tdes(T )sλ. (33)

Proof. Connect all π ∈ Sn by colored edges corresponding to dual Knuth relations to get
a graph G and identify each permutation π with its image (P (π), Q(π)) through RSK.
Dual Knuth relations do not change the descent set of a permutation, and the descent set
of a permutation corresponds to the descent set of its recording tableau Q(π). Therefore,
all permutations in a connected component of G have the same descent and major index
statistics and map to the same recording tableau.

On the other hand, RSK respects dual Knuth relations between permutations and their
insertion tableaux, so the equivalence classes formed by dual Knuth relations guarantee
that the insertion tableaux on a connected component range over exactly all T ∈ SYT(λ)
for some λ. The descent set of an insertion tableau P (π) is the same as the descent set
of π−1.

We can give each vertex of a connected component the weight qmaj(π)tdes(π)FDes(π−1)(x)
and apply Gessel’s fundamental quasisymmetric expansion to show that each connected
component has summed weight qmaj(Q)tdes(Q)ssh(Q), where Q is the recording tableau
shared by the connected component. RSK forms a bijection between π ∈ Sn and pairs
of standard Young tableaux (P,Q) of the same shape, so summing over all connected
components of G, applying a counting argument, and using the correspondence between
SYT and QYT completes the proof.

For the monomial symmetric function expansion, we use multiset permutations. We
can define descents and major index for multiset permutations in the same way as for
permutations in Sn, and we write S(1λ1 , 2λ2 , . . .) for the set of multiset permutations of
{1λ1 , 2λ2 , . . .}.
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Lemma 15. Given a partition λ of n,∑
π∈S(1λ1 ,2λ2 ,...)

qmaj(π)tdes(π) =
∑
ν>λ

Kνλ

∑
T∈QYT(ν)

qmaj(T )tdes(T ). (34)

Proof. RSK gives a bijection between multiset permutations π ∈ S(1λ1 , 2λ2 , . . .) and pairs
of tableaux (P,Q) of the same shape ν > λ. In particular, P is an SYT with descents in
the same positions as π and Q has weight λ. Then since the descent set and major index
are preserved, using the correspondence between SYT and QYT proves the claim.

Theorem 16. For n ∈ N,∑
|λ|=n

∑
π∈S(1λ1 ,2λ2 ,...)

qmaj(π)tdes(π)mλ =
∑
|ν|=n

∑
T∈QYT(ν)

qmaj(T )tdes(T )sλ. (35)

Proof. We proceed by induction on the poset of partitions of n under dominance order.
The inductive claim is that the coefficient of sλ on the right hand side is the desired
coefficient, and the inductive assumption is that the claim is true for all ν > λ. As a base
case, this clearly holds for λ = (n) by computation. By the triangularity of the expansion
of Schur functions into monomials, the coefficients of mλ on each side forces∑

π∈S(1λ1 ,2λ2 ,...)

qmaj(π)tdes(π) = Cλ +
∑
ν>λ

Kνλ

∑
T∈QYT(ν)

qmaj(T )tdes(T ), (36)

where Cλ is the coefficient of sλ on the right hand side, and the second term comes from
the expansion of each sν , ν > λ. Applying Lemma 15 immediately shows that Cλ =∑

T∈QYT(λ) q
maj(T )tdes(T ). Continuing this induction downwards on the poset eventually

proves the claim for all partitions of n.

7 Applications

We have already mentioned two instances of quasi-Yamanouchi tableaux proving to be a
useful concept. The first was in Gessel’s fundamental quasisymmetric expansion of Schur
polynomials, due to Assaf and Searles [2]. To make the statements in the introduction
more precise, when the number of variables x1, x2, . . . is k, the standard Young tableaux
that index the nonzero terms of the expansion are exactly those corresponding to quasi-
Yamanouchi tableaux with maximum value at most k.

Theorem 17 (Theorem 2.7, [2]). The Schur polynomial sλ(x1, . . . , xk) is given by

sλ(x1, . . . , xk) =
∑

T∈QYT6k(λ)

Fwt(T )(x1, . . . , xk), (37)

where all terms on the right hand side are nonzero.
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The second instance was in the coefficients of Jack polynomials under a certain bin-
iomial coefficient basis [1]. More specifically, if we let J

(α)
µ (x) denote the integral form,

type A Jack polynomials and write J̃
(α)
µ (x) = αnJ

(1/α)
µ (x), then we have the following

theorem.

Theorem 18 (Theorem 3.4, [1]). Let λ be a partition of n and λ′ be its conjugate. Then

for the coefficient of sλ in J̃
(α)
(n) (X)

〈J̃ (α)
(n) (x), sλ〉 =

n−1∑
k=0

ak((n), λ)

(
α + k

n

)
, (38)

we have ak((n), λ) = n!#QYT=k+1(λ
′).

On the representation theoretic side, QYT make another appearance with Foulkes
characters. First, associate a skew partition with a permutation as follows. For π ∈ Sn,
let the signature σ(π) of π be a sequence of length n−1 of +s and −s so that σ(π)i = + if
i 6∈ Des(π) and σ(π)i = − if i ∈ Des(π). We can extend this definition to standard Young
tableaux as well, using their definition of descent set. To produce a ribbon shape given a
signature σ, begin with a cell on a square grid, then at the ith step for 1 6 i 6 n− 1, if
σi = −, take a south step, and if σi = +, then take a west step, adding the cell at each
step to the diagram. This gives a ribbon of length n, which we denote R(σ).

9 10 12
4 5 7 11
1 2 3 6 8

Figure 18: The tableau on the left has signature σ = + +−+ +−+−+ +−, which gives
the ribbon R(σ) on the right.

Kerber and Thürling [13] obtain the decomposition of the skew representation [R(σ)]
using a “cascade of diagrams” (see [13] for the full algorithm). They define the Foulkes
character χn,k in to be

χn,k =
∑
σ

χR(σ), (39)

where the sum is over signatures σ with exactly k many +s. If the order of nodes added
in the cascade is recorded by placing an i at the position of the ith node, their rules
for producing the cascade from a particular signature create exactly all standard Young
tableaux with the corresponding signature. Since the signature is essentially just the
descent set, the correspondence between QYT and SYT means that the Foulkes character
can be expressed as

χn,k =
∑
|λ|=n

QYT=n−k(λ)χλ. (40)
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Define the Polya character χn by

χn(π) = m# of cycles of π, (41)

where π ∈ Sn. Kerber and Thürling showed that this has the decomposition

χn =
∑
k

(
m+ k

n

)
χn,k, (42)

which from the QYT perspective gives the following result.

Proposition 19. The Polya character has the decomposition

χn =
∑
k

(
m+ k

n

) ∑
|λ|=n

QYT=n−k(λ)χλ. (43)

Now we get a nice surprise: replacing χλ by sλ, letting m = α, and multiplying by n!
gives precisely J̃

(α)
(n) (x).

Our final example concerns the coinvariant algebra Rn, defined as

Rn =
Q[x1, . . . , xn]

〈e1(x1, . . . , xn), . . . , en(x1, . . . , xn)〉
. (44)

The coinvariant algebra has been closely studied in both algebraic and geometric
combinatorics. Recently for example, the Delta Conjecture of Haglund, Remmel, and
Wilson [11] has received a great deal of attention. Haglund, Rhoades, and Shimozono
[12] showed that a specialization of the combinatorial side of the Delta conjecture is the
graded Frobenius image of a generalization of the coinvariant algebra.

The Garsia-Stanton basis is a common basis of Rn, where for π ∈ Sn, we have a
monomial gsπ(x1, . . . , xn) defined as

gsπ(x1, . . . , xn) =
∏

d∈Des(π)

xπ1 · · · xπd , (45)

and Lusztig and Stanley [15] gave the graded Frobenius image of Rn:

grFrob(Rn; q) =
∑
|λ|=n

∑
T∈SYT(λ)

qmaj(T )sλ(x). (46)

Comparing with equation (32), we can see that grFrob(Rn; q) is equation (32) at t = 1.
In this case, the degree of the monomial gsπ captures the major index statistic. We can
view the coinvariant algebra in another way that allows us to capture the descent statistic
as well. Let Y = {yS | S ⊆ {1, . . . , n}} and

θi =
∑

S⊆{1,...,n}
|S|=i

yS.
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Garsia and Stanton [6] proved that Rn is isomorphic to

Rn =
Q[Y ]

〈yS · yT , θ1, . . . , θn〉
,

where yS ·yT is the product over S and T that are incomparable under inclusion ordering.
They also showed that we get a basis {yπ | π ∈ Sn} defined by

yπ =
∏

d∈Des(π)

y{π1,...,πd}.

Note that we can go between yπ and gsπ via the map that sends y{i1,...,ik} to xi1 · · · xik . If
we assign to yS a q-degree of |S| and a t-degree of 1, then yπ has a q-degree of maj(π) and
t-degree of des(π). This produces a bigraded Frobenius image which is precisely equation
(32).

Proposition 20. The bigraded Frobenius image of Rn is

grFrob(Rn; q, t) =
∑
|λ|=n

∑
T∈SYT(λ)

qmaj(T )tdes(T )sλ.
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