Equidistributed statistics on Fishburn matrices and permutations

Dandan Chen Sherry H.F. Yan*
Department of Mathematics
Zhejiang Normal University Jinhua 321004, P.R. China huifangyan@hotmail.com
Robin D.P. Zhou
College of Mathematics Physics and Information
Shaoxing University
Shaoxing 312000, P.R. China

Submitted: Jun 12, 2018; Accepted: Dec 19, 2018; Published: Jan 25, 2019
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Recently, Jelínek conjectured that there exists a bijection between certain restricted permutations and Fishburn matrices such that the bijection verifies the equidistribution of several statistics. The main objective of this paper is to establish such a bijection.

Mathematics Subject Classifications: 05A15, 05A17, 06A07
Keywords: ascent sequence, pattern avoiding permutation, Fishburn matrix.

1 Introduction

Given a sequence of integers $x=x_{1} x_{2} \cdots x_{n}$, we say that the sequence x has an ascent at position i if $x_{i}<x_{i+1}$. Let $A S C(x)$ denote the set of the ascent positions of x and let $\operatorname{asc}(x)$ denote the number of ascents of x. A sequence $x=x_{1} x_{2} \cdots x_{n}$ is said to be an ascent sequence of length n if it satisfies $x_{1}=0$ and $0 \leqslant x_{i} \leqslant \operatorname{asc}\left(x_{1} x_{2} \cdots x_{i-1}\right)+1$ for all $2 \leqslant i \leqslant n$. Let \mathcal{A}_{n} be the set of ascent sequences of length n. For example,

$$
\mathcal{A}_{3}=\{000,001,010,011,012\} .
$$

[^0]Ascent sequences were introduced by Bousquet-Mélou et al. [1] to unify three other combinatorial structures: $(2+2)$-free posets, a family of permutations avoiding a certain pattern and a class of involutions introduced by Stoimenow [12]. To be specific, Bousquet-Mélou et al. [1] constructed a bijection between ascent sequences and pattern avoiding permutations, a bijection between ascent sequences and (2+2)-free posets and a bijection between $(2+2)$-free posets and Stoimenow's involutions. Dukes and Parviainen [3] completed the results of [1] by constructing a bijection between ascent sequences and Fishburn matrices. Hence, all these combinatorial objects are enumerated by the Fishburn number F_{n} (sequence A022493 in OEIS [10]) for memory of Fishburn's pioneering work on the interval orders $[4,5,6]$. More examples of Fishburn objects are constantly being discovered. Levande [7] introduced the notion of Fishburn diagrams and proved that Fishburn diagrams are counted by Fishburn numbers, confirming a conjecture posed by Claesson and Linusson [2]. Jelínek [8] showed that some Fishburn triples are enumerated by Fishburn numbers.

Zagier [14] and Bousquet-Mélou et al. [1] obtained the generating function of F_{n}, that is

$$
\sum_{n \geqslant 0} F_{n} x^{n}=\sum_{n \geqslant 0} \Pi_{k=1}^{n}\left(1-(1-x)^{k}\right) .
$$

Kitaev and Remmel [9] extended the work and found the generating function for (2+2)-free posets when four statistics are taken into account. Levande [7] and Yan [13] independently presented a combinatorial proof of a conjecture of Kitaev and Remmel [9] concerning the generating function for the number of $(2+2)$-free posets.

Let us recall the notions of pattern avoiding permutations and Fishburn matrices before we state our main results. Let S_{n} be the symmetric group on n elements and $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation of S_{n}. We say that π contains the pattern \because if there is a subsequence $\pi_{i} \pi_{i+1} \pi_{j}$ of π satisfying that $\pi_{i}+1=\pi_{j}<\pi_{i+1}$, otherwise we say that π avoids the pattern $\mathscr{\circ}$. For example, the permutation 42513 contains the pattern while the permutation 52314 avoids it.

The pattern \because can be defined similarly. Let $S_{n}(\nsim)$ be the set of $(\not \overbrace{\circ}^{\circ})$-avoiding permutations of $[n]$ and $S_{n}(\overbrace{\circ})$ be the set of (\because)-avoiding permutations of $[n]$, respectively. These two sets are both enumerated by Fishburn numbers [1, 11]. In a permutation π, we say π_{i} is a left-to-right maximum (or LR-maximum) if π_{i} is larger than any element among $\pi_{1}, \pi_{2}, \ldots, \pi_{i-1}$. Let LRMAX (π) denote the set of LR-maxima of π and let $\operatorname{LRmax}(\pi)$ denote the number of LR-maxima of π. Analogously, we can define LR-minima, RL-maxima, RL-minima of a permutation π. Denote by $\operatorname{LRMIN}(\pi)$, RLMAX (π) and $R L M I N(\pi)$ the set of LR-minima, RL-maxima and RL-minima of π, their cardinalities being denoted by $\operatorname{LRmin}(\pi), R \operatorname{Lmax}(\pi)$ and $R \operatorname{Lmin}(\pi)$, respectively.

Fishburn matrices were introduced by Fishburn [6] to represent interval orders. A Fishburn matrix is an upper triangular matrix with nonnegative integers whose every row
and every column contain at least one non-zero entry. The weight of a matrix is the sum of its entries. Similarly, the weight of a row (or a column) of a matrix is the sum of the entries in this row (or column). Denote by \mathcal{M}_{n} the set of Fishburn matrices of weight n. For example,

$$
\mathcal{M}_{3}=\left\{(3),\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\} .
$$

Given a matrix A, we use the term cell (i, j) of A to refer to the the entry in the i-th row and j-th column of A, and we let $A_{i, j}$ denote its value. We assume that the rows of a matrix are numbered from top to bottom and the columns of a matrix are numbered from left to right in which the topmost row is numbered by 1 and the leftmost column is numbered by 1. A cell (i, j) of a matrix A is said to be zero if $A_{i, j}=0$. Otherwise, it is said to be nonzero. A row (or column) is said be zero if it contains no nonzero cells. Otherwise, it is said to be nonzero row (or column).

A cell (i, j) of a matrix A is a weakly north-east cell (or wNE-cell) if it is a nonzero cell and any other cell weakly north-east from it is a zero cell. More precisely, a nonzero cell (i, j) of a matrix A is a wNE-cell if $A_{s, t}=0$ holds for all $s \leqslant i$ and $t \geqslant j$ and $(s, t) \neq(i, j)$.

Jelínek [8] posed the following conjecture.
Conjecture 1. (See [8], Conjecture 4.1) For every n, there is a bijection α between $S_{n}\left({ }^{\circ \cdot}\right)$ and \mathcal{M}_{n} satisfying that:

- $\operatorname{LRmax}(\pi)$ is the weight of the first row of $\alpha(\pi)$,
- $\operatorname{RLmin}(\pi)$ is the weight of the last column of $\alpha(\pi)$,
- $\operatorname{RLmax}(\pi)$ is the number of wNE-cells of $\alpha(\pi)$,
- LRmin (π) is the number of nonzero cells of $\alpha(\pi)$ belonging to the main diagonal, and
- $\alpha\left(\pi^{-1}\right)$ is obtained from $\alpha(\pi)$ by transposing along the North-East diagonal.

By using generating functions, Jelínek [8] proved the following symmetric joint distribution on \mathcal{M}_{n}.

Theorem 2. (See [8], Theorem 3.7) For any n, the number of $w N E$-cells and the weight of the first row have symmetric joint distribution on \mathcal{M}_{n}.

Jelínek [8] also posed the following weaker conjecture which follows directly from Theorem 2 and Conjecture 1.

Conjecture 3. (See [8], Conjecture 4.2) For any n, LRmax and RLmax have symmetric joint distribution on $S_{n}\left({ }_{\circ}^{\circ}\right)$.

The main objective of this paper is to establish a bijection between $S_{n}\left(\mathscr{H}_{\circ}\right)$ and \mathcal{M}_{n} which satisfies the former four items of Conjecture 1, thereby confirming Conjecture 3.

2 Bijection between permutations and ascent sequences

In this section, we shall construct a bijection θ between $S_{n}\left(\mathscr{H}^{\circ}\right)$ and \mathcal{A}_{n}, and show that the map θ proves the equidistribution of two 4 -tuples of statistics.

Let π be a permutation in $S_{n}\left({ }_{\circ}^{\circ}\right)$ and let τ be the permutation obtained by deleting n from π. Then we have that τ is also a permutation in $S_{n}(\overbrace{\circ}^{\circ})$. If not, we assume that $\tau_{i} \tau_{i+1} \tau_{j}$ is a \because pattern in τ. Since π is (\because)-avoiding, we have $\pi_{i+1}=n$. Then $\pi_{i} \pi_{i+1} \pi_{j+1}$ forms a pattern in π, a contradiction. This property allows us to construct the permutation of $S_{n}\left(\mathscr{H}_{\circ}\right)$ inductively, starting from the empty permutation and adding a new maximal value at each step.

Let τ be a permutation in $S_{n-1}(\overbrace{\dot{\circ}})$. The positions where we can insert the element n into τ to obtain a (\because) -avoiding permutation are called active sites. The site after the maximal entry n in π is always an active site. We label the active sites in π from right to left with $0,1,2$ and so on.

The bijection θ between $S_{n}(\because)$ and \mathcal{A}_{n} can be defined recursively. Set $\theta(1)=0$. Suppose that π is a permutation in $S_{n}\left(\mathscr{H}_{\dot{\circ})}\right.$ which is obtained from τ by inserting the element n into the x_{n}-th active site of τ. Then we set $\theta(\pi)=x_{1} x_{2} \cdots x_{n-1} x_{n}$, where $x_{1} x_{2} \cdots x_{n-1}=\theta(\tau)$.

Example 4. The permutation 85231647 corresponds to the sequence 01102103 since it is obtained by the following insertions, where the subscripts indicate the labels of the active sites.

$$
\begin{aligned}
&{ }_{1} 1_{0} \\
& \quad \xrightarrow{x_{2}=1}{ }_{2} 2_{1} 1_{0} \\
& \xrightarrow{x_{3}=1}{ }_{2} 23_{1} 1_{0} \\
& \xrightarrow{x_{4}=0}{ }_{2} 231_{1} 4_{0} \\
& \xrightarrow{x_{5}=2}{ }_{3} 5_{2} 231_{1} 4_{0} \\
& \xrightarrow{x_{6}=1}{ }_{3} 5231_{2} 6_{1} 4_{0} \\
& \xrightarrow{x_{7}=0}{ }_{3} 5231_{2} 64_{1} 7_{0} \\
& \xrightarrow{x_{8}=3}{ }_{4} 8_{3} 5231_{2} 64_{1} 7_{0} .
\end{aligned}
$$

Lemma 5. Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation in $S_{n}(\nsim)$ and $\theta(\pi)=x=x_{1} x_{2} \cdots x_{n}$. Then we have that

$$
\begin{equation*}
s(\pi)=2+\operatorname{asc}(x) \quad \text { and } \quad a(\pi)=x_{n} \tag{1}
\end{equation*}
$$

where $s(\pi)$ denotes the number of active sites of π and $a(\pi)$ denotes the label of the site located just after the entry n of π.

Proof. Suppose that π is obtained from τ by inserting the element n into the x_{n}-th active site of τ. Then we have $\theta(\tau)=x^{\prime}$, where $x^{\prime}=x_{1} x_{2} \cdots x_{n-1}$. For any entry i which is to the right of n, i is followed by an active site in π if and only if i is followed by an active site in τ. Since the site after n in π is always active, we obtain $a(\pi)=x_{n}$

Now let us focus on the equation $s(\pi)=2+\operatorname{asc}(x)$. We will prove it by induction on n. It obviously holds for $n=1$. Assume that it holds for $n-1$. For any entry $i<n-1$, i is followed by an active site in π if and only if i is followed by an active site in τ. The site after n in π is always an active site. Thus, to determine $s(\pi)$, the only question is whether the site after $n-1$ is active. We need consider two cases.
Case 1: If $0 \leqslant x_{n} \leqslant a(\tau)=x_{n-1}$, then the entry n in π is to the right of $n-1$. It follows that the site after $n-1$ is not an active cite in π. Since the site after $n-1$ is an active site in τ, we have that $s(\pi)=s(\tau)$. By the induction hypothesis, $s(\tau)=2+\operatorname{asc}\left(x^{\prime}\right)=2+\operatorname{asc}(x)$. Hence we deduce that $s(\pi)=2+\operatorname{asc}(x)$.
Case 2: If $x_{n}>a(\tau)=x_{n-1}$, then the entry n in π is to the left of $n-1$. It yields that the site after $n-1$ is also an active cite in π. Hence $s(\pi)=s(\tau)+1$. Since $x_{n}>x_{n-1}$, we have that $\operatorname{asc}(x)=\operatorname{asc}\left(x^{\prime}\right)+1$. By the induction hypothesis, $s(\tau)=2+\operatorname{asc}\left(x^{\prime}\right)$. Thus we have $s(\pi)=2+\operatorname{asc}(x)$. This completes the proof.

Theorem 6. The map θ is a bijection between $S_{n}\left({ }_{\dot{\circ}}\right)$ and \mathcal{A}_{n}.
Proof. We prove this conclusion by induction on n. It obviously holds for $n=1$. Assume that θ is a bijection between $S_{n-1}(\because)$ and \mathcal{A}_{n-1}.

We first show that θ is a map from $S_{n}(\circ)$ to \mathcal{A}_{n}. Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation in $S_{n}(\%)$ which is obtained from τ by inserting a maximal entry n in the active site labeled by x_{n} in τ. Then $\theta(\pi)=x=x_{1} x_{2} \cdots x_{n}$, where $\theta(\tau)=x^{\prime}=x_{1} x_{2} \cdots x_{n-1}$. To prove that $x \in \mathcal{A}_{n}$, it suffices to show that $x_{n} \leqslant \operatorname{asc}\left(x^{\prime}\right)+1$. Recall that the rightmost active site is labeled 0 . Hence the leftmost active site in τ is labeled $s(\tau)-1$. By the recursive description of the map θ, we have that $x_{n} \leqslant s(\tau)-1$. From Lemma 5 we see that $s(\tau)=2+\operatorname{asc}\left(x^{\prime}\right)$. Thus we have $x_{n} \leqslant \operatorname{asc}\left(x^{\prime}\right)+1$. Since x encodes the construction of π, θ is an injective map from $S_{n}\left(\mathscr{H}_{\dot{\circ}}\right)$ to \mathcal{A}_{n}.

It remains to show that θ is surjection. Let $y=y_{1} y_{2} \cdots y_{n}$ be an ascent sequence and $p=p_{1} p_{2} \cdots p_{n-1}=\theta^{-1}\left(y^{\prime}\right)$, where $y^{\prime}=y_{1} y_{2} \cdots y_{n-1}$. From the definition of ascent sequence and Lemma 5 , we have that $y_{n} \leqslant \operatorname{asc}\left(y^{\prime}\right)+1=s(p)-1$. Let q be the permutation obtained from p by inserting the maximal entry n into the active site labeled y_{n} in p. By the construction of the map θ, it can be easily seen that $\theta(q)=y$. This concludes the proof.

Let $x=x_{1} x_{2} \cdots x_{n}$ be an ascent sequence in \mathcal{A}_{n}. The modified ascent sequence of x, denoted by \hat{x}, is defined by the following procedure:
for $i \in A S C(x)$
for $j=1,2, \ldots, i-1$
if $x_{j} \geqslant x_{i+1}$ then $x_{j}:=x_{j}+1$.
For example, for $x=01012213$, we have $A S C(x)=\{1,3,4,7\}$ and $\hat{x}=04012213$. Modified ascent sequences were introduced by Bousquet-Mélou et al., see more details in [1].

For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in S_{n}(\not \because \cdot \dot{\circ})$, let $l\left(\pi_{i}\right)$ be the largest label of the active site to the right of π_{i} and let $L M A X L(\pi)$ be the multiset of $l\left(\pi_{i}\right)$ when π_{i} ranges over all LR-maxima of π. That is

$$
\operatorname{LMAXL}(\pi)=\left\{l\left(\pi_{i}\right) \mid \pi_{i} \in \operatorname{LRMAX}(\pi)\right\} .
$$

Similarly, let

$$
R M A X L(\pi)=\left\{l\left(\pi_{i}\right) \mid \pi_{i} \in R L M A X(\pi)\right\} .
$$

For example, for $\pi=42178536$, its active sites are labeled as ${ }_{4} 421_{3} 78{ }_{2} 53_{1} 6_{0}$. Then we have $\operatorname{RMAXL}(\pi)=\{0,2\}$ and $\operatorname{LMAXL}(\pi)=\{2,2,3\}$.

For an ascent sequence $x=x_{1} x_{2} \cdots x_{n}$, let

$$
Z E R O(x)=\left\{i \mid x_{i}=0\right\}
$$

and

$$
\operatorname{MAX}(x)=\left\{i \mid x_{i}=\operatorname{asc}\left(x_{1} x_{2} \cdots x_{i-1}\right)+1\right\},
$$

with their cardinalities being denoted by zero (x) and $\max (x)$ respectively.
For a sequence $x=x_{1} x_{2} \cdots x_{n}$, let

$$
\begin{aligned}
& \operatorname{RMIN}(x)=\left\{x_{i} \mid x_{i}<x_{j} \text { for all } j>i\right\}, \\
& \operatorname{RMAX}(x)=\left\{x_{i} \mid x_{i} \geqslant x_{j} \text { for all } j>i\right\} .
\end{aligned}
$$

It should be noted that the set $R M A X(x)$ is a multiset. Denote by $R \min (x)$ and $\operatorname{Rmax}(x)$ the cardinalities of the sets $R M I N(x)$ and $R M A X(x)$, respectively. For example, let $x=$ 01012201. We have $\operatorname{RMIN}=\{0,1\}, R M A X=\{1,2,2\}, \operatorname{Rmin}(x)=2$ and $\operatorname{Rmax}(x)=$ 3.

Theorem 7. For any $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in S_{n}\left(\underset{H}{\circ}\right.$) and $x=x_{1} x_{2} \cdots x_{n} \in \mathcal{A}_{n}$ with $\theta(\pi)=x$, we have
(1) $\operatorname{RLMIN}(\pi)=Z E R O(x)$;
(2) $\operatorname{LRMIN}(\pi)=\operatorname{MAX}(x)$;
(3) $\operatorname{RMAXL}(\pi)=\operatorname{RMIN}(x)$;
(4) $\operatorname{LMAXL}(\pi)=\operatorname{RMAX}(\hat{x})$.

Proof. We will prove points (1)-(4) by induction on n. It is easily checked that the statement holds for $n=1$. Assume that it also holds for some $n-1$ with $n \geqslant 2$. Let τ be the permutation which is obtained from π by deleting the largest entry n in π. Then we have that $x^{\prime}=x_{1} x_{2} \cdots x_{n-1}=\theta(\tau)$. From the construction of the bijection θ and the induction hypothesis, one can easily verify that
$R L M I N(\pi)= \begin{cases}R L M I N(\tau) \cup\{n\}=Z E R O\left(x^{\prime}\right) \cup\{n\}=Z E R O(x) & \text { if } x_{n}=0, \\ \operatorname{RLMIN}(\tau)=Z E R O\left(x^{\prime}\right)=Z E R O(x) & \text { otherwise },\end{cases}$
$\operatorname{LRMIN}(\pi)= \begin{cases}\operatorname{LRMIN}(\tau)=\operatorname{MAX}\left(x^{\prime}\right)=\operatorname{MAX}(x) & \text { if } x_{n} \leqslant \operatorname{asc}\left(x^{\prime}\right), \\ \operatorname{LRMIN}(\tau) \cup\{n\}=\operatorname{MAX}\left(x^{\prime}\right) \cup\{n\}=\operatorname{MAX}(x) & \text { if } x_{n}=\operatorname{asc}\left(x^{\prime}\right)+1,\end{cases}$
and

$$
\begin{aligned}
R M A X L(\pi) & =\left\{i \mid i \in R M A X L(\tau), i<x_{n}\right\} \cup\left\{x_{n}\right\} \\
& =\left\{i \mid i \in R M I N\left(x^{\prime}\right), i<x_{n}\right\} \cup\left\{x_{n}\right\} \\
& =\operatorname{RMIN}(x) .
\end{aligned}
$$

For point (4), we consider two cases. If $x_{n} \leqslant x_{n-1}$, then n is to the right of $n-1$ in π. Notice that all the LR-maxima in τ are also LR-maxima in π. One can easily check that $L M A X L(\pi)=\operatorname{LMAXL}(\tau) \cup\left\{x_{n}\right\}$ and $R M A X(\hat{x})=R M A X\left(\hat{x^{\prime}}\right) \cup\left\{x_{n}\right\}$. By the induction hypothesis, we have

$$
L M A X L(\pi)=L M A X L(\tau) \cup\left\{x_{n}\right\}=R M A X\left(\hat{x^{\prime}}\right) \cup\left\{x_{n}\right\}=R M A X(\hat{x})
$$

If $x_{n}>x_{n-1}$, then n is to the left of $n-1$ in π. In this case, τ_{i} is a LR-maximum in π if and only if τ_{i} is a LR-maximum in τ and $l\left(\tau_{i}\right) \geqslant x_{n}$. After the inserting n into $\tau, l\left(\tau_{i}\right)$ is increased by 1 if τ_{i} is also a LR-maximum in π. Hence we have that

$$
L M A X L(\pi)=\left\{i+1 \mid i \in L M A X L(\tau), i \geqslant x_{n}\right\} \cup\left\{x_{n}\right\} .
$$

From the definition of the modified ascent sequence, it follows that

$$
\operatorname{RMAX}(\hat{x})=\left\{i+1 \mid i \in \operatorname{RMAX}\left(\hat{x^{\prime}}\right), i \geqslant x_{n}\right\} \cup\left\{x_{n}\right\} .
$$

By the induction hypothesis, we immediately deduce that $L M A X L(\pi)=R M A X(\hat{x})$ as desired. This completes the proof.

Combining Theorems 6 and 7 , we are led to the following result.
Theorem 8. The map θ is a bijection between $S_{n}(\because)$ and \mathcal{A}_{n}. Moreover, for any $\pi \in S_{n}(\nleftarrow)$ and $x \in \mathcal{A}_{n}$ with $\theta(\pi)=x$, we have

$$
(R L \min , L R \min , R L \max) \pi=(\text { zero }, \max , R \min) x
$$

and $\operatorname{LRmax}(\pi)=\operatorname{Rmax}(\hat{x})$.

3 Bijection between ascent sequences and Fishburn matrices

The main objective of this section is to establish a bijection ϕ between \mathcal{A}_{n} and \mathcal{M}_{n}. To this end, we will define a removal operation and an addition operation on the matrices of \mathcal{M}_{n}.

Given a matrix A in \mathcal{M}_{n}, let $\operatorname{dim}(A)$ denote the number of rows of the matrix A and let $\operatorname{index}(A)$ denote the smallest value of i such that $A_{i, \operatorname{dim}(A)}>0$. Denote by $\operatorname{rsum}_{i}(A)$ and $\operatorname{csum}_{i}(A)$ the sum of the entries in row i and column i of A, respectively. We define a removal operation f on a given matrix $A \in \mathcal{M}_{n}$ as follows.
(Rem1) If $\operatorname{rsum}_{\text {index }(A)}(A)>1$, let $f(A)$ be the matrix A with the entry $A_{\text {index }(A), \operatorname{dim}(A)}$ reduced by 1 .
$(\operatorname{Rem} 2)$ If $\operatorname{rsum}_{\operatorname{index}(A)}(A)=1$ and $\operatorname{index}(A)=\operatorname{dim}(A)$, then let $f(A)$ be the matrix A with row $\operatorname{dim}(A)$ and column $\operatorname{dim}(A)$ removed.
(Rem3) If $\operatorname{rsum}_{\operatorname{index}(A)}(A)=1$ and $\operatorname{index}(A)<\operatorname{dim}(A)$, then we construct $f(A)$ in the following way. Let S be the set of indices j such that $j \geqslant \operatorname{index}(A)$ and column j contains at least one nonzero entry above row index (A). Suppose that $S=\left\{c_{1}, c_{2}, \ldots, c_{\ell}\right\}$ with $c_{1}<c_{2} \ldots<c_{\ell}$. Clearly we have $c_{1}=\operatorname{index}(A)$. Let $c_{\ell+1}=\operatorname{dim}(A)$. For all $1 \leqslant i<\operatorname{index}(A)$ and $1 \leqslant j \leqslant \ell$, move all the entries in the cell $\left(i, c_{j}\right)$ to the cell $\left(i, c_{j+1}\right)$. Simultaneously delete row $\operatorname{index}(A)$ and column index (A).

Example 9. Let A, B, C be the following three Fishburn matrices:

$$
A=\left(\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right) ; \quad B=\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) ; \quad C=\left(\begin{array}{ccccc}
2 & 4 & 1 & 3 & 0 \\
0 & 5 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 2
\end{array}\right) .
$$

For Matrix A, rule $(\operatorname{Rem} 1)$ is applied since $\operatorname{rsum}_{\text {index }(A)}(A)=3$ and

$$
f(A)=\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

For Matrix B, since $\operatorname{rsum}_{\operatorname{index}(B)}(B)=1$ and $\operatorname{index}(B)=\operatorname{dim}(B)$, rule $(\operatorname{Rem} 2)$ is applied and

$$
f(B)=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

For matrix C, since $\operatorname{rsum}_{\operatorname{index}(C)}(C)=1$ and $\operatorname{index}(C)<\operatorname{dim}(C)$, rule (Rem3) is applied. It is easy to check that $S=\{3,4\}$, and thus we have

$$
f(C)=\left(\begin{array}{llll}
2 & 4 & 1 & 3 \\
0 & 5 & 2 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

The following lemma shows that the removal operation on a Fishburn matrix of \mathcal{M}_{n} will yield a Fishburn matrix in \mathcal{M}_{n-1}.

Lemma 10. Let $n \geqslant 2$ be an integer and $A \in \mathcal{M}_{n}$, then we have that $f(A) \in \mathcal{M}_{n-1}$.
Proof. It is easily seen that for any removal operation applied on the matrix A, the weight of $f(A)$ is one less than the weight of A. It is trivial to check that there exists no zero columns or rows in $f(A)$. Moreover, the removal operation also preserves the property of being upper-triangular. Thus, $f(A) \in \mathcal{M}_{n-1}$. This completes the proof.

Lemma 10 tells us that for any $A \in \mathcal{M}_{n}$, after n applications of the removal operation f to A, we will get a sequence of Fishburn matrices, say $A^{(1)}, A^{(2)}, \ldots, A^{(n)}$, where $A^{(k-1)}=$ $f\left(A^{(k)}\right)$ for all $1<k \leqslant n$ and $A^{(n)}=A$. Define $\psi(A)=x=x_{1} x_{2} \ldots x_{n}$ where $x_{k}=$ index $\left(A^{(k)}\right)-1$.

We now define an addition operation g on a Fishburn matrix which is shown to be the inverse of the removal operation later. Given a matrix $A \in \mathcal{M}_{n}$ and $i \in[0, \operatorname{dim}(A)]$, We construct a matrix $g(A, i)$ in the following manner.
(Add1) If $0 \leqslant i \leqslant \operatorname{index}(A)-1$, then let $g(A, i)$ be the matrix obtained from A by increasing the entry in the cell $(i+1, \operatorname{dim}(A))$ by 1 .
(Add2) If $i=\operatorname{dim}(A)$, then let $g(A, i)$ be the matrix $\left(\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right)$.
(Add3) If $\operatorname{index}(A) \leqslant i<\operatorname{dim}(A)$, then we construct $g(A, i)$ in the following way. In A, insert a new (empty) row between rows i and $i+1$, and insert a new (empty) column between columns i and $i+1$. Let the new row be filled with all zeros except for the rightmost cell which is filled with a 1 . Denote by A^{\prime} the resulting matrix. Let T be the set of indices j such that $j \geqslant i+1$ and column j contains at least one nonzero cell above row $i+1$. Suppose that $T=\left\{c_{1}, c_{2}, \ldots, c_{\ell}\right\}$. Clearly we have $c_{\ell}=\operatorname{dim}\left(A^{\prime}\right)$. Let $c_{0}=i+1$. For all $1 \leqslant a \leqslant i$ and $1 \leqslant b \leqslant \ell$, move all the entries in the cell $\left(a, c_{b}\right)$ to the cell $\left(a, c_{b-1}\right)$, and fill all the cells which are in column $\operatorname{dim}\left(A^{\prime}\right)$ and above row $i+1$ with zeros.

Example 11. Consider the matrix

$$
A=\left(\begin{array}{llll}
2 & 4 & 0 & 3 \\
0 & 5 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Obviously, we have $\operatorname{dim}(A)=4$ and $\operatorname{index}(A)=1$. For $i=0$, since $i \leqslant \operatorname{index}(A)-1$, rule (Add1) applies and we get

$$
g(A, 0)=\left(\begin{array}{llll}
2 & 4 & 0 & 4 \\
0 & 5 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

For $i=4$, since $i=\operatorname{dim}(A)$, rule (Add2) applies and we get

$$
g(A, 4)=\left(\begin{array}{lllll}
2 & 4 & 0 & 3 & 0 \\
0 & 5 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

For $i=1$, since $\operatorname{index}(A) \leqslant i<\operatorname{dim}(A)$, rule (Add3) applies and we get

$$
A^{\prime}=\left(\begin{array}{lllll}
2 & \mathbf{0} & 4 & 0 & 3 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
0 & \mathbf{0} & 5 & 0 & 2 \\
0 & \mathbf{0} & 0 & 1 & 3 \\
0 & \mathbf{0} & 0 & 0 & 2
\end{array}\right)
$$

where the new inserted row and column are illustrated in bold. Then we have $T=\{3,5\}$. Finally, we get

$$
g(A, 1)=\left(\begin{array}{ccccc}
2 & 4 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 5 & 0 & 2 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

By similar arguments as in the proof of Lemma 10, one can easily verify that the addition operation will also yield a Fishburn matrix.

Lemma 12. For any matrix $A \in \mathcal{M}_{n-1}$ and $i \in[0, \operatorname{dim}(A)]$, we have that $g(A, i) \in \mathcal{M}_{n}$.
We now define a map ϕ from \mathcal{A}_{n} to \mathcal{M}_{n} recursively as follows. Given an ascent sequence $x=x_{1} x_{2} \ldots, x_{n}$, we define $A^{(1)}=(1)$ and $A^{(k)}=g\left(A^{(k-1)}, x_{k}\right)$ for all $1<k \leqslant n$. Set $\phi(x)=A^{(n)}$.

Next we aim to show that the map ϕ is well defined and has the following desired properties.

Lemma 13. For any $x=x_{1} x_{2} \cdots x_{n} \in \mathcal{A}_{n}$, we have $\phi(x) \in \mathcal{M}_{n}$ satisfying $\operatorname{dim}(\phi(x))=$ $\operatorname{asc}(x)+1$ and $\operatorname{index}(\phi(x))=x_{n}+1$.

Proof. We will prove by induction on n. It is trivial to check that the statement holds for $n=1$. Assume that it also holds for $n-1$, that is,

$$
\phi\left(x^{\prime}\right) \in \mathcal{M}_{n-1}, \operatorname{dim}\left(\phi\left(x^{\prime}\right)\right)=\operatorname{asc}\left(x^{\prime}\right)+1 \text { and } \operatorname{index}\left(\phi\left(x^{\prime}\right)\right)=x_{n-1}+1,
$$

where $x^{\prime}=x_{1} x_{2} \cdots x_{n-1}$. Since $0 \leqslant x_{n} \leqslant \operatorname{asc}\left(x^{\prime}\right)+1=\operatorname{dim}\left(\phi\left(x^{\prime}\right)\right)$, from Lemma 12 we see that $\phi(x)=g\left(\phi\left(x^{\prime}\right), x_{n}\right) \in \mathcal{M}_{n}$. From the construction of the addition operation, one can easily verify that $\operatorname{index}(\phi(x))=x_{n}+1$ and

$$
\operatorname{dim}(\phi(x))= \begin{cases}\operatorname{dim}\left(\phi\left(x^{\prime}\right)\right)=\operatorname{asc}\left(x^{\prime}\right)+1=\operatorname{asc}(x)+1 & \text { if } x_{n} \leqslant x_{n-1} \\ \operatorname{dim}\left(\phi\left(x^{\prime}\right)\right)+1=\operatorname{asc}\left(x^{\prime}\right)+2=\operatorname{asc}(x)+1 & \text { if } x_{n}>x_{n-1}\end{cases}
$$

The result follows.
For a matrix A, let $N E(A)=\{i-1 \mid$ row i contains a wNE-cell $\}$ and let ne (A) denote the number of wNE-cells of A. Denote by $\operatorname{diag}(A)$ the number of nonzero cells belonging to the main diagonal of A. Let $\operatorname{LAST}(A)$ be the multiset of integers such that there are exactly c occurrences of i if and only if $A_{i+1, \operatorname{dim}(A)}=c$ and $c>0$.

Theorem 14. For any $x=x_{1} x_{2} \cdots x_{n} \in \mathcal{A}_{n}$ and $A \in \mathcal{M}_{n}$ with $A=\phi(x)$, we have the following relations.
(1) $\operatorname{zero}(x)=\operatorname{rsum}_{1}(A)$;
(2) $\max (x)=\operatorname{diag}(A)$;
(3) $\operatorname{RMIN}(x)=N E(A)$;
(4) $\operatorname{RMAX}(\hat{x})=\operatorname{LAST}(A)$;
(5) $\operatorname{Rmin}(x)=n e(A)$;
(6) $\operatorname{Rmax}(\hat{x})=\operatorname{csum}_{\operatorname{dim}(A)}(A)$.

Proof. Points (5) and (6) follow directly from points (3) and (4). Now we verify points (1)-(4) by induction on n. Clearly, the statement holds for $n=1$. Assume that it also holds for any some $n-1$ with $n \geqslant 2$. Let $x^{\prime}=x_{1} x_{2} \cdots x_{n-1}$ and $B=\phi\left(x^{\prime}\right)$. Recall that $A=g\left(B, x_{n}\right)$. From the definition of the addition operation g and the induction hypothesis, it is not difficult to verify that

$$
\operatorname{rsum}_{1}(A)= \begin{cases}\operatorname{rsum}_{1}(B)+1=\operatorname{zero}\left(x^{\prime}\right)+1=\operatorname{zero}(x) & \text { if } x_{n}=0 \\ \operatorname{rsum}_{1}(B)=\operatorname{zero}\left(x^{\prime}\right)=\operatorname{zero}(x) & \text { otherwise }\end{cases}
$$

and

$$
\operatorname{diag}(A)= \begin{cases}\operatorname{diag}(B)=\max \left(x^{\prime}\right)=\max (x) & \text { if } x_{n} \leqslant \operatorname{asc}\left(x^{\prime}\right) \\ \operatorname{diag}(B)+1=\max \left(x^{\prime}\right)+1=\max (x) & \text { if } x_{n}=\operatorname{asc}\left(x^{\prime}\right)+1\end{cases}
$$

For point (3), from the construction of the addition operation g, we see that the cell $\left(x_{n}+1, \operatorname{dim}(A)\right)$ is always a wNE-cell. Moreover, there is a wNE-cell in row i of A if and only if there is a wNE-cell in row i of B and $i<x_{n}+1$. This yields that

$$
\begin{aligned}
N E(A) & =\left\{i \mid i \in N E(B), i<x_{n}\right\} \cup\left\{x_{n}\right\} \\
& =\left\{i \mid i \in \operatorname{RMIN}\left(x^{\prime}\right), i<x_{n}\right\} \cup\left\{x_{n}\right\} \\
& =\operatorname{RMIN}(x) .
\end{aligned}
$$

For point (4), we have two cases.
If $x_{n} \leqslant x_{n-1}=\operatorname{index}(B)-1$, then rule (Add1) applies. It is trivial to check that $R M A X(\hat{x})=R M A X\left(\hat{x^{\prime}}\right) \cup\left\{x_{n}\right\}$ and $\operatorname{LAST}(A)=\operatorname{LAST}(B) \cup\left\{x_{n}\right\}$.

If $x_{n}>x_{n-1}=\operatorname{index}(B)-1$, then either rule (Add2) or rule (Add3) applies. It is not difficult to verify that

$$
R M A X(\hat{x})=\left\{i+1 \mid i \in R M A X\left(\hat{x^{\prime}}\right), i \geqslant x_{n}\right\} \cup\left\{x_{n}\right\}
$$

and

$$
\operatorname{LAST}(A)=\left\{i+1 \mid i \in \operatorname{LAST}(B), i \geqslant x_{n}\right\} \cup\left\{x_{n}\right\} .
$$

By the induction hypothesis, we have concluded that $R M A X(\hat{x})=\operatorname{LAST}(A)$. This completes the proof.

Lemma 15. For any $x=x_{1} x_{2} \cdots x_{n} \in \mathcal{A}_{n}$, we have $\psi(\phi(x))=x$.
Proof. Suppose that we get a sequence of matrices $A^{(1)}, A^{(2)}, \ldots, A^{(n)}$ when we apply the $\operatorname{map} \phi$ to x, where $A^{(1)}=(1)$ and $A^{(k)}=g\left(A^{(k-1)}, x_{k}\right)$ for all $1<k \leqslant n$. Similarly, suppose that when we apply the map ψ to $\phi(x)$, we get a sequence $y=y_{1} y_{2} \cdots y_{n}$ and a sequence of matrices $B^{(1)}, B^{(2)}, \ldots, B^{(n)}$, where $B^{(n)}=\phi(x), B^{(k)}=f\left(B^{(k+1)}\right)$ for all $1 \leqslant k<n$, and $y_{k}=\operatorname{index}\left(B^{(k)}\right)-1$. Lemma 13 ensures that $\operatorname{index}\left(A^{(k)}\right)=x_{k}+1$. In order to prove $x=y$, it suffices to show that $A^{(k)}=B^{(k)}$ for all $1 \leqslant k \leqslant n$. We proceed to prove this assertion by induction on n. Clearly, we have $B^{(n)}=\phi(x)=A^{(n)}$. Assume that we have $A^{(j)}=B^{(j)}$ for all $j \geqslant k+1$. In the following we aim to show that $A^{(k)}=B^{(k)}$. By the induction hypothesis, it suffices to show that $f\left(A^{(k+1)}\right)=A^{(k)}$. We have three cases.

Let us assume that $0 \leqslant x_{i+1}<\operatorname{index}\left(A^{(k)}\right)$. Then rule (Add1) applies and $A^{(k+1)}$ is simply a copy of $A^{(k)}$ with the entry in the cell $\left(x_{i+1}+1, \operatorname{dim}\left(A^{(k)}\right)\right)$ increased by one. Clearly, we have $\operatorname{dim}\left(A^{(k)}\right)=\operatorname{dim}\left(A^{k+1}\right)$, $\operatorname{index}\left(A^{(k+1)}\right)=x_{i+1}+1$ and $\operatorname{rsum}_{x_{i+1}+1}\left(A^{(k+1)}\right)>1$. So rule (Rem1) applies and $f\left(A^{(k+1)}\right)$ is obtained from $A^{(k+1)}$ by decreasing the the entry in the cell $\left(x_{i+1}+1, \operatorname{dim}\left(A^{(k+1)}\right)\right)$ by one. Thus we have $f\left(A^{(k+1)}\right)=A^{(k)}$.

Next assume that $x_{i+1}=\operatorname{dim}\left(A^{(k)}\right)$. Then rule (Add2) applies and $A^{(k+1)}=\left(\begin{array}{cc}A^{(k)} & 0 \\ 0 & 1\end{array}\right)$. In this case, we have $\operatorname{index}\left(A^{(k+1)}\right)=x_{i+1}+1=\operatorname{dim}\left(A^{(k+1)}\right)$ and $\operatorname{rsum}_{x_{i+1}+1}\left(A^{(k+1)}\right)=$ 1. So rule (Rem2) applies and $f\left(A^{(k+1)}\right)$ is obtained from $A^{(k+1)}$ by removing column $\operatorname{dim}\left(A^{(k+1)}\right)$ and row $\operatorname{dim}\left(A^{(k+1)}\right)$. Thus we have $f\left(A^{(k+1)}\right)=A^{(k)}$.

If $\operatorname{index}\left(A^{(k)}\right) \leqslant x_{i+1}<\operatorname{dim}\left(A^{(k)}\right)$, then rule (Add3) applies and $A^{(k+1)}$ is obtained from $A^{(k)}$ in the following way. First we insert a new (empty) row between rows x_{i+1} and $x_{i+1}+1$, and insert a new (empty) column between columns x_{i+1} and $x_{i+1}+1$. Let the new row be filled with all zeros except for the rightmost cell which is filled with a 1 . Denote by A^{\prime} the resulting matrix. Let T be the set of indices j such that $j \geqslant x_{i+1}+1$ and column j contains at least one nonzero cell above row $x_{i+1}+1$. Suppose that $T=\left\{c_{1}, c_{2}, \ldots, c_{\ell}\right\}$ with $c_{1}<c_{2}<\ldots<c_{\ell}$. Let $c_{0}=x_{i+1}+1$. For all $1 \leqslant a \leqslant x_{i+1}$ and $1 \leqslant b \leqslant \ell$, move all the entries in the cell $\left(a, c_{b}\right)$ to the cell $\left(a, c_{b-1}\right)$, and fill all the cells in column $\operatorname{dim}\left(A^{\prime}\right)$ and above row $x_{i+1}+1$ with zeros. It is easy to check that $\operatorname{dim}\left(A^{(k+1)}\right)=\operatorname{dim}\left(A^{(k)}\right)+1, \operatorname{index}\left(A^{(k+1)}\right)=x_{i+1}+1$ and $\operatorname{rsum}_{x_{i+1}+1}\left(A^{(k+1)}\right)=1$. So rule (Rem3) applies and $f\left(A^{(k+1)}\right)$ is obtained from $A^{(k+1)}$ by the following procedure. Let S be the set of indices j such that $j \geqslant x_{i+1}+1$ and column j contains at least one nonzero entry above row $x_{i+1}+1$. It is not difficult to check that $S=\left\{c_{0}, c_{1}, c_{2}, \ldots, c_{\ell-1}\right\}$. Let $c_{\ell}=\operatorname{dim}\left(A^{(k+1)}\right)$. For all $1 \leqslant a<x_{i+1}+1$ and $1 \leqslant b \leqslant \ell-1$, move all the entries in the cell $\left(a, c_{b}\right)$ to the cell $\left(a, c_{b+1}\right)$. Simultaneously delete row $x_{i+1}+1$ and column $x_{i+1}+1$. These operations simply reverse the construction of $A^{(k+1)}$ from $A^{(k)}$, and therefore $f\left(A^{(k+1)}\right)=A^{(k)}$. This completes the proof.

Theorem 16. The map ϕ is a bijection between \mathcal{A}_{n} and \mathcal{M}_{n}. Moreover, for any $x \in \mathcal{A}_{n}$ and $A \in \mathcal{M}_{n}$ with $\phi(x)=A$, we have

$$
(\text { zero }, \max , \text { Rmin }) x=\left(\text { rsum }_{1}, \text { diag }, \text { ne }\right) A
$$

and $\operatorname{Rmax}(\hat{x})=\operatorname{csum}_{\operatorname{dim}(A)}(A)$.
Proof. By Theorem 14, it remains to show that ϕ is a bijection. Lemma 15 tells us that if $\phi(x)=\phi(y)$ then we have $x=y$ for any $x, y \in \mathcal{A}_{n}$, and thus ϕ is injective. And, by cardinality reasons, it follows that ϕ is bijective. This completes the proof.

Remark 17. Dukes and Parviainen [3] defined a bijection Γ between \mathcal{A}_{n} and \mathcal{M}_{n}, and showed that the bijection Γ proves the equidistribution of two triples of statistics, that is,

$$
(z e r o, \max) x=\left(\text { rsum }_{1}, \operatorname{diag}\right) \Gamma(x)
$$

and $\operatorname{Rmax}(\hat{x})=\operatorname{csum}_{\operatorname{dim}(\Gamma(x))} \Gamma(x)$. But unlike our bijection ϕ, the bijection Γ does not transform Rmin to $n e$. Our bijection ϕ is constructed in the sprit of Γ, and the two bijections are different from each other in the definition of rule (Add3) of the addition operation.

Combining Theorems 2 and 16, we are led to the following symmetric joint distribution on ascent sequences.

Corollary 18. For any n, the statistics zero and Rmin have symmetric joint distribution on \mathcal{A}_{n}.

Given a matrix $A \in \mathcal{M}_{n}$, the flip of A, denoted by $\mathcal{F}(A)$, is the matrix obtained from A by transposing along the North-East diagonal. It is not difficult to check that for any $A \in \mathcal{M}_{n}$, we have $\mathcal{F}(A) \in \mathcal{M}_{n}$ satisfying that

$$
\left(\text { rsum }_{1}, \operatorname{diag}, n e, \operatorname{csum}_{\operatorname{dim}(A)}\right) A=\left(\operatorname{csum}_{\operatorname{dim}(\mathcal{F}(A))}, \operatorname{diag}, n e, \operatorname{rsum}_{1}\right) \mathcal{F}(A) .
$$

In view of Theorems 8 and 16 , we are led to the following result, confirming the former four items of Conjecture 1.

Theorem 19. The map $\alpha=\mathcal{F} \cdot \phi \cdot \theta$ is a bijection between $S_{n}(\overbrace{\bullet}^{\circ})$ and \mathcal{M}_{n} satisfying that:

- LRmax (π) is the weight of the first row of $\alpha(\pi)$,
- $R \operatorname{Lmin}(\pi)$ is the weight of the last column of $\alpha(\pi)$,
- $R \operatorname{Lmax}(\pi)$ is the number of $w N E$-cells of $\alpha(\pi)$,
- LRmin (π) is the number of nonzero cells of $\alpha(\pi)$ belonging to the main diagonal.

Remark 20. It should be noted that our bijection α does not verify the last item of Conjecture 1. For example, let $\pi=85231647$. Then we have $\pi^{-1}=53472681, \theta(\pi)=x=$ 01102103 and $\theta\left(\pi^{-1}\right)=y=01223131$. It is easy to check that $\operatorname{asc}(x)=3$ and $\operatorname{asc}(y)=4$. By Lemma 13, we have $\operatorname{dim}(\phi(x))=4$ and $\operatorname{dim}(\phi(y))=5$. This implies that the resulting matrices $\alpha(\pi)$ and $\alpha\left(\pi^{-1}\right)$ have different dimensions, and thus $\alpha\left(\pi^{-1}\right) \neq \mathcal{F}(\alpha(\pi))$.

Acknowledgements

We are grateful to the anonymous referee for his/her helpful comments and suggestions. This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LQ17A010004) and the National Science Foundation of China (11671366 and 11626158).

References

[1] M. Bousquet-Mélou, A. Claesson, M. Dukes, S. Kitaev. $(2+2)$-free posets, ascent sequences and pattern avoiding permutations. J. Combin. Theory Ser. A, 117:884909, 2010.
[2] A. Claesson, S. Linusson. n! matching, n! posets. Proc. Amer. Math. Soc., 139:435449, 2011.
[3] M. Dukes, R. Parviainen. Ascent sequences and upper triangular matrices containing non-negative integers. Electron. J. Combin., 17:\#R53, 2010.
[4] P.C. Fishburn. Intransitive indifference with unequal indifference intervals. J. Math. Psych., 7(1):144-149, 1970.
[5] P.C. Fishburn. Inteval graphs and interval orders. Discrete Math., 55(2):135-149, 1985.
[6] P.C. Fishburn. Interval orders and interval graphs: a study of partially ordered sets. John Wiley \& Sons, 1985.
[7] P. Levande. Fishburn diagrams, Fishburn numbers and their refined generating functions. J. Combin. Theory Ser. A, 120 (1):194-217, 2013.
[8] V. Jelínek. Catalan pairs and Fishburn triples. Adv. Appl. Math., 70:1-31, 2015.
[9] S. Kitaev, J. Remmel. Enumerating $(2+2)$-free poset by the number of minimal elements and other statistics. Discrete Appl. Math., 159(17):2098-2108, 2011.
[10] N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences.
[11] R. Parviainen. Wilf classification of bi-vincular permutation patterns. arXiv:0910.5103v2.
[12] A. Stoimenow. Enumeration of chord diagrams and an upper bound for Vassiliev invariants. J. Knot Theory Ramifications, 7:93-114, 1998.
[13] S.H.F. Yan. On a conjecture about enumerating $(2+2)$-free posets. European J. Combin., 32:282-287, 2011.
[14] D. Zagier. Vassiliev invariants and a strange identity ralated to the Dedekind etafunction. Topology, 40(5):945-960, 2001.

[^0]: *Corresponding author.

