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Abstract

Recently, Jeĺınek conjectured that there exists a bijection between certain re-
stricted permutations and Fishburn matrices such that the bijection verifies the
equidistribution of several statistics. The main objective of this paper is to estab-
lish such a bijection.

Mathematics Subject Classifications: 05A15, 05A17, 06A07
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1 Introduction

Given a sequence of integers x = x1x2 · · ·xn, we say that the sequence x has an ascent at
position i if xi < xi+1. Let ASC(x) denote the set of the ascent positions of x and let
asc(x) denote the number of ascents of x. A sequence x = x1x2 · · ·xn is said to be an
ascent sequence of length n if it satisfies x1 = 0 and 0 6 xi 6 asc(x1x2 · · ·xi−1) + 1 for all
2 6 i 6 n. Let An be the set of ascent sequences of length n. For example,

A3 = {000, 001, 010, 011, 012}.
∗Corresponding author.
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Ascent sequences were introduced by Bousquet-Mélou et al. [1] to unify three other
combinatorial structures: (2 + 2)-free posets, a family of permutations avoiding a cer-
tain pattern and a class of involutions introduced by Stoimenow [12]. To be specific,
Bousquet-Mélou et al. [1] constructed a bijection between ascent sequences and pattern
avoiding permutations, a bijection between ascent sequences and (2+2)-free posets and a
bijection between (2 + 2)-free posets and Stoimenow’s involutions. Dukes and Parviainen
[3] completed the results of [1] by constructing a bijection between ascent sequences and
Fishburn matrices. Hence, all these combinatorial objects are enumerated by the Fish-
burn number Fn (sequence A022493 in OEIS [10] ) for memory of Fishburn’s pioneering
work on the interval orders [4, 5, 6]. More examples of Fishburn objects are constantly
being discovered. Levande [7] introduced the notion of Fishburn diagrams and proved that
Fishburn diagrams are counted by Fishburn numbers, confirming a conjecture posed by
Claesson and Linusson [2]. Jeĺınek [8] showed that some Fishburn triples are enumerated
by Fishburn numbers.

Zagier [14] and Bousquet-Mélou et al. [1] obtained the generating function of Fn, that
is ∑

n>0

Fnx
n =

∑
n>0

Πn
k=1(1− (1− x)k).

Kitaev and Remmel [9] extended the work and found the generating function for (2+2)-free
posets when four statistics are taken into account. Levande [7] and Yan [13] independently
presented a combinatorial proof of a conjecture of Kitaev and Remmel [9] concerning the
generating function for the number of (2 + 2)-free posets.

Let us recall the notions of pattern avoiding permutations and Fishburn matrices
before we state our main results. Let Sn be the symmetric group on n elements and
π = π1π2 · · · πn be a permutation of Sn. We say that π contains the pattern if there
is a subsequence πiπi+1πj of π satisfying that πi + 1 = πj < πi+1, otherwise we say that
π avoids the pattern . For example, the permutation 42513 contains the pattern
while the permutation 52314 avoids it.

The pattern can be defined similarly. Let Sn( ) be the set of ( )-avoiding per-
mutations of [n] and Sn( ) be the set of ( )-avoiding permutations of [n], respectively.
These two sets are both enumerated by Fishburn numbers [1, 11]. In a permutation π, we
say πi is a left-to-right maximum (or LR-maximum) if πi is larger than any element among
π1, π2, . . . , πi−1. Let LRMAX(π) denote the set of LR-maxima of π and let LRmax(π) de-
note the number of LR-maxima of π. Analogously, we can define LR-minima, RL-maxima,
RL-minima of a permutation π. Denote by LRMIN(π), RLMAX(π) and RLMIN(π)
the set of LR-minima, RL-maxima and RL-minima of π, their cardinalities being denoted
by LRmin(π), RLmax(π) and RLmin(π), respectively.

Fishburn matrices were introduced by Fishburn [6] to represent interval orders. A
Fishburn matrix is an upper triangular matrix with nonnegative integers whose every row
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and every column contain at least one non-zero entry. The weight of a matrix is the sum
of its entries. Similarly, the weight of a row (or a column) of a matrix is the sum of the
entries in this row (or column). Denote by Mn the set of Fishburn matrices of weight n.
For example,

M3 = {
(
3
)
,

(
2 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
0 2

)
,

1 0 0
0 1 0
0 0 1

}.
Given a matrix A, we use the term cell (i, j) of A to refer to the the entry in the i-th

row and j-th column of A, and we let Ai,j denote its value. We assume that the rows of
a matrix are numbered from top to bottom and the columns of a matrix are numbered
from left to right in which the topmost row is numbered by 1 and the leftmost column
is numbered by 1. A cell (i, j) of a matrix A is said to be zero if Ai,j = 0. Otherwise, it
is said to be nonzero. A row ( or column) is said be zero if it contains no nonzero cells.
Otherwise, it is said to be nonzero row ( or column).

A cell (i, j) of a matrix A is a weakly north-east cell (or wNE-cell) if it is a nonzero cell
and any other cell weakly north-east from it is a zero cell. More precisely, a nonzero cell
(i, j) of a matrix A is a wNE-cell if As,t = 0 holds for all s 6 i and t > j and (s, t) 6= (i, j).

Jeĺınek [8] posed the following conjecture.

Conjecture 1. (See [8], Conjecture 4.1) For every n, there is a bijection α between
Sn( ) and Mn satisfying that:

• LRmax(π) is the weight of the first row of α(π),

• RLmin(π) is the weight of the last column of α(π),

• RLmax(π) is the number of wNE-cells of α(π),

• LRmin(π) is the number of nonzero cells of α(π) belonging to the main diagonal,
and

• α(π−1) is obtained from α(π) by transposing along the North-East diagonal.

By using generating functions, Jeĺınek [8] proved the following symmetric joint distri-
bution on Mn.

Theorem 2. (See [8], Theorem 3.7) For any n, the number of wNE-cells and the weight
of the first row have symmetric joint distribution on Mn.

Jeĺınek [8] also posed the following weaker conjecture which follows directly from
Theorem 2 and Conjecture 1.

Conjecture 3. (See [8], Conjecture 4.2) For any n, LRmax and RLmax have symmetric
joint distribution on Sn( ).

The main objective of this paper is to establish a bijection between Sn( ) and Mn

which satisfies the former four items of Conjecture 1, thereby confirming Conjecture 3.
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2 Bijection between permutations and ascent sequences

In this section, we shall construct a bijection θ between Sn( ) and An, and show that
the map θ proves the equidistribution of two 4-tuples of statistics.

Let π be a permutation in Sn( ) and let τ be the permutation obtained by deleting
n from π. Then we have that τ is also a permutation in Sn( ). If not, we assume
that τiτi+1τj is a pattern in τ . Since π is ( )-avoiding, we have πi+1 = n. Then
πiπi+1πj+1 forms a pattern in π, a contradiction. This property allows us to construct
the permutation of Sn( ) inductively, starting from the empty permutation and adding
a new maximal value at each step.

Let τ be a permutation in Sn−1( ). The positions where we can insert the element
n into τ to obtain a ( )-avoiding permutation are called active sites. The site after the
maximal entry n in π is always an active site. We label the active sites in π from right to
left with 0, 1, 2 and so on.

The bijection θ between Sn( ) and An can be defined recursively. Set θ(1) = 0.
Suppose that π is a permutation in Sn( ) which is obtained from τ by inserting the
element n into the xn-th active site of τ . Then we set θ(π) = x1x2 · · ·xn−1xn, where
x1x2 · · ·xn−1 = θ(τ).

Example 4. The permutation 85231647 corresponds to the sequence 01102103 since it is
obtained by the following insertions, where the subscripts indicate the labels of the active
sites.

110
x2=1−−−→ 22110

x3=1−−−→ 22 3110

x4=0−−−→ 22 3 1140

x5=2−−−→ 3522 3 1140

x6=1−−−→ 35 2 3 126140

x7=0−−−→ 35 2 3 126 4170

x8=3−−−→ 4835 2 3 126 4170.

Lemma 5. Let π = π1π2 · · · πn be a permutation in Sn( ) and θ(π) = x = x1x2 · · ·xn.
Then we have that

s(π) = 2 + asc(x) and a(π) = xn, (1)

where s(π) denotes the number of active sites of π and a(π) denotes the label of the site
located just after the entry n of π.

Proof. Suppose that π is obtained from τ by inserting the element n into the xn-th active
site of τ . Then we have θ(τ) = x′, where x′ = x1x2 · · ·xn−1. For any entry i which is to
the right of n, i is followed by an active site in π if and only if i is followed by an active
site in τ . Since the site after n in π is always active, we obtain a(π) = xn
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Now let us focus on the equation s(π) = 2 + asc(x). We will prove it by induction on
n. It obviously holds for n = 1. Assume that it holds for n− 1. For any entry i < n− 1,
i is followed by an active site in π if and only if i is followed by an active site in τ . The
site after n in π is always an active site. Thus, to determine s(π), the only question is
whether the site after n− 1 is active. We need consider two cases.
Case 1: If 0 6 xn 6 a(τ) = xn−1, then the entry n in π is to the right of n− 1. It follows
that the site after n−1 is not an active cite in π. Since the site after n−1 is an active site in
τ , we have that s(π) = s(τ). By the induction hypothesis, s(τ) = 2+asc(x′) = 2+asc(x).
Hence we deduce that s(π) = 2 + asc(x).
Case 2: If xn > a(τ) = xn−1, then the entry n in π is to the left of n − 1. It yields that
the site after n− 1 is also an active cite in π. Hence s(π) = s(τ) + 1. Since xn > xn−1, we
have that asc(x) = asc(x′) + 1. By the induction hypothesis, s(τ) = 2 + asc(x′). Thus
we have s(π) = 2 + asc(x). This completes the proof.

Theorem 6. The map θ is a bijection between Sn( ) and An.

Proof. We prove this conclusion by induction on n. It obviously holds for n = 1. Assume
that θ is a bijection between Sn−1( ) and An−1.

We first show that θ is a map from Sn( ) toAn. Let π = π1π2 · · · πn be a permutation
in Sn( ) which is obtained from τ by inserting a maximal entry n in the active site
labeled by xn in τ . Then θ(π) = x = x1x2 · · ·xn, where θ(τ) = x′ = x1x2 · · ·xn−1. To
prove that x ∈ An, it suffices to show that xn 6 asc(x′) + 1. Recall that the rightmost
active site is labeled 0. Hence the leftmost active site in τ is labeled s(τ) − 1. By the
recursive description of the map θ, we have that xn 6 s(τ) − 1. From Lemma 5 we see
that s(τ) = 2 + asc(x′). Thus we have xn 6 asc(x′) + 1. Since x encodes the construction
of π, θ is an injective map from Sn( ) to An.

It remains to show that θ is surjection. Let y = y1y2 · · · yn be an ascent sequence
and p = p1p2 · · · pn−1 = θ−1(y′), where y′ = y1y2 · · · yn−1. From the definition of ascent
sequence and Lemma 5, we have that yn 6 asc(y′)+1 = s(p)−1. Let q be the permutation
obtained from p by inserting the maximal entry n into the active site labeled yn in p. By
the construction of the map θ, it can be easily seen that θ(q) = y. This concludes the
proof.

Let x = x1x2 · · ·xn be an ascent sequence in An. The modified ascent sequence of x,
denoted by x̂, is defined by the following procedure:
for i ∈ ASC(x)

for j = 1, 2, . . . , i− 1
if xj > xi+1 then xj := xj + 1.

For example, for x = 01012213, we have ASC(x) = {1, 3, 4, 7} and x̂ = 04012213. Modi-
fied ascent sequences were introduced by Bousquet-Mélou et al., see more details in [1].

For a permutation π = π1π2 · · · πn ∈ Sn( ), let l(πi) be the largest label of the active
site to the right of πi and let LMAXL(π) be the multiset of l(πi) when πi ranges over all
LR-maxima of π. That is

LMAXL(π) = {l(πi) | πi ∈ LRMAX(π)}.
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Similarly, let
RMAXL(π) = {l(πi) | πi ∈ RLMAX(π)}.

For example, for π = 42178536, its active sites are labeled as 4421378253160. Then we
have RMAXL(π) = {0, 2} and LMAXL(π) = {2, 2, 3}.

For an ascent sequence x = x1x2 · · ·xn, let

ZERO(x) = {i | xi = 0},

and
MAX(x) = {i | xi = asc(x1x2 · · ·xi−1) + 1},

with their cardinalities being denoted by zero(x) and max(x) respectively.
For a sequence x = x1x2 · · · xn, let

RMIN(x) = {xi | xi < xj for all j > i},

RMAX(x) = {xi | xi > xj for all j > i}.

It should be noted that the set RMAX(x) is a multiset. Denote by Rmin(x) and Rmax(x)
the cardinalities of the sets RMIN(x) and RMAX(x), respectively. For example, let x =
01012201. We have RMIN = {0, 1}, RMAX = {1, 2, 2}, Rmin(x) = 2 and Rmax(x) =
3.

Theorem 7. For any π = π1π2 · · · πn ∈ Sn( ) and x = x1x2 · · ·xn ∈ An with θ(π) = x,
we have

(1) RLMIN(π) = ZERO(x);

(2) LRMIN(π) = MAX(x);

(3) RMAXL(π) = RMIN(x);

(4) LMAXL(π) = RMAX(x̂).

Proof. We will prove points (1)-(4) by induction on n. It is easily checked that the
statement holds for n = 1. Assume that it also holds for some n − 1 with n > 2. Let τ
be the permutation which is obtained from π by deleting the largest entry n in π. Then
we have that x′ = x1x2 · · · xn−1 = θ(τ). From the construction of the bijection θ and the
induction hypothesis, one can easily verify that

RLMIN(π) =

{
RLMIN(τ) ∪ {n} = ZERO(x′) ∪ {n} = ZERO(x) if xn = 0,

RLMIN(τ) = ZERO(x′) = ZERO(x) otherwise ,

LRMIN(π) =

{
LRMIN(τ) = MAX(x′) = MAX(x) if xn 6 asc(x′),

LRMIN(τ) ∪ {n} = MAX(x′) ∪ {n} = MAX(x) if xn = asc(x′) + 1,
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and
RMAXL(π) = {i | i ∈ RMAXL(τ), i < xn} ∪ {xn}

= {i | i ∈ RMIN(x′), i < xn} ∪ {xn}
= RMIN(x).

For point (4), we consider two cases. If xn 6 xn−1, then n is to the right of n − 1 in
π. Notice that all the LR-maxima in τ are also LR-maxima in π. One can easily check
that LMAXL(π) = LMAXL(τ) ∪ {xn} and RMAX(x̂) = RMAX(x̂′) ∪ {xn}. By the
induction hypothesis, we have

LMAXL(π) = LMAXL(τ) ∪ {xn} = RMAX(x̂′) ∪ {xn} = RMAX(x̂).

If xn > xn−1, then n is to the left of n− 1 in π. In this case, τi is a LR-maximum in π
if and only if τi is a LR-maximum in τ and l(τi) > xn. After the inserting n into τ , l(τi)
is increased by 1 if τi is also a LR-maximum in π. Hence we have that

LMAXL(π) = {i+ 1 | i ∈ LMAXL(τ), i > xn} ∪ {xn}.

From the definition of the modified ascent sequence, it follows that

RMAX(x̂) = {i+ 1 | i ∈ RMAX(x̂′), i > xn} ∪ {xn}.

By the induction hypothesis, we immediately deduce that LMAXL(π) = RMAX(x̂) as
desired. This completes the proof.

Combining Theorems 6 and 7, we are led to the following result.

Theorem 8. The map θ is a bijection between Sn( ) and An. Moreover, for any
π ∈ Sn( ) and x ∈ An with θ(π) = x, we have

(RLmin, LRmin,RLmax)π = (zero,max,Rmin)x

and LRmax(π) = Rmax(x̂).

3 Bijection between ascent sequences and Fishburn matrices

The main objective of this section is to establish a bijection φ between An and Mn. To
this end, we will define a removal operation and an addition operation on the matrices of
Mn.

Given a matrix A inMn, let dim(A) denote the number of rows of the matrix A and
let index(A) denote the smallest value of i such that Ai,dim(A) > 0. Denote by rsumi(A)
and csumi(A) the sum of the entries in row i and column i of A, respectively. We define
a removal operation f on a given matrix A ∈Mn as follows.

(Rem1) If rsumindex(A)(A) > 1, let f(A) be the matrix A with the entry Aindex(A),dim(A)

reduced by 1.
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(Rem2) If rsumindex(A)(A) = 1 and index(A) = dim(A), then let f(A) be the matrix A
with row dim(A) and column dim(A) removed.

(Rem3) If rsumindex(A)(A) = 1 and index(A) < dim(A), then we construct f(A) in
the following way. Let S be the set of indices j such that j > index(A) and
column j contains at least one nonzero entry above row index(A). Suppose that
S = {c1, c2, . . . , c`} with c1 < c2 . . . < c`. Clearly we have c1 = index(A). Let
c`+1 = dim(A). For all 1 6 i < index(A) and 1 6 j 6 `, move all the entries in
the cell (i, cj) to the cell (i, cj+1). Simultaneously delete row index(A) and column
index(A).

Example 9. Let A,B,C be the following three Fishburn matrices:

A =


1 2 0 0
0 2 1 0
0 0 2 1
0 0 0 2

 ; B =


1 0 2 0
0 3 0 0
0 0 2 0
0 0 0 1

 ; C =


2 4 1 3 0
0 5 2 2 0
0 0 0 0 1
0 0 0 1 3
0 0 0 0 2

 .

For Matrix A, rule (Rem1) is applied since rsumindex(A)(A) = 3 and

f(A) =


1 2 0 0
0 2 1 0
0 0 2 0
0 0 0 2

 .

For Matrix B, since rsumindex(B)(B) = 1 and index(B) = dim(B), rule (Rem2) is
applied and

f(B) =

 1 0 2
0 3 0
0 0 2

 .

For matrix C, since rsumindex(C)(C) = 1 and index(C) < dim(C), rule (Rem3) is
applied. It is easy to check that S = {3, 4}, and thus we have

f(C) =


2 4 1 3
0 5 2 2
0 0 1 3
0 0 0 2

 .

The following lemma shows that the removal operation on a Fishburn matrix of Mn

will yield a Fishburn matrix in Mn−1.

Lemma 10. Let n > 2 be an integer and A ∈Mn, then we have that f(A) ∈Mn−1.

Proof. It is easily seen that for any removal operation applied on the matrix A, the weight
of f(A) is one less than the weight of A. It is trivial to check that there exists no zero
columns or rows in f(A). Moreover, the removal operation also preserves the property of
being upper-triangular. Thus, f(A) ∈Mn−1. This completes the proof.
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Lemma 10 tells us that for any A ∈Mn, after n applications of the removal operation f
to A, we will get a sequence of Fishburn matrices, say A(1), A(2), . . . , A(n), where A(k−1) =
f(A(k)) for all 1 < k 6 n and A(n) = A. Define ψ(A) = x = x1x2 . . . xn where xk =
index(A(k))− 1.

We now define an addition operation g on a Fishburn matrix which is shown to be the
inverse of the removal operation later. Given a matrix A ∈ Mn and i ∈ [0, dim(A)], We
construct a matrix g(A, i) in the following manner.

(Add1) If 0 6 i 6 index(A)−1, then let g(A, i) be the matrix obtained from A by increasing
the entry in the cell (i+ 1, dim(A)) by 1.

(Add2) If i = dim(A), then let g(A, i) be the matrix

(
A 0
0 1

)
.

(Add3) If index(A) 6 i < dim(A), then we construct g(A, i) in the following way. In A,
insert a new (empty) row between rows i and i+1, and insert a new (empty) column
between columns i and i + 1. Let the new row be filled with all zeros except for
the rightmost cell which is filled with a 1. Denote by A′ the resulting matrix. Let
T be the set of indices j such that j > i + 1 and column j contains at least one
nonzero cell above row i + 1. Suppose that T = {c1, c2, . . . , c`}. Clearly we have
c` = dim(A′). Let c0 = i+1. For all 1 6 a 6 i and 1 6 b 6 `, move all the entries in
the cell (a, cb) to the cell (a, cb−1), and fill all the cells which are in column dim(A′)
and above row i+ 1 with zeros.

Example 11. Consider the matrix

A =


2 4 0 3
0 5 0 2
0 0 1 3
0 0 0 2

 .

Obviously, we have dim(A) = 4 and index(A) = 1. For i = 0, since i 6 index(A) − 1,
rule (Add1) applies and we get

g(A, 0) =


2 4 0 4
0 5 0 2
0 0 1 3
0 0 0 2

 .

For i = 4, since i = dim(A), rule (Add2) applies and we get

g(A, 4) =


2 4 0 3 0
0 5 0 2 0
0 0 1 3 0
0 0 0 2 0
0 0 0 0 1

 .
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For i = 1, since index(A) 6 i < dim(A), rule (Add3) applies and we get

A′ =


2 0 4 0 3
0 0 0 0 1
0 0 5 0 2
0 0 0 1 3
0 0 0 0 2

 ,

where the new inserted row and column are illustrated in bold. Then we have T = {3, 5}.
Finally, we get

g(A, 1) =


2 4 3 0 0
0 0 0 0 1
0 0 5 0 2
0 0 0 1 3
0 0 0 0 2

 .

By similar arguments as in the proof of Lemma 10, one can easily verify that the
addition operation will also yield a Fishburn matrix.

Lemma 12. For any matrix A ∈Mn−1 and i ∈ [0, dim(A)], we have that g(A, i) ∈Mn.

We now define a map φ from An to Mn recursively as follows. Given an ascent
sequence x = x1x2 . . . , xn, we define A(1) = (1) and A(k) = g(A(k−1), xk) for all 1 < k 6 n.
Set φ(x) = A(n).

Next we aim to show that the map φ is well defined and has the following desired
properties.

Lemma 13. For any x = x1x2 · · ·xn ∈ An, we have φ(x) ∈ Mn satisfying dim(φ(x)) =
asc(x) + 1 and index(φ(x)) = xn + 1.

Proof. We will prove by induction on n. It is trivial to check that the statement holds for
n = 1. Assume that it also holds for n− 1, that is,

φ(x′) ∈Mn−1, dim(φ(x′)) = asc(x′) + 1 and index(φ(x′)) = xn−1 + 1,

where x′ = x1x2 · · ·xn−1. Since 0 6 xn 6 asc(x′) + 1 = dim(φ(x′)), from Lemma 12 we
see that φ(x) = g(φ(x′), xn) ∈Mn. From the construction of the addition operation, one
can easily verify that index(φ(x)) = xn + 1 and

dim(φ(x)) =

{
dim(φ(x′)) = asc(x′) + 1 = asc(x) + 1 if xn 6 xn−1,
dim(φ(x′)) + 1 = asc(x′) + 2 = asc(x) + 1 if xn > xn−1.

The result follows.

For a matrix A, let NE(A) = {i−1| row i contains a wNE-cell } and let ne(A) denote
the number of wNE-cells of A. Denote by diag(A) the number of nonzero cells belonging
to the main diagonal of A. Let LAST (A) be the multiset of integers such that there are
exactly c occurrences of i if and only if Ai+1,dim(A) = c and c > 0.
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Theorem 14. For any x = x1x2 · · ·xn ∈ An and A ∈ Mn with A = φ(x), we have the
following relations.

(1) zero(x) = rsum1(A);

(2) max(x) = diag(A);

(3) RMIN(x) = NE(A);

(4) RMAX(x̂) = LAST (A);

(5) Rmin(x) = ne(A);

(6) Rmax(x̂) = csumdim(A)(A).

Proof. Points (5) and (6) follow directly from points (3) and (4). Now we verify points
(1)-(4) by induction on n. Clearly, the statement holds for n = 1. Assume that it also
holds for any some n − 1 with n > 2. Let x′ = x1x2 · · · xn−1 and B = φ(x′). Recall
that A = g(B, xn). From the definition of the addition operation g and the induction
hypothesis, it is not difficult to verify that

rsum1(A) =

{
rsum1(B) + 1 = zero(x′) + 1 = zero(x) if xn = 0,
rsum1(B) = zero(x′) = zero(x) otherwise ,

and

diag(A) =

{
diag(B) = max(x′) = max(x) if xn 6 asc(x′),
diag(B) + 1 = max(x′) + 1 = max(x) if xn = asc(x′) + 1.

For point (3), from the construction of the addition operation g, we see that the cell
(xn + 1, dim(A)) is always a wNE-cell. Moreover, there is a wNE-cell in row i of A if and
only if there is a wNE-cell in row i of B and i < xn + 1. This yields that

NE(A) = {i | i ∈ NE(B), i < xn} ∪ {xn}
= {i | i ∈ RMIN(x′), i < xn} ∪ {xn}
= RMIN(x).

For point (4), we have two cases.
If xn 6 xn−1 = index(B) − 1, then rule (Add1) applies. It is trivial to check that

RMAX(x̂) = RMAX(x̂′) ∪ {xn} and LAST (A) = LAST (B) ∪ {xn}.
If xn > xn−1 = index(B)− 1, then either rule (Add2) or rule (Add3) applies. It is not

difficult to verify that

RMAX(x̂) = {i+ 1 | i ∈ RMAX(x̂′), i > xn} ∪ {xn},

and
LAST (A) = {i+ 1 | i ∈ LAST (B), i > xn} ∪ {xn}.

By the induction hypothesis, we have concluded that RMAX(x̂) = LAST (A). This
completes the proof.
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Lemma 15. For any x = x1x2 · · ·xn ∈ An, we have ψ(φ(x)) = x.

Proof. Suppose that we get a sequence of matrices A(1), A(2), . . . , A(n) when we apply the
map φ to x, where A(1) = (1) and A(k) = g(A(k−1), xk) for all 1 < k 6 n. Similarly,
suppose that when we apply the map ψ to φ(x), we get a sequence y = y1y2 · · · yn and
a sequence of matrices B(1), B(2), . . . , B(n), where B(n) = φ(x), B(k) = f(B(k+1)) for all
1 6 k < n, and yk = index(B(k)) − 1. Lemma 13 ensures that index(A(k)) = xk + 1. In
order to prove x = y, it suffices to show that A(k) = B(k) for all 1 6 k 6 n. We proceed to
prove this assertion by induction on n. Clearly, we have B(n) = φ(x) = A(n). Assume that
we have A(j) = B(j) for all j > k + 1. In the following we aim to show that A(k) = B(k).
By the induction hypothesis, it suffices to show that f(A(k+1)) = A(k). We have three
cases.

Let us assume that 0 6 xi+1 < index(A(k)). Then rule (Add1) applies and A(k+1) is sim-
ply a copy of A(k) with the entry in the cell (xi+1 +1, dim(A(k))) increased by one. Clearly,
we have dim(A(k)) = dim(Ak+1), index(A(k+1)) = xi+1 + 1 and rsumxi+1+1(A(k+1)) > 1.
So rule (Rem1) applies and f(A(k+1)) is obtained from A(k+1) by decreasing the the entry
in the cell (xi+1 + 1, dim(A(k+1))) by one. Thus we have f(A(k+1)) = A(k).

Next assume that xi+1 = dim(A(k)). Then rule (Add2) applies andA(k+1) =

(
A(k) 0

0 1

)
.

In this case, we have index(A(k+1)) = xi+1 + 1 = dim(A(k+1)) and rsumxi+1+1(A(k+1)) =
1. So rule (Rem2) applies and f(A(k+1)) is obtained from A(k+1) by removing column
dim(A(k+1)) and row dim(A(k+1)). Thus we have f(A(k+1)) = A(k).

If index(A(k)) 6 xi+1 < dim(A(k)), then rule (Add3) applies and A(k+1) is obtained
from A(k) in the following way. First we insert a new (empty) row between rows xi+1

and xi+1 + 1, and insert a new (empty) column between columns xi+1 and xi+1 + 1.
Let the new row be filled with all zeros except for the rightmost cell which is filled
with a 1. Denote by A′ the resulting matrix. Let T be the set of indices j such that
j > xi+1 + 1 and column j contains at least one nonzero cell above row xi+1 + 1. Suppose
that T = {c1, c2, . . . , c`} with c1 < c2 < . . . < c`. Let c0 = xi+1 + 1. For all 1 6 a 6 xi+1

and 1 6 b 6 `, move all the entries in the cell (a, cb) to the cell (a, cb−1), and fill all
the cells in column dim(A′) and above row xi+1 + 1 with zeros. It is easy to check that
dim(A(k+1)) = dim(A(k)) + 1, index(A(k+1)) = xi+1 + 1 and rsumxi+1+1(A(k+1)) = 1. So
rule (Rem3) applies and f(A(k+1)) is obtained from A(k+1) by the following procedure.
Let S be the set of indices j such that j > xi+1 + 1 and column j contains at least one
nonzero entry above row xi+1 +1. It is not difficult to check that S = {c0, c1, c2, . . . , c`−1}.
Let c` = dim(A(k+1)). For all 1 6 a < xi+1 + 1 and 1 6 b 6 ` − 1, move all the
entries in the cell (a, cb) to the cell (a, cb+1). Simultaneously delete row xi+1 + 1 and
column xi+1 + 1. These operations simply reverse the construction of A(k+1) from A(k),
and therefore f(A(k+1)) = A(k). This completes the proof.

Theorem 16. The map φ is a bijection between An and Mn. Moreover, for any x ∈ An

and A ∈Mn with φ(x) = A, we have

(zero,max,Rmin)x = (rsum1, diag, ne)A
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and Rmax(x̂) = csumdim(A)(A).

Proof. By Theorem 14, it remains to show that φ is a bijection. Lemma 15 tells us that
if φ(x) = φ(y) then we have x = y for any x, y ∈ An, and thus φ is injective. And, by
cardinality reasons, it follows that φ is bijective. This completes the proof.

Remark 17. Dukes and Parviainen [3] defined a bijection Γ between An and Mn, and
showed that the bijection Γ proves the equidistribution of two triples of statistics, that is,

(zero,max)x = (rsum1, diag)Γ(x)

and Rmax(x̂) = csumdim(Γ(x))Γ(x). But unlike our bijection φ, the bijection Γ does not
transform Rmin to ne. Our bijection φ is constructed in the sprit of Γ, and the two
bijections are different from each other in the definition of rule (Add3) of the addition
operation.

Combining Theorems 2 and 16, we are led to the following symmetric joint distribution
on ascent sequences.

Corollary 18. For any n, the statistics zero and Rmin have symmetric joint distribution
on An.

Given a matrix A ∈Mn, the flip of A, denoted by F(A), is the matrix obtained from
A by transposing along the North-East diagonal. It is not difficult to check that for any
A ∈Mn, we have F(A) ∈Mn satisfying that

(rsum1, diag, ne, csumdim(A))A = (csumdim(F(A)), diag, ne, rsum1)F(A).

In view of Theorems 8 and 16, we are led to the following result, confirming the former
four items of Conjecture 1.

Theorem 19. The map α = F · φ · θ is a bijection between Sn( ) and Mn satisfying
that:

• LRmax(π) is the weight of the first row of α(π),

• RLmin(π) is the weight of the last column of α(π),

• RLmax(π) is the number of wNE-cells of α(π),

• LRmin(π) is the number of nonzero cells of α(π) belonging to the main diagonal.

Remark 20. It should be noted that our bijection α does not verify the last item of
Conjecture 1. For example, let π = 85231647. Then we have π−1 = 53472681, θ(π) = x =
01102103 and θ(π−1) = y = 01223131. It is easy to check that asc(x) = 3 and asc(y) = 4.
By Lemma 13, we have dim(φ(x)) = 4 and dim(φ(y)) = 5. This implies that the resulting
matrices α(π) and α(π−1) have different dimensions, and thus α(π−1) 6= F(α(π)).
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