
The Overgraphs of

Generalized Cospectral Controllable Graphs

Alexander Farrugia
Department of Mathematics

University of Malta Junior College
Msida, Malta.

alex.farrugia@um.edu.mt

Submitted: May 20, 2018; Accepted: Jan 9, 2019; Published: Jan 25, 2019

c©The author. Released under the CC BY-ND license (International 4.0).

Abstract

Two graphs are said to be generalized cospectral if they have the same charac-
teristic polynomials and so do their complements. A graph is controllable if its walk
matrix is nonsingular; equivalently, if all the eigenvalues of its adjacency matrix are
simple and main. A graph H on (n+1) vertices is an overgraph of another graph G
on n vertices if G is a vertex–deleted subgraph of H. We prove that no two distinct
overgraphs of a controllable graph are generalized cospectral; this strengthens an
earlier result that stated that no two such overgraphs are isomorphic. Moreover,
we present methods that produce pairs of generalized cospectral graphs G′ and H ′

starting from a pair of generalized cospectral, non-isomorphic, controllable graphs
G and H. We show that if G′ and H ′ are controllable, then they are non-isomorphic.

Mathematics Subject Classifications: 05C50

1 Introduction

Only simple graphs are considered in this paper. Let G be a graph with vertex set
V (G) = {1, 2, . . . , n}. Any two distinct vertices of G are joined by an edge in the com-
plement G of G if and only if they are not joined by an edge in G. Two graphs G and H
are isomorphic if there exists a one-to-one mapping σ : V (G)→ V (H) such that any two
vertices u and v are joined by an edge in G if and only if the vertices σ(u) and σ(v) are
joined by an edge in H.

The adjacency matrix of a graph G, denoted by AG, is the n × n matrix where, for
i, j = 1, 2, . . . , n, the entry in the ith row and the jth column is 1 if the vertices i and j are
joined by an edge in G and is 0 otherwise. The characteristic polynomial φ(G, x) of G is
the determinant of xI−AG, where I is the identity matrix. The n roots of φ(G, x), with
possible repetitions, are the eigenvalues of G. The number of distinct eigenvalues of G is
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denoted by s. The multiset spec(G) containing the n eigenvalues of G is the spectrum of
G. The generalized spectrum of G is the ordered pair

(
spec(G), spec(G)

)
.The multiplicity

of a particular eigenvalue of G is the number of times it is repeated as a root of φ(G, x).
If this multiplicity is one, then the eigenvalue is simple. An eigenvector associated with
the eigenvalue λ of G is a nonzero vector x that satisfies AGx = λx. Such an eigenvector
is main if the sum of its entries is not zero. A main eigenvalue is an eigenvalue that has
an associated main eigenvector.

Two graphs G and H are cospectral if φ(G, x) = φ(H, x). Moreover, they are said
to be generalized cospectral if φ(G, x) = φ(H, x) and φ(G, x) = φ(H, x), that is, if G
and H are cospectral and so are their complements G and H. We say that a graph G is
determined by its (generalized) spectrum if, whenever G shares its (generalized) spectrum
with another graph H, then G is isomorphic to H.

The study of graphs determined by their spectrum has several applications. One of
them is the graph isomorphism problem, which is not known whether it is solvable in
polynomial time or whether it is NP-complete. However, determining the spectrum of a
graph is solvable in polynomial time, and clearly two graphs that have different generalized
spectra are non-isomorphic. Unfortunately, the reverse is not true; in fact, there exist
non-isomorphic pairs of graphs that are generalized cospectral. Indeed, using the new
results of this paper, we generated hundreds of non-isomorphic, generalized cospectral
graphs, starting from just one pair of cospectral graphs having cospectral complements.
Other methods that produce pairs of cospectral graphs are Seidel switching [14, 18] and
Godsil–McKay switching [9]. Further reasons for studying cospectral graphs and graphs
determined by their spectrum include their applications in Hückel theory in chemistry
[10] and determining structural information of graphs from their spectra [1].

A controllable graph is a graph whose eigenvalues are all simple and main. Before con-
trollable graphs (on n vertices) were given their nomenclature, they featured in the paper
[23] as the class of graphs Gn. In [22, 23], it was proved that certain subclasses of Gn are
determined by their generalized spectrum. Other references do not focus on controllable
graphs but still describe classes of graphs that are determined by their spectrum; for a
survey of results on such graphs, the reader is referred to [20, 21].

The relatively recent discovery in [15] that almost all graphs are controllable has per-
haps given more evidence for the conjecture in [20] that almost all graphs are determined
by their generalized spectrum1. This conjecture is also backed up by computer enumera-
tions of graphs on up to 12 vertices [2]. However, it is known that this conjecture is false
for some classes of graphs, like trees [17] and strongly regular graphs [21]. Hence, there are
results in the literature which support this conjecture and others that seemingly oppose
it. In this paper, we are ‘on the fence’ about this matter. On one hand, we show that
the 2n overgraphs of a controllable graph on n vertices have distinct generalized spectra,
while on the other, we describe a method that produces numerous pairs of generalized
cospectral graphs from a single pair of non-isomorphic, generalized cospectral graphs.

After a few further definitions and preliminary results in Section 2, we remind the

1The statement ‘almost all graphs have property X’ means ‘the probability of choosing a graph on n
vertices having property X approaches 1 as n increases’.
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reader of the results by Johnson and Newman [12] and Wang and Xu [23] on generalized
cospectral graphs in Section 3. We then present necessary and sufficient conditions for
a pair of cospectral graphs to have cospectral overgraphs in Section 4. The main results
of this paper are in Section 5, where we demonstrate necessary and sufficient criteria for
pairs of generalized cospectral graphs to have generalized cospectral overgraphs. These
conditions are used to prove the results mentioned in the last sentence of the previous para-
graph. In Section 6, we apply our results to a single pair of controllable, non-isomorphic,
generalized cospectral graphs on 8 vertices G and H to produce 17 pairs of non-isomorphic,
generalized cospectral, controllable graphs on 9 vertices and 525 pairs of non-isomorphic,
generalized cospectral, controllable graphs on 10 vertices. In our work, we chose G and
H to be controllable graphs, because, in doing so, any pairs of generalized cospectral
controllable graphs generated by our method are guaranteed to be non-isomorphic. The
techniques in this paper may be used to easily create further pairs of non-isomorphic,
generalized cospectral graphs having more vertices.

2 Preliminaries

The columns of the identity matrix I are e1, . . . , en. An orthogonal matrix Q is a square
matrix that satisfies QTQ = I, where QT denotes the transpose of Q. A permutation
matrix is an n× n matrix whose columns are a permutation of the n columns e1, . . . , en.
Clearly permutation matrices are orthogonal. The n× 1 vector of all ones is denoted by
j, or sometimes by jn whenever the fact that it has n rows needs to be elucidated. The
matrix J is the n× n matrix of all ones.

If S is any subset of V (G), then the indicator vector of S is the n× 1 vector whose ith

entry is 1 if i ∈ S and is 0 if i /∈ S. The overgraph G+ b of the graph G [13] is obtained
from G by introducing a new vertex to G and forcing this new vertex to be incident to
the vertices identified by the indicator vector b. The adjacency matrix of G + b would

thus be the block matrix

(
AG b

bT 0

)
, denoted more succinctly by AG+b. If v is a vertex of

G, then the vertex–deleted subgraph G− v is the graph obtained from G after removing
v and all edges incident to v.

The walk matrix WG of a graph G is the n×n matrix in which the kth column is Ak−1
G j

for k = 1, 2, . . . , n. The graph G is controllable if WG is invertible [8]. Equivalently, as
mentioned in the introduction, G is controllable if all of its eigenvalues are simple and
main [5], which is the case if and only if G has only main eigenvectors [6]. Further results
on controllable graphs were reported in [7, 19].

We now present two lemmas that are required in subsequent sections. The first lemma
below calculates the length of the orthogonal projection of an indicator vector b onto the
eigenspace of the eigenvalue µk of G explicitly for some k = 1, 2, . . . , s in terms of φ(G, x)
and φ(G + b, x). This lemma is similar in nature to Theorem 4.1 of [11], which instead
determines graph angles [3, Chapter 4].
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Lemma 1. If µk is an eigenvalue of a graph G with multiplicity rk, {x1,x2, . . . ,xrk} is
an orthonormal set of eigenvectors associated with µk and Ek =

∑rk
j=1 xjx

T
j , then

||Ekb||2 = −rk
[
φ(G+ b, x)

φ′(G, x)

]
x=µk

where f ′(x) denotes the derivative of f(x) with respect to x and the rational function in
square brackets is evaluated after cancelling common factors, if any.

Proof. By [3, Theorem 4.3.11] (see also [16]),

φ(G+ b, x) = φ(G, x)

(
x−

s∑
i=1

||Eib||2

x− µi

)
. (1)

Since φ(G, x) =
s∏
i=1

(x− µi)ri , (1) may be rewritten as

φ(G+ b, x) = xφ(G, x)−

(
s∏
i=1

(x− µi)ri−1
) s∑

i=1

||Eib||2
(

s∏
j=1
j 6=i

(x− µj)

) . (2)

By using the product rule of differentiation on φ(G, x) =
s∏
i=1

(x− µi)ri , we obtain

φ′(G, x) =

(
s∏
i=1

(x− µi)ri−1
) s∑

i=1

ri

(
s∏
j=1
j 6=i

(x− µj)

) . (3)

By dividing (2) by (3), we obtain the rational function
φ(G+ b, x)

φ′(G, x)
, noting that the term(∏s

i=1(x− µi)ri−1
)

cancels:

φ(G+ b, x)

φ′(G, x)
=

x
(∏s

i=1(x− µi)
)
−
(∑s

i=1 ||Eib||2
(∏s

j=1
j 6=i

(x− µj)
))

∑s
i=1 ri

(∏s
j=1
j 6=i

(x− µj)
) . (4)

Substituting x = µk in (4) yields

[
φ(G+ b, x)

φ′(G, x)

]
x=µk

=
−||Ekb||2

rk
, which proves the

result.
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By combining the following result taken from [4, Proposition 2.1.3],

(−1)nφ(G,−1− x) = φ(G, x)

(
1 +

s∑
i=1

||Eij||2

x− µi

)
,

and equation (1) with b = j, we obtain the relation

φ(G+ j, x) = (x+ 1)φ(G, x)− (−1)nφ(G,−1− x).

Consequently, the following second lemma is obtained.

Lemma 2. If G is a graph on n vertices having an eigenvalue µk of multiplicity rk and
Ek is as in Lemma 1, then

||Ekj||2 = (−1)n rk

[
φ(G,−1− x)

φ′(G, x)

]
x=µk

where the rational function in square brackets is evaluated after cancelling common factors,
if any.

3 Results on Cospectral Graphs

Lemmas 1 and 2 allow us to infer the following theorems regarding certain pairs of cospec-
tral graphs.

Theorem 3. Let G and H be two graphs such that φ(G, x) = φ(H, x) and φ(G, x) =
φ(H, x). Moreover, let x1, . . . ,xn be orthonormal eigenvectors associated with the eigen-
values λ1, . . . , λn of G and y1, . . . ,yn be those of H. Then these eigenvectors may be
chosen such that jTxi = jTyi for all i = 1, 2, . . . , n.

Proof. Each one of the distinct eigenvalues µ1, . . . , µs of G, having multiplicities r1, . . . , rs
respectively, must also be an eigenvalue of H with the same multiplicity. For each eigen-

value µk, we infer, by Lemma 2, that
∑rk

j=1

(
jTxp+j−1

)2
=
∑rk

j=1

(
jTyp+j−1

)2
for some p.

Without loss of generality, the eigenvectors of G and H may be chosen such that only
jTxp+j−1 and jTyp+j−1 are possibly nonzero. With this choice of eigenvectors for G and H,

we obtain
(
jTxp+j−1

)2
=
(
jTyp+j−1

)2
. By replacing one of xp+j−1 or yp+j−1 with −xp+j−1

or −yp+j−1 if necessary, jTxp+j−1 = jTyp+j−1. The result is thus proved.

Remark 4. It is immediate from Theorem 3 that any two generalized cospectral graphs
must have the same number of main eigenvalues.

The proof of Theorem 5 is similar to that of Theorem 3, but uses Lemma 1 instead.

Theorem 5. Let G and H be two graphs such that φ(G, x) = φ(H, x) and let b and c
be indicator vectors such that φ(G + b, x) = φ(H + c, x). Moreover, let x1, . . . ,xn be
orthonormal eigenvectors associated with the eigenvalues λ1, . . . , λn of G and y1, . . . ,yn
be those of H. Then these eigenvectors may be chosen such that bTxi = cTyi for all
i = 1, 2, . . . , n.
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If G and H are generalized cospectral graphs, then the reference [12] shows that there
must exist an orthogonal matrix Q satisfying QTAGQ = AH and Qj = j. In fact, for such
graphs, we shall prove that the relation WG = QWH is also true. We first provide an
alternative constructive proof to the result in [12] mentioned in this paragraph. Indeed,
Q may be directly constructed from orthonormal bases of eigenvectors of G and H.

Lemma 6 ([12]). The two graphs G and H are generalized cospectral if and only if there
exists an orthogonal matrix Q satisfying

QTAGQ = AH and Qj = j. (5)

Proof. Suppose Q is an orthogonal matrix satisfying both conditions of (5). The first
condition tells us that AG and AH are similar matrices, so φ(G, x) = φ(H, x). Since
Qj = j, QTj = j too. Hence QTAGQ = QT(J − I −AG)Q = J − I −AH = AH . This
means that φ(G, x) = φ(H, x), proving necessity.

Conversely, suppose φ(G, x) = φ(H, x) and φ(G, x) = φ(H, x). Since G and H are
cospectral, we may write XTAGX = Λ = YTAHY, where Λ is the diagonal matrix
with diagonal entries λ1, . . . , λn, X =

(
x1 x2 · · · xn

)
, Y =

(
y1 y2 · · · yn

)
and

x1, . . . ,xn (respectively y1, . . . ,yn) are orthonormal eigenvectors of AG (respectively AH)
associated with the eigenvalues λ1, . . . , λn. Thus (YXT)AG(XYT) = AH . Let us set
Q = XYT. Clearly Q is an orthogonal matrix. We now show that the relation Qj = j is
also true.

Since X and Y are orthogonal matrices, we may express j as
∑n

i=1(j
Txi)xi or as∑n

i=1(j
Tyi)yi. Thus

j = X


jTx1

jTx2
...

jTxn

 = XrG; j = Y


jTy1

jTy2
...

jTyn

 = YrH .

But G and H are generalized cospectral. Hence, by Theorem 3, rG = rH = r (after
possibly modifying X and/or Y in accordance to the requirements of that theorem),
meaning that j = Xr = Yr. We deduce that XTj = YTj. Consequently, j = XYTj = Qj,
proving the converse.

We now show that the orthogonal matrix Q of Lemma 6 relates the walk matrices of
G and H together.

Corollary 7. If G and H are generalized cospectral graphs and Q is as described in the
proof of Lemma 6, then WG = QWH .

Proof. For all non-negative integers k, we may express Ak
Gj as

∑n
i=1(j

Txi)λ
k
i xi; similarly,

Ak
Hj =

∑n
i=1(j

Tyi)λ
k
i yi. Hence

Ak
Gj = X


jTx1λ

k
1

jTx2λ
k
2

...

jTxnλ
k
n

 = Xsk,G; Ak
Hj = Y


jTy1λ

k
1

jTy2λ
k
2

...

jTynλ
k
i

 = Ysk,H .
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Once again we may apply Theorem 3 to conclude that, for a suitable choice of eigen-
vectors, sk,G = sk,H for all k > 0. Thus, for k = 0, 1, 2, . . ., XTAk

Gj = YTAk
Hj, or

Ak
Gj = QAk

Hj after recalling that Q = XYT. This means, in particular, that the matrix(
j AGj A2

Gj · · · An−1
G j

)
is equal to Q

(
j AHj A2

Hj · · · An−1
H j

)
, which proves the

result.

Of course, it might be the case that our two generalized cospectral graphs G and H are
actually isomorphic. This happens whenever one of the possible matrices Q satisfying (5)
is a permutation matrix P. If G and H are controllable graphs, then WH , in particular, is
invertible, so by Corollary 7, Q is uniquely determined by the matrix product WGWH

−1

[23]. Thus, we conclude the following two results.

Corollary 8 ([23, Lemma 2.4]). Let G and H be two graphs satisfying φ(G, x) = φ(H, x)
and φ(G, x) = φ(H, x). Then G and H are controllable if and only if the matrix Q
satisfying the conditions of Lemma 6 is the unique matrix WGWH

−1.

Corollary 9 ([23, Lemma 2.5]). If G and H are controllable graphs satisfying both
φ(G, x) = φ(H, x) and φ(G, x) = φ(H, x), then they are isomorphic if and only if the
matrix Q = WGWH

−1 is a permutation matrix.

4 Constructing Cospectral Overgraphs From Cospectral Graphs

The next result is a new development similar in nature to Johnson and Newman’s result
in Lemma 6. The difference is that it provides necessary and sufficient conditions for a
pair of cospectral graphs G and H to have a pair of cospectral overgraphs G + b and
H + c.

Theorem 10. The graph G is cospectral to the graph H and the overgraph G+ b of G is
cospectral to the overgraph H + c of H if and only if there exists an orthogonal matrix Q
satisfying

QTAGQ = AH and Qc = b. (6)

Proof. Suppose Q is an orthogonal matrix satisfying the conditions of (6). The first
condition tells us that AG and AH are similar matrices, so φ(G, x) = φ(H, x). By noting
that (

QT 0
0T 1

)(
AG b

bT 0

)(
Q 0
0T 1

)
=

(
QTAGQ QTb

bTQ 0

)
=

(
AH c
cT 0

)
we likewise infer that φ(G+ b, x) = φ(H + c, x).

Conversely, suppose φ(G, x) = φ(H, x) and φ(G+b, x) = φ(H+c, x). As in the proof
of Lemma 6, G and H are cospectral, so we may again let XTAGX = Λ = YTAHY, where
Λ, X and Y are as in the proof of that lemma. The relation (YXT)AG(XYT) = AH

again holds, so we once more let Q be the orthogonal matrix XYT. We now show that
the relation Qc = b also holds for this choice of Q.
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We may express the indicator vector b as
∑n

i=1(b
Txi)xi and the indicator vector c as∑n

i=1(c
Tyi)yi. We obtain

b = X


bTx1

bTx2
...

bTxn

 = XtG; c = Y


cTy1

cTy2
...

cTyn

 = YtH .

But G + b and H + c are cospectral, and so are G and H. Hence, by Theorem 5,
tG = tH = t for a suitable selection of the eigenvectors of G and H. We thus deduce the
relation XTb = YTc, from which b = XYTc = Qc follows.

The proof of Theorem 10 just presented hints at an alternative necessary and sufficient
condition for G and H to be cospectral graphs and for the overgraphs G + b and H + c
to also be cospectral graphs.

Theorem 11. The graph G is cospectral to the graph H and the overgraph G+ b of G is
cospectral to the overgraph H + c of H if and only if there exists an orthogonal matrix U
of the form

(
Q 0

0T 1

)
satisfying

UTAG+bU = AH+c. (7)

Proof. Suppose an orthogonal matrix U of the form
(

Q 0

0T 1

)
that satisfies (7) exists. We

are given that(
QT 0
0T 1

)(
AG b

bT 0

)(
Q 0
0T 1

)
=

(
QTAGQ QTb

bTQ 0

)
=

(
AH c
cT 0

)
.

In particular, the submatrix Q, which clearly must be orthogonal, satisfies QTAGQ = AH

and b = Qc. By Theorem 10, φ(G, x) = φ(H, x) and φ(G+ b, x) = φ(H + c, x).
Conversely, suppose φ(G, x) = φ(H, x) and φ(G + b, x) = φ(H + c, x). Then, by

Theorem 10, there exists an orthogonal matrix Q that satisfies QTAGQ and b = Qc.
These conditions ensure that the matrix product UTAG+bU is, indeed, equal to AH+c.

We emphasize the rather important point being made by Theorem 11 that the or-
thogonal matrix U satisfying (7) does not depend on the indicator vectors b and c; U is
always of the form

(
Q 0

0T 1

)
as long as G and H are cospectral and G + b and H + c are

cospectral. Moreover, the submatrix Q satisfies the conditions of (6).

5 Constructing Generalized Cospectral Overgraphs From Gen-
eralized Cospectral Graphs

This section shall present our main results of this paper, that allow us to produce pairs
of non-isomorphic, generalized cospectral overgraphs from a pair of non-isomorphic, gen-
eralized cospectral, controllable graphs.
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Not surprisingly, the necessary and sufficient conditions for both the pair G and H
and the pair G+ b and H + c to be generalized cospectral graphs is a combination of the
relations in (5) and (6). This, and the equivalent Theorem 11, constitute our first main
results.

Theorem 12. The graphs G and H are generalized cospectral and the overgraphs G+ b
and H + c are generalized cospectral if and only if there exists an orthogonal matrix Q
satisfying

QTAGQ = AH ,Qj = j and Qc = b. (8)

Proof. Suppose Q is an orthogonal matrix satisfying the three conditions of (8). Then,
since QTAGQ = AH and Qj = j, we can directly apply Lemma 6 to prove the relations
φ(G, x) = φ(H, x) and φ(G, x) = φ(H, x). Moreover, since QTAGQ = AH and Qc = b,
we apply Theorem 10 to deduce the relation φ(G+ b, x) = φ(H + c, x). Furthermore, by
Theorem 11, UTAG+bU = AH+c where U =

(
Q 0

0T 1

)
. Since Ujn+1 = jn+1, we again apply

Lemma 6 using this orthogonal matrix U on G+b and H+c to prove the fourth relation
φ(G+ b, x) = φ(H + c, x).

Conversely, suppose G and H are generalized cospectral graphs and the overgraphs
G + b and H + c are also generalized cospectral. The equations φ(G, x) = φ(H, x) and
φ(G + b, x) = φ(H + c, x) allow us to apply Theorem 10, so there exists an orthogonal
matrix Q satisfying the first and third conditions of (8). We now prove that the second
condition of (8), Qj = j, also holds. Using the equations φ(G + b, x) = φ(H + c, x) and
φ(G+ b, x) = φ(H + c, x), we infer, by applying Lemma 6, that there exists an orthogonal
matrix U such that UTAG+bU = AH+c and Ujn+1 = jn+1. However, Theorem 11 tells

us that this orthogonal matrix U must be of the form
(

Q 0

0T 1

)
, because G and H are also

generalized cospectral. But then the equation Ujn+1 = jn+1 gives us(
Q 0
0T 1

)(
jn
1

)
=

(
Qjn

1

)
=

(
jn
1

)
,

from which we deduce that Qj = j, as required.

Combining Theorem 11 and Theorem 12 yields the following alternative formulation
of the theorem just proved.

Theorem 13. The graphs G and H are generalized cospectral and the overgraphs G+ b
and H + c are generalized cospectral if and only if there exists an orthogonal matrix Q
satisfying

QTAGQ = AH ,Qj = j and UTAG+bU = AH+c, where U =
(

Q 0

0T 1

)
. (9)

The first interesting result derived from Theorem 12 relates the walk matrices of two
generalized cospectral graphs G and H having the generalized cospectral overgraphs G+b
and H + c.
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Corollary 14. Let G and H be a pair of generalized cospectral graphs and let the over-
graphs G+b and H+c be another pair of generalized cospectral graphs for some indicator
vectors b and c. Then bTWG = cTWH .

Proof. By Theorem 12, there exists an orthogonal matrix Q that satisfies all the conditions
of (8). Thus, Corollary 7 can be invoked to conclude that WG = QWH . The result is
proved by left-multiplying this equation by bT and using the relation b = Qc.

In [7, Theorem 3.5], it was proved that all overgraphs of a controllable graph G are
non-isomorphic. Thanks to Corollary 14, we can now prove an even stronger result, which
is the second main result of this paper.

Theorem 15. If G is a controllable graph, then no two distinct overgraphs of G are
generalized cospectral.

Proof. Suppose G + b and G + c are generalized cospectral graphs for distinct indicator
vectors b and c. Letting G = H in Theorem 14, we conclude that bTWG = cTWG. But
G is controllable, so WG is invertible. This implies that b = c, which contradicts the
assumption that the vectors b and c are distinct.

Hence, by Theorem 15, no pair of non-isomorphic, generalized cospectral graphs G and
H can have isomorphic vertex–deleted subgraphs G− u and H − v that are controllable.

Observe, by taking the two conditions Qj = j and Qc = b of Theorem 12, that
Q(j−c) = j−b holds as well. Thus, if G and H are a pair of generalized cospectral graphs
and G+ b and H + c are generalized cospectral overgraphs, then the graphs G+ (j− b)
and H+ (j−c) are also generalized cospectral; moreover, so are their complements G+b
and H + c.

We remark that, by Lemma 6 and Theorem 12, the overgraphs G + j and H + j are
generalized cospectral if and only if G and H are generalized cospectral; moreover, they
are non-isomorphic whenever G and H are non-isomorphic. Additionally, if G and H are
controllable, then G+ j and H + j are controllable if and only if 0 is not an eigenvalue of
G [7].

Recall Remark 4 which stated that a pair of generalized cospectral graphs must have
the same number of main eigenvalues. This means that G and H are either both control-
lable or both not controllable. The same is true, of course, for G + b and H + c too. In
fact, if G+b and H+c themselves are controllable, then Theorem 12 can be strengthened
even further by proving that they are necessarily non-isomorphic whenever G and H are
non-isomorphic. Additionally, the fact that G + b and H + c are controllable graphs
compels G and H to be necessarily controllable themselves. This is our third main result.

Theorem 16. Let G and H be generalized cospectral graphs and let G+b and H+c also
be generalized cospectral graphs, so that the relations in (9) hold. If G+ b and H + c are
controllable, then so are G and H; furthermore, G + b and H + c are isomorphic if and
only if G and H are isomorphic.
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Proof. Since G + b and H + c are controllable, the matrix U =
(

Q 0

0T 1

)
of (9) satisfying

UTAG+bU = AH+c and Uj = j is unique, thanks to Corollary 8. But then Q is also
unique, otherwise if there exists another matrix Q′, different from Q, that also satisfies

(5) for G and H, then U′ :=
(

Q′ 0
0T 1

)
would be a matrix distinct from U that satisfies

both U′
T
AG+bU′ = AH+c and U′j = j too, contradicting the uniqueness of U. Hence G

and H are controllable by Corollary 8. In addition, by Corollary 9, Q is a permutation
matrix if and only if G and H are isomorphic; likewise, U is a permutation matrix if and
only if G + b and H + c are isomorphic. But clearly U is a permutation matrix if and
only if Q is, proving the result.

Thus, if G and H are non-isomorphic, generalized cospectral graphs that are not
controllable, then none of their generalized cospectral pairs of overgraphs can be control-
lable; moreover, we are not guaranteed that these pairs of overgraphs are non-isomorphic.
On the other hand, if G and H are non-isomorphic, controllable, generalized cospectral
graphs, then the generalized cospectral pairs of overgraphs produced by Theorem 12 that
are controllable are necessarily non-isomorphic.

If we assume the conditions of Theorem 12 to hold, then bTWG = cTWH also holds,
as we saw in Corollary 14. In particular, by comparing the leftmost columns of this
equality, we infer that bTj = cTj. This means that the new vertex introduced to G and
the one introduced to H for the overgraphs G + b and H + c in Theorem 12 must have
the same degree. If this common degree is 1, so that b = ei and c = ej for some i and
j, then b = Qc implies that the jth column of Q is ei and the ith row of Q is eT

j . Such
indicator vectors having only one nonzero entry allow us to produce a pair of generalized
cospectral graphs by removing a vertex from each of G and H.

Theorem 17. The graphs G and H are generalized cospectral and the vertex–deleted
subgraphs G − u and H − v are generalized cospectral for some vertex u in G and some
vertex v in H if and only if there exists an orthogonal matrix Q satisfying QTAGQ = AH ,
Qj = j and Qev = eu.

Proof. We assume, without loss of generality, that u = n and v = 1. Suppose there
exists an orthogonal matrix Q satisfying (5) and let en = Qe1. By Theorem 12, these are
necessary and sufficient conditions for the graphs G and H to be generalized cospectral
and for the graphs G+ en and H + e1 to also be generalized cospectral.

Since, from [4, Theorem 2.2.1],

φ(G+ en, x) = xφ(G, x)− φ(G− n, x) and φ(H + e1, x) = xφ(G, x)− φ(H − 1, x) (10)

the graphs G+en and H+e1 are cospectral if and only if G−n and H−1 are cospectral.
Moreover, from the relations Qj = j and Qe1 = en, we obtain Q(j − e1) = j − en, and
hence, by applying Theorem 12, the graphs G+ (j− en) and H + (j− e1) are generalized
cospectral. Thus, replacing G and H in (10) with G and H respectively and noting that
G− n is isomorphic to G−n (and likewise for H − 1 and H−1), we infer that the graphs
G+ en and H + e1 are cospectral if and only if G− n and H − 1 are cospectral, proving
the result.
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Remark 18. Suppose we have an orthogonal matrix Q that satisfies (9). One consequence
of the fact that U =

(
Q 0

0T 1

)
is that Ujn+1 = jn+1 and Uen+1 = en+1. Thus, we may apply

Theorem 10 using UTAG+bU = AH+c, Ujn+1 = jn+1 and Uen+1 = en+1 to conclude that

the graphs with adjacency matrices

AG b 0

bT 0 1
0T 1 0

 and

AH c 0
cT 0 1
0T 1 0

 are generalized

cospectral, having the orthogonal matrix V =
(

Q 0n×2

02×n I2×2

)
. This orthogonal matrix V

also works for the graphs having adjacency matrices

AG b1 b2

bT
1 0 a

bT
2 a 0

 and

AH c1 c2

cT
1 0 a

cT
2 a 0

,

where a ∈ {0, 1}, assuming that Q
(
c1 c2

)
=
(
b1 b2

)
. Thus, Theorems 10 and 11 may

be reapplied and will produce many generalized cospectral overgraphs of G and H having
as many vertices as needed. Moreover, by Theorem 16, if we start from controllable
graphs G and H, then any pair of controllable overgraphs produced in this manner is
non-isomorphic.

6 An Illustrative Example and Final Comments

Consider the two graphs G and H depicted in Figure 1. These two graphs are non-
isomorphic, controllable and generalized cospectral. Indeed, φ(G, x) = φ(H, x) = x8 −
12x6− 8x5 + 24x4 + 14x3− 11x2− 6x and φ(G, x) = φ(H, x) = x8− 16x6− 20x5 + 32x4 +
50x3 − 7x2 − 22x− 4.

Figure 1: The non-isomorphic, controllable, generalized cospectral graphs G and H.

Since G and H are controllable, the orthogonal matrix for G and H in Lemma 6 is
unique; indeed, by Corollary 8, it is WGWH

−1. Alternatively, we may evaluate XYT,
where the columns of X and Y are certain orthonormal eigenvectors of G and H respec-
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tively. Either way, we obtain:

Q =



1 0 0 0 0 0 0 0
0 1

2
−1

2
1
2

1
2

0 0 0
0 0 0 1

2
−1

2
0 1

2
1
2

0 1
2

1
2

0 0 0 1
2
−1

2

0 −1
2

1
2

1
2

1
2

0 0 0
0 0 0 −1

2
1
2

0 1
2

1
2

0 0 0 0 0 1 0 0
0 1

2
1
2

0 0 0 −1
2

1
2


.

If we let

c1 = e1, c2 = e2 + e3, c3 = e4 + e5, c4 = e6, c5 = e7 + e8

and
b1 = e1, b2 = e4 + e8, b3 = e2 + e5, b4 = e7, b5 = e3 + e6,

we note that Qck = bk for k = 1, 2, 3, 4, 5. Moreover, if c =
∑5

i=1 aici and b =
∑5

i=1 aibi,
where ai ∈ {0, 1} for i = 1, 2, 3, 4, 5, then Qc = b. Thus, by Theorem 12, we have 32
pairs of generalized cospectral overgraphs G+ b and H + c. By direct calculation using a
software package, it turns out that 17 of these 32 pairs of graphs are pairs of controllable
graphs. By Theorem 16, these 17 pairs of graphs are guaranteed to be non-isomorphic,
generalized cospectral graphs. Five of these 17 pairs of controllable, non-isomorphic,
generalized cospectral overgraphs are depicted in Figure 2.

It needs to be said, however, that only 2 of the remaining 15 pairs of non-controllable
overgraphs generated in this way were actually isomorphic pairs. These are the pair
(G+(b1 +b2), H+(c1 +c2)), and the pair (G+(b1 +b2 +b4), H+(c1 +c2 +c4)), shown
in Figure 3. In all, then, we produced 30 generalized cospectral, non-isomorphic pairs of
graphs on 9 vertices, of which 17 were pairs of controllable graphs.

According to Theorem 17, the pairs of graphs (G− 1, H − 1) and (G− 7, H − 6) must
be generalized cospectral. Indeed, this is the case, although here, these pairs of graphs
happen to be isomorphic as well. By Theorem 15, neither of these two pairs of graphs
can be controllable, and this may be verified to be the case.

We have also produced overgraphs of n+ 2 vertices by applying the method described
in Remark 18. We first started with overgraphs whose adjacency matrices are of the

form

(
AG B
BT 02×2

)
and

(
AH C
CT 02×2

)
, then, using a software package, we produced all

possible matrices B such that each of its two columns is any of the possible 32 vectors
b =

∑5
i=1 aibi, ai ∈ {0, 1}, i = 1, 2, 3, 4, 5; we also did likewise for C, using c =

∑5
i=1 aici.

253 out of the possible 528 such pairs of generalized cospectral graphs thus generated were
pairs of controllable graphs, which were guaranteed to be non-isomorphic by Theorem
16. Moreover, only 24 out of the remaining pairs were actually isomorphic. We then

repeated the same procedure, this time for adjacency matrices of the form

(
AG B
BT K2

)
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Figure 2: The five pairs of overgraphs (G+b1, H+c1), . . . , (G+b5, H+c5). These are five
of the 17 non-isomorphic, generalized cospectral pairs of controllable graphs generated by
Theorem 12 from the two graphs of Figure 1.

and

(
AH C
CT K2

)
, where K2 is the adjacency matrix of the graph having two vertices and
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Figure 3: Top: The pair of isomorphic overgraphs (G+(b1 +b2), H+(c1 +c2)). Bottom:
The pair of isomorphic overgraphs (G+ (b1 + b2 + b4), H + (c1 + c2 + c4)).

one edge connecting them. This time, 272 pairs of controllable, and hence non-isomorphic,
generalized cospectral graphs were produced, out of the possible 528; moreover, once
again, only 24 of the remaining pairs were isomorphic. Hence, by using Theorem 12 on
the single pair of graphs G and H of Figure 1, using matrices B and C with two columns,
we produced 1008 pairs of non-isomorphic, generalized cospectral graphs on 10 vertices,
of which 525 were pairs of controllable graphs.

The fact that almost all graphs are controllable [15] suggests that pairs of non-
isomorphic, generalized cospectral controllable graphs may not be rare; indeed, more than
half of the non-isomorphic, generalized cospectral graphs we created were pairs of control-
lable graphs. Moreover, it seems that the majority of the pairs of generalized cospectral
overgraphs produced by Theorem 12 or Theorem 13 end up being non-isomorphic, even
though not all of them are controllable graphs.
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