Equidistributed statistics on Fishburn matrices and permutations

Dandan Chen Sherry H.F. Yan
Department of Mathematics
Zhejiang Normal University
Jinhua 321004, P.R. China
huifangyan@hotmail.com

Robin D.P. Zhou
College of Mathematics Physics and Information
Shaoxing University
Shaoxing 312000, P.R. China

Submitted: Jun 12, 2018; Accepted: Dec 19, 2018; Published: Jan 25, 2019
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Recently, Jelínek conjectured that there exists a bijection between certain restricted permutations and Fishburn matrices such that the bijection verifies the equidistribution of several statistics. The main objective of this paper is to establish such a bijection.

Mathematics Subject Classifications: 05A15, 05A17, 06A07

Keywords: ascent sequence, pattern avoiding permutation, Fishburn matrix.

1 Introduction

Given a sequence of integers \(x = x_1x_2\cdots x_n \), we say that the sequence \(x \) has an ascent at position \(i \) if \(x_i < x_{i+1} \). Let \(\text{ASC}(x) \) denote the set of the ascent positions of \(x \) and let \(\text{asc}(x) \) denote the number of ascents of \(x \). A sequence \(x = x_1x_2\cdots x_n \) is said to be an ascent sequence of length \(n \) if it satisfies \(x_1 = 0 \) and \(0 \leq x_i \leq \text{asc}(x_1x_2\cdots x_{i-1}) + 1 \) for all \(2 \leq i \leq n \). Let \(\mathcal{A}_n \) be the set of ascent sequences of length \(n \). For example,

\[\mathcal{A}_3 = \{000, 001, 010, 011, 012\}. \]

*Corresponding author.
Ascent sequences were introduced by Bousquet-Mélou et al. [1] to unify three other combinatorial structures: (2 + 2)-free posets, a family of permutations avoiding a certain pattern and a class of involutions introduced by Stoimenow [12]. To be specific, Bousquet-Mélou et al. [1] constructed a bijection between ascent sequences and pattern avoiding permutations, a bijection between ascent sequences and (2 + 2)-free posets and a bijection between (2 + 2)-free posets and Stoimenow’s involutions. Dukes and Parviainen [3] completed the results of [1] by constructing a bijection between ascent sequences and Fishburn matrices. Hence, all these combinatorial objects are enumerated by the Fishburn number \(F_n \) (sequence A022493 in OEIS [10]) for memory of Fishburn’s pioneering work on the interval orders [4, 5, 6]. More examples of Fishburn objects are constantly being discovered. Levande [7] introduced the notion of Fishburn diagrams and proved that Fishburn diagrams are counted by Fishburn numbers, confirming a conjecture posed by Claesson and Linusson [2]. Jelínek [8] showed that some Fishburn triples are enumerated by Fishburn numbers.

Zagier [14] and Bousquet-Mélou et al. [1] obtained the generating function of \(F_n \), that is

\[
\sum_{n \geq 0} F_n x^n = \sum_{n \geq 0} \Pi_{k=1}^{n} (1 - (1 - x)^k).
\]

Let us recall the notions of pattern avoiding permutations and Fishburn matrices before we state our main results. Let \(S_n \) be the symmetric group on \(n \) elements and \(\pi = \pi_1 \pi_2 \cdots \pi_n \) be a permutation of \(S_n \). We say that \(\pi \) contains the pattern \(\pattern{13} \) if there is a subsequence \(\pi_i \pi_{i+1} \pi_j \) of \(\pi \) satisfying that \(\pi_i + 1 = \pi_j < \pi_{i+1} \), otherwise we say that \(\pi \) avoids the pattern \(\pattern{13} \). For example, the permutation 42513 contains the pattern \(\pattern{13} \) while the permutation 52314 avoids it.

The pattern \(\pattern{24} \) can be defined similarly. Let \(S_n(\pattern{24}) \) be the set of (\(\pattern{24} \))-avoiding permutations of \([n] \) and \(S_n(\pattern{13}) \) be the set of (\(\pattern{13} \))-avoiding permutations of \([n] \), respectively. These two sets are both enumerated by Fishburn numbers [1, 11]. In a permutation \(\pi \), we say \(\pi_i \) is a left-to-right maximum (or LR-maximum) if \(\pi_i \) is larger than any element among \(\pi_1, \pi_2, \ldots, \pi_{i-1} \). Let \(LRMAX(\pi) \) denote the set of LR-maxima of \(\pi \) and let \(LRmax(\pi) \) denote the number of LR-maxima of \(\pi \). Analogously, we can define LR-minima, RL-maxima, RL-minima of a permutation \(\pi \). Denote by \(LRMIN(\pi) \), \(RLMAX(\pi) \) and \(RLMIN(\pi) \) the set of LR-minima, RL-maxima and RL-minima of \(\pi \), their cardinalities being denoted by \(LRmin(\pi) \), \(RLmax(\pi) \) and \(RLMin(\pi) \), respectively.

Fishburn matrices were introduced by Fishburn [6] to represent interval orders. A Fishburn matrix is an upper triangular matrix with nonnegative integers whose every row
and every column contain at least one non-zero entry. The weight of a matrix is the sum of its entries. Similarly, the weight of a row (or a column) of a matrix is the sum of the entries in this row (or column). Denote by \mathcal{M}_n the set of Fishburn matrices of weight n. For example,

$$\mathcal{M}_3 = \{(3), (2\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1), (1\ 1\ 0\ 1\ 0\ 2), (1\ 0\ 0\ 0\ 1\ 1)\}.$$

Given a matrix A, we use the term cell (i, j) of A to refer to the the entry in the i-th row and j-th column of A, and we let $A_{i,j}$ denote its value. We assume that the rows of a matrix are numbered from top to bottom and the columns of a matrix are numbered from left to right in which the topmost row is numbered by 1 and the leftmost column is numbered by 1. A cell (i, j) of a matrix A is said to be zero if $A_{i,j} = 0$. Otherwise, it is said to be nonzero. A row (or column) is said be zero if it contains no nonzero cells. Otherwise, it is said to be nonzero row (or column).

A cell (i, j) of a matrix A is a weakly north-east cell (or wNE-cell) if it is a nonzero cell and any other cell weakly north-east from it is a zero cell. More precisely, a nonzero cell (i, j) of a matrix A is a wNE-cell if $A_{s,t} = 0$ holds for all $s \leq i$ and $t \geq j$ and $(s,t) \neq (i,j)$.

Jelínek [8] posed the following conjecture.

Conjecture 1. (See [8], Conjecture 4.1) For every n, there is a bijection α between $S_n(\mathbb{F}_2)$ and \mathcal{M}_n satisfying that:

- LRmax(π) is the weight of the first row of $\alpha(\pi)$,
- RLmin(π) is the weight of the last column of $\alpha(\pi)$,
- RLmax(π) is the number of wNE-cells of $\alpha(\pi)$,
- LRmin(π) is the number of nonzero cells of $\alpha(\pi)$ belonging to the main diagonal, and
- $\alpha(\pi^{-1})$ is obtained from $\alpha(\pi)$ by transposing along the North-East diagonal.

By using generating functions, Jelínek [8] proved the following symmetric joint distribution on \mathcal{M}_n.

Theorem 2. (See [8], Theorem 3.7) For any n, the number of wNE-cells and the weight of the first row have symmetric joint distribution on \mathcal{M}_n.

Jelínek [8] also posed the following weaker conjecture which follows directly from Theorem 2 and Conjecture 1.

Conjecture 3. (See [8], Conjecture 4.2) For any n, LRmax and RLmax have symmetric joint distribution on $S_n(\mathbb{F}_2)$.

The main objective of this paper is to establish a bijection between $S_n(\mathbb{F}_2)$ and \mathcal{M}_n which satisfies the former four items of Conjecture 1, thereby confirming Conjecture 3.
2 Bijection between permutations and ascent sequences

In this section, we shall construct a bijection \(\theta \) between \(S_n(\mathcal{E}) \) and \(A_n \), and show that the map \(\theta \) proves the equidistribution of two 4-tuples of statistics.

Let \(\pi \) be a permutation in \(S_n(\mathcal{E}) \) and let \(\tau \) be the permutation obtained by deleting \(n \) from \(\pi \). Then we have that \(\tau \) is also a permutation in \(S_n(\mathcal{E}) \). If not, we assume that \(\pi_i \pi_{i+1} \pi_j \) is a \(\mathcal{E} \) pattern in \(\tau \). Since \(\pi \) is \(\mathcal{E} \)-avoiding, we have \(\pi_{i+1} = n \). Then \(\pi_i \pi_{i+1} \pi_{j+1} \) forms a \(\mathcal{E} \) pattern in \(\pi \), a contradiction. This property allows us to construct the permutation of \(S_n(\mathcal{E}) \) inductively, starting from the empty permutation and adding a new maximal value at each step.

Let \(\tau \) be a permutation in \(S_{n-1}(\mathcal{E}) \). The positions where we can insert the element \(n \) into \(\tau \) to obtain a \(\mathcal{E} \)-avoiding permutation are called active sites. The site after the maximal entry \(n \) in \(\pi \) is always an active site. We label the active sites in \(\pi \) from right to left with 0, 1, 2 and so on.

The bijection \(\theta \) between \(S_n(\mathcal{E}) \) and \(A_n \) can be defined recursively. Set \(\theta(1) = 0 \). Suppose that \(\pi \) is a permutation in \(S_n(\mathcal{E}) \) which is obtained from \(\tau \) by inserting the element \(n \) into the \(x_n \)-th active site of \(\tau \). Then we set \(\theta(\pi) = x_1 x_2 \cdots x_{n-1} x_n \), where \(x_1 x_2 \cdots x_{n-1} = \theta(\tau) \).

Example 4. The permutation 85231647 corresponds to the sequence 01102103 since it is obtained by the following insertions, where the subscripts indicate the labels of the active sites.

\[
\begin{align*}
11_0 & \xrightarrow{x_2=1} 211_0 \\
 & \xrightarrow{x_3=1} 231_0 \\
 & \xrightarrow{x_4=0} 231_40 \\
 & \xrightarrow{x_5=2} 35231_40 \\
 & \xrightarrow{x_6=1} 35231_640 \\
 & \xrightarrow{x_7=0} 35231_6470 \\
 & \xrightarrow{x_8=3} 4835231_6470.
\end{align*}
\]

Lemma 5. Let \(\pi = \pi_1 \pi_2 \cdots \pi_n \) be a permutation in \(S_n(\mathcal{E}) \) and \(\theta(\pi) = x = x_1 x_2 \cdots x_n \). Then we have that

\[
s(\pi) = 2 + \text{asc}(x) \quad \text{and} \quad a(\pi) = x_n,
\]

where \(s(\pi) \) denotes the number of active sites of \(\pi \) and \(a(\pi) \) denotes the label of the site located just after the entry \(n \) of \(\pi \).

Proof. Suppose that \(\pi \) is obtained from \(\tau \) by inserting the element \(n \) into the \(x_n \)-th active site of \(\tau \). Then we have \(\theta(\tau) = x' \), where \(x' = x_1 x_2 \cdots x_{n-1} \). For any entry \(i \) which is to the right of \(n \), \(i \) is followed by an active site in \(\pi \) if and only if \(i \) is followed by an active site in \(\tau \). Since the site after \(n \) in \(\pi \) is always active, we obtain \(a(\pi) = x_n \).
Now let us focus on the equation \(s(\pi) = 2 + \text{asc}(x) \). We will prove it by induction on \(n \). It obviously holds for \(n = 1 \). Assume that it holds for \(n - 1 \). For any entry \(i < n - 1 \), \(i \) is followed by an active site in \(\pi \) if and only if \(i \) is followed by an active site in \(\tau \). The site after \(n \) in \(\pi \) is always an active site. Thus, to determine \(s(\pi) \), the only question is whether the site after \(n - 1 \) is active. We need consider two cases.

Case 1: If \(0 \leq x_n \leq a(\tau) = x_{n-1} \), then the entry \(n \) in \(\pi \) is to the right of \(n - 1 \). It follows that the site after \(n - 1 \) is not an active site in \(\pi \). Since the site after \(n - 1 \) is an active site in \(\tau \), we have that \(s(\pi) = s(\tau) \). By the induction hypothesis, \(s(\tau) = 2 + \text{asc}(x') = 2 + \text{asc}(x) \). Hence we deduce that \(s(\pi) = 2 + \text{asc}(x) \).

Case 2: If \(x_n > a(\tau) = x_{n-1} \), then the entry \(n \) in \(\pi \) is to the left of \(n - 1 \). It yields that the site after \(n - 1 \) is also an active site in \(\pi \). Hence \(s(\pi) = s(\tau) + 1 \). Since \(x_n > x_{n-1} \), we have that \(\text{asc}(x) = \text{asc}(x') + 1 \). By the induction hypothesis, \(s(\tau) = 2 + \text{asc}(x') \). Thus we have \(s(\pi) = 2 + \text{asc}(x) \). This completes the proof.

Theorem 6. The map \(\theta \) is a bijection between \(S_n(\mathbb{Z}^2) \) and \(A_n \).

Proof. We prove this conclusion by induction on \(n \). It obviously holds for \(n = 1 \). Assume that \(\theta \) is a bijection between \(S_{n-1}(\mathbb{Z}^2) \) and \(A_{n-1} \).

We first show that \(\theta \) is a map from \(S_n(\mathbb{Z}^2) \) to \(A_n \). Let \(\pi = \pi_1 \pi_2 \cdots \pi_n \) be a permutation in \(S_n(\mathbb{Z}^2) \) which is obtained from \(\tau \) by inserting a maximal entry \(n \) in the active site labeled by \(x_n \) in \(\tau \). Then \(\theta(\pi) = x = x_1 x_2 \cdots x_n \), where \(\theta(\tau) = x' = x_1 x_2 \cdots x_{n-1} \). To prove that \(x \in A_n \), it suffices to show that \(x_n \leq \text{asc}(x') + 1 \). Recall that the rightmost active site is labeled 0. Hence the leftmost active site in \(\tau \) is labeled \(s(\tau) - 1 \). By the recursive description of the map \(\theta \), we have that \(x_n \leq s(\tau) - 1 \). From Lemma 5 we see that \(s(\tau) = 2 + \text{asc}(x') \). Thus we have \(x_n \leq \text{asc}(x') + 1 \). Since \(x \) encodes the construction of \(\pi \), \(\theta \) is an injective map from \(S_n(\mathbb{Z}^2) \) to \(A_n \).

It remains to show that \(\theta \) is surjection. Let \(y = y_1 y_2 \cdots y_n \) be an ascent and \(p = p_1 p_2 \cdots p_{n-1} = \theta^{-1}(y') \), where \(y' = y_1 y_2 \cdots y_{n-1} \). From the definition of ascent sequence and Lemma 5, we have that \(y_n \leq \text{asc}(y') + 1 = s(p) - 1 \). Let \(q \) be the permutation obtained from \(p \) by inserting the maximal entry \(n \) into the active site labeled \(y_n \) in \(p \). By the construction of the map \(\theta \), it can be easily seen that \(\theta(q) = y \). This concludes the proof.

Let \(x = x_1 x_2 \cdots x_n \) be an ascent sequence in \(A_n \). The modified ascent sequence of \(x \), denoted by \(\hat{x} \), is defined by the following procedure:

for \(i \in \text{ASC}(x) \)
for \(j = 1, 2, \ldots, i - 1 \)
if \(x_j \geq x_{i+1} \) then \(x_j := x_j + 1 \).

For example, for \(x = 01012213 \), we have \(\text{ASC}(x) = \{1, 3, 4, 7\} \) and \(\hat{x} = 04012213 \). Modified ascent sequences were introduced by Bousquet-Mérou et al., see more details in [1].

For a permutation \(\pi = \pi_1 \pi_2 \cdots \pi_n \in S_n(\mathbb{Z}^2) \), let \(l(\pi_i) \) be the largest label of the active site to the right of \(\pi_i \) and let \(LMAX(\pi) \) be the multiset of \(l(\pi_i) \) when \(\pi_i \) ranges over all LR-maxima of \(\pi \). That is

\[
LMAX(\pi) = \{l(\pi_i) \mid \pi_i \in LMAX(\pi)\}.
\]
Similarly, let

\[\text{RMAXL}(\pi) = \{ l(\pi_i) \mid \pi_i \in \text{RLMAX}(\pi) \}. \]

For example, for \(\pi = 42178536 \), its active sites are labeled as 42178536. Then we have \(\text{RMAXL}(\pi) = \{0, 2\} \) and \(\text{LMAXL}(\pi) = \{2, 2, 3\} \).

For an ascent sequence \(x = x_1x_2 \cdots x_n \), let

\[\text{ZERO}(x) = \{ i \mid x_i = 0 \}, \]

and

\[\text{MAX}(x) = \{ i \mid x_i = \text{asc}(x_1x_2 \cdots x_{i-1}) + 1 \}, \]

with their cardinalities being denoted by \(\text{zero}(x) \) and \(\text{max}(x) \) respectively.

For a sequence \(x = x_1x_2 \cdots x_n \), let

\[\text{RMIN}(x) = \{ x_i \mid x_i < x_j \text{ for all } j > i \}, \]

\[\text{RMAX}(x) = \{ x_i \mid x_i \geq x_j \text{ for all } j > i \}. \]

It should be noted that the set \(\text{RMAX}(x) \) is a multiset. Denote by \(\text{Rmin}(x) \) and \(\text{Rmax}(x) \) the cardinalities of the sets \(\text{RMIN}(x) \) and \(\text{RMAX}(x) \), respectively. For example, let \(x = 01012201 \). We have \(\text{RMIN} = \{0, 1\} \), \(\text{RMAX} = \{1, 2, 2\} \), \(\text{Rmin}(x) = 2 \) and \(\text{Rmax}(x) = 3 \).

Theorem 7. For any \(\pi = \pi_1\pi_2 \cdots \pi_n \in S_n(\mathbb{P}_3) \) and \(x = x_1x_2 \cdots x_n \in \mathcal{A}_n \) with \(\theta(\pi) = x \), we have

1. \(\text{RLMIN}(\pi) = \text{ZERO}(x) \);
2. \(\text{LRMIN}(\pi) = \text{MAX}(x) \);
3. \(\text{RMAXL}(\pi) = \text{RMIN}(x) \);
4. \(\text{LMAXL}(\pi) = \text{RMAX}(\hat{x}) \).

Proof. We will prove points (1)-(4) by induction on \(n \). It is easily checked that the statement holds for \(n = 1 \). Assume that it also holds for some \(n - 1 \) with \(n \geq 2 \). Let \(\tau \) be the permutation which is obtained from \(\pi \) by deleting the largest entry \(n \) in \(\pi \). Then we have that \(x' = x_1x_2 \cdots x_{n-1} = \theta(\tau) \). From the construction of the bijection \(\theta \) and the induction hypothesis, one can easily verify that

\[
\text{RLMIN}(\pi) = \begin{cases}
\text{RLMIN}(\tau) \cup \{n\} = \text{ZERO}(x') \cup \{n\} = \text{ZERO}(x) & \text{if } x_n = 0, \\
\text{RLMIN}(\tau) = \text{ZERO}(x') = \text{ZERO}(x) & \text{otherwise},
\end{cases}
\]

\[
\text{LRMIN}(\pi) = \begin{cases}
\text{LRMIN}(\tau) = \text{MAX}(x') = \text{MAX}(x) & \text{if } x_n \leq \text{asc}(x'), \\
\text{LRMIN}(\tau) \cup \{n\} = \text{MAX}(x') \cup \{n\} = \text{MAX}(x) & \text{if } x_n = \text{asc}(x') + 1,
\end{cases}
\]
and

\[
RMAXL(\pi) = \{i \mid i \in RMAXL(\tau), i < x_n\} \cup \{x_n\} \\
= \{i \mid i \in RMIN(x'), i < x_n\} \cup \{x_n\} \\
= RMIN(x).
\]

For point (4), we consider two cases. If \(x_n \leq x_{n-1}\), then \(n\) is to the right of \(n-1\) in \(\pi\). Notice that all the LR-maxima in \(\tau\) are also LR-maxima in \(\pi\). One can easily check that \(LMAXL(\pi) = LMAXL(\tau) \cup \{x_n\}\) and \(RMAX(\hat{x}) = RMAX(\hat{x}') \cup \{x_n\}\). By the induction hypothesis, we have

\[
LMAXL(\pi) = LMAXL(\tau) \cup \{x_n\} = RMIN(x') \cup \{x_n\} = RMAX(\hat{x}).
\]

If \(x_n > x_{n-1}\), then \(n\) is to the left of \(n-1\) in \(\pi\). In this case, \(\tau_t\) is a LR-maximum in \(\pi\) if and only if \(\tau_t\) is a LR-maximum in \(\tau\) and \(l(\tau_t) \geq x_n\). After the inserting \(n\) into \(\tau\), \(l(\tau_t)\) is increased by 1 if \(\tau_t\) is also a LR-maximum in \(\pi\). Hence we have that

\[
LMAXL(\pi) = \{i + 1 \mid i \in LMAXL(\tau), i \geq x_n\} \cup \{x_n\}.
\]

From the definition of the modified ascent sequence, it follows that

\[
RMAX(\hat{x}) = \{i + 1 \mid i \in RMAX(\hat{x}'), i \geq x_n\} \cup \{x_n\}.
\]

By the induction hypothesis, we immediately deduce that \(LMAXL(\pi) = RMAX(\hat{x})\) as desired. This completes the proof.

Combining Theorems 6 and 7, we are led to the following result.

Theorem 8. The map \(\theta\) is a bijection between \(S_n(\frac{[n]}{[n]}\) and \(A_n\). Moreover, for any \(\pi \in S_n(\frac{[n]}{[n]}\) and \(x \in A_n\) with \(\theta(\pi) = x\), we have

\[
(RLmin, LRmin, RLmax)\pi = (zero, max, Rmin)x
\]

and \(LRmax(\pi) = Rmax(\hat{x})\).

3 Bijection between ascent sequences and Fishburn matrices

The main objective of this section is to establish a bijection \(\phi\) between \(A_n\) and \(M_n\). To this end, we will define a removal operation and an addition operation on the matrices of \(M_n\).

Given a matrix \(A\) in \(M_n\), let \(dim(A)\) denote the number of rows of the matrix \(A\) and let \(index(A)\) denote the smallest value of \(i\) such that \(A_{i,dim(A)} > 0\). Denote by \(rsum_i(A)\) and \(csum_i(A)\) the sum of the entries in row \(i\) and column \(i\) of \(A\), respectively. We define a removal operation \(f\) on a given matrix \(A \in M_n\) as follows.

Rem1 If \(rsum_{\text{index}(A)}(A) > 1\), let \(f(A)\) be the matrix \(A\) with the entry \(A_{\text{index}(A),dim(A)}\) reduced by 1.
(Rem2) If \(rsum_{\text{index}(A)}(A) = 1 \) and \(\text{index}(A) = \text{dim}(A) \), then let \(f(A) \) be the matrix \(A \) with row \(\text{dim}(A) \) and column \(\text{dim}(A) \) removed.

(Rem3) If \(rsum_{\text{index}(A)}(A) = 1 \) and \(\text{index}(A) < \text{dim}(A) \), then we construct \(f(A) \) in the following way. Let \(S \) be the set of indices \(j \) such that \(j \geq \text{index}(A) \) and column \(j \) contains at least one nonzero entry above row \(\text{index}(A) \). Suppose that \(S = \{c_1, c_2, \ldots, c_\ell\} \) with \(c_1 < c_2 \ldots < c_\ell \). Clearly we have \(c_1 = \text{index}(A) \). Let \(c_{\ell+1} = \text{dim}(A) \). For all \(1 \leq i < \text{index}(A) \) and \(1 \leq j \leq \ell \), move all the entries in the cell \((i, c_j)\) to the cell \((i, c_{j+1})\). Simultaneously delete row \(\text{index}(A) \) and column \(\text{index}(A) \).

Example 9. Let \(A, B, C \) be the following three Fishburn matrices:

\[
A = \begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{pmatrix}; \quad B = \begin{pmatrix}
1 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}; \quad C = \begin{pmatrix}
2 & 4 & 1 & 3 & 0 \\
0 & 5 & 2 & 2 & 0 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{pmatrix}.
\]

For Matrix \(A \), rule (Rem1) is applied since \(rsum_{\text{index}(A)}(A) = 3 \) and

\[
f(A) = \begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix}.
\]

For Matrix \(B \), since \(rsum_{\text{index}(B)}(B) = 1 \) and \(\text{index}(B) = \text{dim}(B) \), rule (Rem2) is applied and

\[
f(B) = \begin{pmatrix}
1 & 0 & 2 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{pmatrix}.
\]

For matrix \(C \), since \(rsum_{\text{index}(C)}(C) = 1 \) and \(\text{index}(C) < \text{dim}(C) \), rule (Rem3) is applied. It is easy to check that \(S = \{3, 4\} \), and thus we have

\[
f(C) = \begin{pmatrix}
2 & 4 & 1 & 3 \\
0 & 5 & 2 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{pmatrix}.
\]

The following lemma shows that the removal operation on a Fishburn matrix of \(\mathcal{M}_n \) will yield a Fishburn matrix in \(\mathcal{M}_{n-1} \).

Lemma 10. Let \(n \geq 2 \) be an integer and \(A \in \mathcal{M}_n \), then we have that \(f(A) \in \mathcal{M}_{n-1} \).

Proof. It is easily seen that for any removal operation applied on the matrix \(A \), the weight of \(f(A) \) is one less than the weight of \(A \). It is trivial to check that there exists no zero columns or rows in \(f(A) \). Moreover, the removal operation also preserves the property of being upper-triangular. Thus, \(f(A) \in \mathcal{M}_{n-1} \). This completes the proof. \(\square \)
Lemma 10 tells us that for any \(A \in \mathcal{M}_n \), after \(n \) applications of the removal operation \(f \) to \(A \), we will get a sequence of Fishburn matrices, say \(A^{(1)}, A^{(2)}, \ldots, A^{(n)} \), where \(A^{(k)} = f(A^{(k)}) \) for all \(1 < k \leq n \) and \(A^{(n)} = A \). Define \(\psi(A) = x_1x_2\ldots x_n \) where \(x_k = \text{index}(A^{(k)}) - 1 \).

We now define an addition operation \(g \) on a Fishburn matrix which is shown to be the inverse of the removal operation later. Given a matrix \(A \in \mathcal{M}_n \) and \(i \in [0, \text{dim}(A)] \), we construct a matrix \(g(A, i) \) in the following manner.

1. **Add1** If \(0 \leq i \leq \text{index}(A) - 1 \), then let \(g(A, i) \) be the matrix obtained from \(A \) by increasing the entry in the cell \((i + 1, \text{dim}(A))\) by 1.

2. **Add2** If \(i = \text{dim}(A) \), then let \(g(A, i) \) be the matrix \(
\begin{pmatrix}
A & 0 \\
0 & 1
\end{pmatrix}
\).

3. **Add3** If \(\text{index}(A) \leq i < \text{dim}(A) \), then we construct \(g(A, i) \) in the following way. In \(A \), insert a new (empty) row between rows \(i \) and \(i + 1 \), and insert a new (empty) column between columns \(i \) and \(i + 1 \). Let the new row be filled with all zeros except for the rightmost cell which is filled with a 1. Denote by \(A' \) the resulting matrix. Let \(T \) be the set of indices \(j \) such that \(j \geq i + 1 \) and column \(j \) contains at least one nonzero cell above row \(i + 1 \). Suppose that \(T = \{c_1, c_2, \ldots, c_{\ell}\} \). Clearly we have \(c_\ell = \text{dim}(A') \). Let \(c_0 = i + 1 \). For all \(1 \leq a \leq i \) and \(1 \leq b \leq \ell \), move all the entries in the cell \((a, c_b)\) to the cell \((a, c_{b-1})\), and fill all the cells which are in column \(\text{dim}(A') \) and above row \(i + 1 \) with zeros.

Example 11. Consider the matrix

\[
A = \begin{pmatrix}
2 & 4 & 0 & 3 \\
0 & 5 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{pmatrix}.
\]

Obviously, we have \(\text{dim}(A) = 4 \) and \(\text{index}(A) = 1 \). For \(i = 0 \), since \(i \leq \text{index}(A) - 1 \), rule **Add1** applies and we get

\[
g(A, 0) = \begin{pmatrix}
2 & 4 & 0 & 4 \\
0 & 5 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{pmatrix}.
\]

For \(i = 4 \), since \(i = \text{dim}(A) \), rule **Add2** applies and we get

\[
g(A, 4) = \begin{pmatrix}
2 & 4 & 0 & 3 & 0 \\
0 & 5 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]
For $i = 1$, since $\text{index}(A) \leq i < \text{dim}(A)$, rule (Add3) applies and we get

$$A' = \begin{pmatrix}
2 & 0 & 4 & 0 & 3 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 5 & 0 & 2 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix},$$

where the new inserted row and column are illustrated in bold. Then we have $T = \{3, 5\}$. Finally, we get

$$g(A, 1) = \begin{pmatrix}
2 & 4 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 5 & 0 & 2 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}.$$

By similar arguments as in the proof of Lemma 10, one can easily verify that the addition operation will also yield a Fishburn matrix.

Lemma 12. For any matrix $A \in \mathcal{M}_{n-1}$ and $i \in [0, \text{dim}(A)]$, we have that $g(A, i) \in \mathcal{M}_n$.

We now define a map ϕ from \mathcal{A}_n to \mathcal{M}_n recursively as follows. Given an ascent sequence $x = x_1x_2\ldots,x_n$, we define $A^{(1)} = (1)$ and $A^{(k)} = g(A^{(k-1)}, x_k)$ for all $1 < k \leq n$. Set $\phi(x) = A^{(n)}$.

Next we aim to show that the map ϕ is well defined and has the following desired properties.

Lemma 13. For any $x = x_1x_2\ldots x_n \in \mathcal{A}_n$, we have $\phi(x) \in \mathcal{M}_n$ satisfying $\text{dim}(\phi(x)) = \text{asc}(x) + 1$ and $\text{index}(\phi(x)) = x_n + 1$.

Proof. We will prove by induction on n. It is trivial to check that the statement holds for $n = 1$. Assume that it also holds for $n - 1$, that is,

$$\phi(x') \in \mathcal{M}_{n-1}, \text{ dim}(\phi(x')) = \text{asc}(x') + 1 \text{ and index}(\phi(x')) = x_{n-1} + 1,$$

where $x' = x_1x_2\ldots x_{n-1}$. Since $0 \leq x_n \leq \text{asc}(x') + 1 = \text{dim}(\phi(x'))$, from Lemma 12 we see that $\phi(x) = g(\phi(x'), x_n) \in \mathcal{M}_n$. From the construction of the addition operation, one can easily verify that $\text{index}(\phi(x)) = x_n + 1$ and

$$\begin{align*}
\text{dim}(\phi(x)) &= \begin{cases}
\text{dim}(\phi(x')) = \text{asc}(x') + 1 = \text{asc}(x) + 1 & \text{if } x_n \leq x_{n-1}, \\
\text{dim}(\phi(x')) + 1 = \text{asc}(x') + 2 = \text{asc}(x) + 1 & \text{if } x_n > x_{n-1}.
\end{cases}
\end{align*}$$

The result follows. \qed

For a matrix A, let $\text{NE}(A) = \{i - 1 | \text{row } i \text{ contains a wNE-cell} \}$ and let $n_e(A)$ denote the number of wNE-cells of A. Denote by $\text{diag}(A)$ the number of nonzero cells belonging to the main diagonal of A. Let $\text{LAST}(A)$ be the multiset of integers such that there are exactly c occurrences of i if and only if $A_{i+1, \text{dim}(A)} = c$ and $c > 0$.

The Electronic Journal of Combinatorics 26(1) (2019), #P1.11
Theorem 14. For any \(x = x_1 x_2 \cdots x_n \in A_n\) and \(A \in M_n\) with \(A = \phi(x)\), we have the following relations.

1. \(\text{zero}(x) = \text{rsum}_1(A)\);
2. \(\text{max}(x) = \text{diag}(A)\);
3. \(\text{RMIN}(x) = \text{NE}(A)\);
4. \(\text{RMAX}(\hat{x}) = \text{LAST}(A)\);
5. \(\text{Rmin}(x) = \text{ne}(A)\);
6. \(\text{Rmax}(\hat{x}) = \text{csum}_{\text{dim}(A)}(A)\).

Proof. Points (5) and (6) follow directly from points (3) and (4). Now we verify points (1)-(4) by induction on \(n\). Clearly, the statement holds for \(n = 1\). Assume that it also holds for any some \(n - 1\) with \(n \geq 2\). Let \(x' = x_1 x_2 \cdots x_{n-1}\) and \(B = \phi(x')\). Recall that \(A = g(B, x_n)\). From the definition of the addition operation \(g\) and the induction hypothesis, it is not difficult to verify that

\[
\text{rsum}_1(A) = \begin{cases}
\text{rsum}_1(B) + 1 = \text{zero}(x') + 1 = \text{zero}(x) & \text{if } x_n = 0, \\
\text{rsum}_1(B) = \text{zero}(x') = \text{zero}(x) & \text{otherwise}.
\end{cases}
\]

and

\[
\text{diag}(A) = \begin{cases}
\text{diag}(B) = \text{max}(x') = \text{max}(x) & \text{if } x_n \leq \text{asc}(x'), \\
\text{diag}(B) + 1 = \text{max}(x') + 1 = \text{max}(x) & \text{if } x_n = \text{asc}(x') + 1.
\end{cases}
\]

For point (3), from the construction of the addition operation \(g\), we see that the cell \((x_n + 1, \text{dim}(A))\) is always a wNE-cell. Moreover, there is a wNE-cell in row \(i\) of \(A\) if and only if there is a wNE-cell in row \(i\) of \(B\) and \(i < x_n + 1\). This yields that

\[
\text{NE}(A) = \{i \mid i \in \text{NE}(B), i < x_n\} \cup \{x_n\} = \{i \mid i \in \text{RMIN}(x'), i < x_n\} \cup \{x_n\} = \text{RMIN}(x).
\]

For point (4), we have two cases.

If \(x_n \leq x_{n-1} = \text{index}(B) - 1\), then rule (Add1) applies. It is trivial to check that \(\text{RMAX}(\hat{x}) = \text{RMAX}(\hat{x'}) \cup \{x_n\}\) and \(\text{LAST}(A) = \text{LAST}(B) \cup \{x_n\}\).

If \(x_n > x_{n-1} = \text{index}(B) - 1\), then either rule (Add2) or rule (Add3) applies. It is not difficult to verify that

\[
\text{RMAX}(\hat{x}) = \{i + 1 \mid i \in \text{RMAX}(\hat{x'}), i \geq x_n\} \cup \{x_n\},
\]

and

\[
\text{LAST}(A) = \{i + 1 \mid i \in \text{LAST}(B), i \geq x_n\} \cup \{x_n\}.
\]

By the induction hypothesis, we have concluded that \(\text{RMAX}(\hat{x}) = \text{LAST}(A)\). This completes the proof. \(\square\)
Lemma 15. For any \(x = x_1x_2 \cdots x_n \in A_n \), we have \(\psi(\phi(x)) = x \).

Proof. Suppose that we get a sequence of matrices \(A^{(1)}, A^{(2)}, \ldots, A^{(n)} \) when we apply the map \(\phi \) to \(x \), where \(A^{(1)} = (1) \) and \(A^{(k)} = g(A^{(k-1)}, x_k) \) for all \(1 < k \leq n \). Similarly, suppose that when we apply the map \(\psi \) to \(\phi(x) \), we get a sequence \(y = y_1y_2 \cdots y_n \) and a sequence of matrices \(B^{(1)}, B^{(2)}, \ldots, B^{(n)} \), where \(B^{(n)} = \phi(x) \), \(B^{(k)} = f(B^{(k+1)}) \) for all \(1 \leq k < n \), and \(y_k = index(B^{(k)}) - 1 \). Lemma 13 ensures that \(\text{index}(A^{(k)}) = x_k + 1 \). In order to prove \(x = y \), it suffices to show that \(A^{(k)} = B^{(k)} \) for all \(1 \leq k \leq n \). We proceed to prove this assertion by induction on \(n \). Clearly, we have \(B^{(n)} = \phi(x) = A^{(n)} \). Assume that we have \(A^{(j)} = B^{(j)} \) for all \(j \geq k + 1 \). In the following we aim to show that \(A^{(k)} = B^{(k)} \).

By the induction hypothesis, it suffices to show that \(f(A^{(k+1)}) = A^{(k)} \). We have three cases.

Let us assume that \(0 \leq x_{i+1} < \text{index}(A^{(k)}) \). Then rule (Add1) applies and \(A^{(k+1)} \) is simply a copy of \(A^{(k)} \) with the entry in the cell \((x_{i+1} + 1, \dim(A^{(k)})) \) increased by one. Clearly, we have \(\dim(A^{(k+1)}) = \dim(A^{(k+1)}) \), \(\text{index}(A^{(k+1)}) = x_{i+1} + 1 \) and \(\text{rsum}_{x_{i+1}+1}(A^{(k+1)}) > 1 \). So rule (Rem1) applies and \(f(A^{(k+1)}) \) is obtained from \(A^{(k+1)} \) by decreasing the entry in the cell \((x_{i+1} + 1, \dim(A^{(k+1)})) \) by one. Thus we have \(f(A^{(k+1)}) = A^{(k)} \).

Next assume that \(x_{i+1} = \dim(A^{(k)}) \). Then rule (Add2) applies and \(A^{(k+1)} = \begin{pmatrix} A^{(k)} & 0 \\ 0 & 1 \end{pmatrix} \).

In this case, we have \(\text{index}(A^{(k+1)}) = x_{i+1} + 1 = \dim(A^{(k+1)}) \) and \(\text{rsum}_{x_{i+1}+1}(A^{(k+1)}) = 1 \). So rule (Rem2) applies and \(f(A^{(k+1)}) \) is obtained from \(A^{(k+1)} \) by removing column \(\dim(A^{(k+1)}) \) and row \(\dim(A^{(k+1)}) \). Thus we have \(f(A^{(k+1)}) = A^{(k)} \).

If \(\text{index}(A^{(k)}) \leq x_{i+1} < \dim(A^{(k)}) \), then rule (Add3) applies and \(A^{(k+1)} \) is obtained from \(A^{(k)} \) in the following way. First we insert a new (empty) row between rows \(x_{i+1} \) and \(x_{i+1} + 1 \), and insert a new (empty) column between columns \(x_{i+1} \) and \(x_{i+1} + 1 \). Let the new row be filled with all zeros except for the rightmost cell which is filled with a 1. Denote by \(A' \) the resulting matrix. Let T be the set of indices \(j \) such that \(j \geq x_{i+1} + 1 \) and column \(j \) contains at least one nonzero cell above row \(x_{i+1} + 1 \). Suppose that \(T = \{c_1, c_2, \ldots, c_\ell\} \) with \(c_1 < c_2 < \ldots < c_\ell \). Let \(c_0 = x_{i+1} + 1 \). For all \(1 \leq a \leq x_{i+1} + 1 \) and \(1 \leq b \leq \ell \), move all the entries in the cell \((a, c_b) \) to the cell \((a, c_{b-1}) \), and fill all the cells in column \(\dim(A') \) and above row \(x_{i+1} + 1 \) with zeros. It is easy to check that \(\dim(A^{(k+1)}) = \dim(A^{(k)}) + 1 \), \(\text{index}(A^{(k+1)}) = x_{i+1} + 1 \) and \(\text{rsum}_{x_{i+1}+1}(A^{(k+1)}) = 1 \). So rule (Rem3) applies and \(f(A^{(k+1)}) \) is obtained from \(A^{(k+1)} \) by the following procedure. Let \(S \) be the set of indices \(j \) such that \(j \geq x_{i+1} + 1 \) and column \(j \) contains at least one nonzero entry above row \(x_{i+1} + 1 \). It is not difficult to check that \(S = \{c_0, c_1, c_2, \ldots, c_{\ell-1}\} \). Let \(c_\ell = \dim(A^{(k+1)}) \). For all \(1 \leq a < x_{i+1} + 1 \) and \(1 \leq b \leq \ell - 1 \), move all the entries in the cell \((a, c_b) \) to the cell \((a, c_{b+1}) \). Simultaneously delete row \(x_{i+1} + 1 \) and column \(x_{i+1} + 1 \). These operations simply reverse the construction of \(A^{(k+1)} \) from \(A^{(k)} \), and therefore \(f(A^{(k+1)}) = A^{(k)} \). This completes the proof.

\[\square \]

Theorem 16. The map \(\phi \) is a bijection between \(A_n \) and \(M_n \). Moreover, for any \(x \in A_n \) and \(A \in M_n \) with \(\phi(x) = A \), we have
\[
(zero, max, Rmin)x = (\text{rsum}_1, \text{diag}, ne)A
\]
and $R_{\text{max}}(\hat{x}) = c\text{sum}_{\text{dim}}(A)(A)$.

Proof. By Theorem 14, it remains to show that ϕ is a bijection. Lemma 15 tells us that if $\phi(x) = \phi(y)$ then we have $x = y$ for any $x, y \in A_n$, and thus ϕ is injective. And, by cardinality reasons, it follows that ϕ is bijective. This completes the proof. \qed

Remark 17. Dukes and Parviainen [3] defined a bijection Γ between A_n and M_n, and showed that the bijection Γ proves the equidistribution of two triples of statistics, that is, $(\text{zero}, \text{max})x = (r\text{sum}_1, \text{diag})\Gamma(x)$ and $R_{\text{max}}(\hat{x}) = c\text{sum}_{\text{dim}}(\Gamma(x))\Gamma(x)$. But unlike our bijection ϕ, the bijection Γ does not transform R_{min} to ne. Our bijection ϕ is constructed in the sprit of Γ, and the two bijections are different from each other in the definition of rule (Add3) of the addition operation.

Combining Theorems 2 and 16, we are led to the following symmetric joint distribution on ascent sequences.

Corollary 18. For any n, the statistics zero and R_{min} have symmetric joint distribution on A_n.

Given a matrix $A \in M_n$, the **flip** of A, denoted by $F(A)$, is the matrix obtained from A by transposing along the North-East diagonal. It is not difficult to check that for any $A \in M_n$, we have $F(A) \in M_n$ satisfying that $(r\text{sum}_1, \text{diag}, \text{ne}, c\text{sum}_{\text{dim}}(A))A = (c\text{sum}_{\text{dim}}(F(A)), \text{diag}, \text{ne}, r\text{sum}_1)F(A)$.

In view of Theorems 8 and 16, we are led to the following result, confirming the former four items of Conjecture 1.

Theorem 19. The map $\alpha = F \cdot \phi \cdot \theta$ is a bijection between $S_n(\begin{bmatrix} 0 & \ldots & 0 \end{bmatrix})$ and M_n satisfying that:

- $LR_{\text{max}}(\pi)$ is the weight of the first row of $\alpha(\pi)$,
- $RL_{\text{min}}(\pi)$ is the weight of the last column of $\alpha(\pi)$,
- $RL_{\text{max}}(\pi)$ is the number of wNE-cells of $\alpha(\pi)$,
- $LR_{\text{min}}(\pi)$ is the number of nonzero cells of $\alpha(\pi)$ belonging to the main diagonal.

Remark 20. It should be noted that our bijection α does not verify the last item of Conjecture 1. For example, let $\pi = 85231647$. Then we have $\pi^{-1} = 53472681$, $\theta(\pi) = x = 01102103$ and $\theta(\pi^{-1}) = y = 01223131$. It is easy to check that $\text{asc}(x) = 3$ and $\text{asc}(y) = 4$. By Lemma 13, we have $\text{dim}(\phi(x)) = 4$ and $\text{dim}(\phi(y)) = 5$. This implies that the resulting matrices $\alpha(\pi)$ and $\alpha(\pi^{-1})$ have different dimensions, and thus $\alpha(\pi^{-1}) \neq F(\alpha(\pi))$.

Acknowledgements

We are grateful to the anonymous referee for his/her helpful comments and suggestions. This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LQ17A010004) and the National Science Foundation of China (11671366 and 11626158).

References

