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Abstract

Let ` denote a non-negative integer. A connected graph Γ of even order at least
2`+2 is `-extendable if it contains a matching of size ` and if every such matching is
contained in a perfect matching of Γ. A connected regular graph Γ is edge-regular, if
there exists an integer λ such that every pair of adjacent vertices of Γ have exactly
λ common neighbours. In this paper we classify 2-extendable edge-regular graphs
of even order and diameter 2.
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1 Introductory remarks

Throughout this paper graphs are assumed to be finite and simple. We first recall the
definition of `-extendable graphs, introduced in 1980 by Plummer [18]. Let ` denote a
non-negative integer and let Γ be a connected graph of even order at least 2` + 2. It is
said that Γ is `-extendable if it contains a matching of size `, and if every such matching
is contained in a perfect matching of Γ. Otherwise, Γ is said to be non-`-extendable.
We remark that in his definition from 1980, Plummer did not require an `-extendable
graph to have order at least 2` + 2. But it turns out that this additional assumption is
convenient since in this case `-extendability of Γ implies (`− 1)-extendability of Γ. Since
its introduction in 1980, the family of `-extendable graphs has been studied from various
points of view, see for instance [1, 3, 4, 14, 16, 19, 20, 21, 22, 23].

Considerable attention was given to the study of extendability of various families of
highly regular graphs. For example, the extendability of the well known family of strongly
regular graphs was considered in [5, 12, 15]. Recall that a connected graph Γ is strongly
regular with parameters (n, k, λ, µ) if Γ is a k-regular graph on n vertices such that any two
adjacent (nonadjacent and distinct, respectively) vertices have exactly λ (µ, respectively)
common neighbours. It was proved in [12] that each strongly regular graph of even order
n > 4 is 1-extendable. Moreover, the results of [12, 15] imply the a strongly regular graph
Γ of even order is not 2-extendable if and only if Γ is either the four cycle C4 (of valency
2), or the Petersen graph (of valency 3), or the complete tripartite graph K2,2,2 (of valency
4). The extendability of distance-regular graphs, which are a generalization of strongly
regular graphs, was studied in [6].

The diameter of a connected strongly regular graph, which is not complete, is of course
2. Therefore, it seems natural to consider extendability of other regular graphs of diameter
2. For example, the extendability of Deza graphs, where we only insist that there exist
two numbers such that for any pair of different vertices the number of their common
neighbours equals one of those two numbers, was studied in [17]. It was proved that,
apart from the above mentioned C4, the Petersen graph and K2,2,2, the only remaining
non-2-extendable Deza graph of even order and diameter 2 is the complement of the
Möbius ladder on eight vertices. Recently, the so-called quasi-strongly regular graphs with
diameter 2 and grade 2 (see [9] for the definition of these graphs), which are 2-extendable,
were classified in [1].

The most important facts, on which the proofs of the results from [1, 12, 15, 17] rely,
are the regularity of the graph, the fact that its diameter equals 2 and the existence
of the parameter λ. Therefore, when one studies 2-extendability of regular graphs, it
seems natural to consider the class of the so-called edge-regular graphs with diameter
2. A graph Γ is called edge-regular with parameters (n, k, λ), if Γ is a k-regular graph
on n vertices, such that any pair of adjacent vertices share λ common neighbours. The
following problem was posed in [1]:

Problem 1.Classify the 2-extendable edge-regular graphs (of even order) and diameter 2.

In this paper we solve the above problem. The main result of this paper is the following
theorem.
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Theorem 2. Let Γ be an edge-regular graph of diameter 2 with parameters (n, k, λ), where
k > 3 and n > 6 is even. Then Γ is not 2-extendable if and only if it is isomorphic to
one of the following graphs:

• the complete multipartite graph K2,2,2 (which is strongly regular with parameters
(6, 4, 2, 4));

• the Petersen graph (which is strongly regular with parameters (10, 3, 0, 1));

• the Möbius ladder on eight vertices (which is edge-regular with parameters (8, 3, 0));

• the lexicographic product C5[2K1] of the 5-cycle with the empty graph on two vertices
(which is edge-regular with parameters (10, 4, 0));

• a graph from Construction 10 (which is edge-regular with parameters (4k − 2, k, 0)
for some integer k > 3).

2 Preliminaries

In this section we first fix some notation and then gather various results from the literature
that will be used in the remainder of the paper.

Let Γ be a connected graph with vertex set V = V (Γ). By the order of Γ we mean
the cardinality of set V . Let u, v ∈ V . The distance between u and v will be denoted by
d(u, v). For a non-negative integer i, we denote by Ni(v) = {x ∈ V : d(x, v) = i} the set
of all vertices of Γ at distance i from v. We abbreviate N1(v) by N(v). The valency of v
is the cardinality of set N(v). If all vertices of Γ have the same valency k, then we say
that Γ is regular with valency k. The fact that the vertices u and v are adjacent in Γ will
be denoted by u ∼ v. For a subset S ⊆ V we let Γ− S be the subgraph of Γ induced on
the set V \ S.

Let Γ1 and Γ2 be graphs. The lexicographic product of Γ1 with Γ2, denoted by Γ1[Γ2],
is the graph whose vertex set is the cartesian product V (Γ1)×V (Γ2), with vertices (u1, u2)
and (v1, v2) being adjacent if and only if either u1 is adjacent with v1 in Γ1, or u1 = v1
and u2 is adjacent with v2 in Γ2. We will denote the complete graph and the cycle on n
vertices by Kn and Cn, respectively.

Let us now state some results from the literature that we will need in the remainder
of the paper. The first is about all regular graphs of diameter 2.

Proposition 3. ([11, Theorem 1.3], [17, Theorem 2.2, Theorem 2.3]) Let Γ be a regular
graph of even order and diameter 2. Then Γ is both 0- and 1-extendable.

The general idea of the proof of Theorem 2 is similar to the one used in [15] ([17],
respectively) for strongly regular graphs (Deza graphs, respectively) of even order. A
similar idea was recently employed in [1]. One of the key factors in all of these proofs
is the classical result of Tutte from 1947 giving a necessary and sufficient condition for
a graph to contain a perfect matching. To state it we first need to fix some additional
notation. Connected components of a graph Γ will simply be called components of Γ. A
component C of Γ is called even (odd, respectively), if the cardinality of C is even (odd,

the electronic journal of combinatorics 26(1) (2019), #P1.16 3



respectively). The number of odd components of Γ will be denoted by o(Γ). We can now
state the above mentioned result of Tutte.

Theorem 4. ([7, Theorem 2.2.1]) A graph Γ has a perfect matching if and only if for
every subset S ⊆ V (Γ) we have o(Γ− S) 6 |S|.

When dealing with `-extendability, the following corollary of Theorem 4 is of use. The
result was implicitly proved in [22, Theorem 2.2]. A short proof is given also in [1].

Proposition 5. Let ` > 1 be an integer and let Γ be a connected graph of order at least
2` + 2 containing a perfect matching. Then the graph Γ is not `-extendable if and only
if it contains a subset S of vertices such that the subgraph Γ(S) induced by S contains `
independent edges and o(Γ− S) > |S| − 2`+ 2.

When searching for the largest ` for which the graph is still `-extendable one can use
the following corollary (see [1, Corollary 2.5]), which will be the main ingredient of our
proofs throughout the paper.

Corollary 6. Let ` > 1 be an integer and let Γ be an (` − 1)-extendable connected
graph of order at least 2` + 2. Then Γ is not `-extendable if and only if it contains a
subset S of vertices such that the subgraph induced by S contains ` independent edges and
o(Γ− S) = |S| − 2`+ 2.

Recall that a graph Γ is edge-regular with parameters (n, k, λ) if Γ is a k-regular graph
on n vertices such that any pair of adjacent vertices share λ common neighbours. Let now
Γ denote an edge-regular graph with parameters (n, k, λ). Clearly we have that λ 6 k−1,
and if λ = k− 1, then Γ is a disjoint union of complete graphs on k+ 1 vertices. It is also
well known and easy to see that Γ contains exactly nkλ/6 triangles. The following upper
bound on the number of vertices of an edge-regular graph will be very useful in the rest
of the paper.

Proposition 7. ([13, Proposition 2.4]) Let Γ be an (n, k, λ) edge-regular graph with di-
ameter 2. Then

n 6 1 + k + k(k − λ− 1). (1)

It proves convenient to analyze the cubic graphs of diameter 2 separately. These are
particularly easy to deal with since there is only a handful of graphs to consider (see [17,
Theorem 3.1]).

Theorem 8. The five graphs from Figure 1 are the only cubic graphs of diameter 2. The
only 2-extendable graph among them is the complete bipartite graph K3,3 and the only
edge-regular graphs among them are the complete bipartite graph K3,3, the Petersen graph
and the Möbius ladder on eight vertices. As a consequence, the Petersen graph and the
Möbius ladder on eight vertices are the only cubic non-2-extendable edge-regular graphs of
diameter 2.
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Figure 1: The five cubic graphs of diameter 2.

Proof. That the five graphs from Figure 1 are the only cubic graphs of diameter 2 follows
from [17, Theorem 3.1]. The other claims are easy to check.

The following result about tetravalent edge-regular graph with diameter 2 will also be
useful.

Proposition 9. Let Γ be an (n, 4, λ) edge-regular graph of diameter 2 and with n even.
Then either Γ is isomorphic to the complete tripartite graph K2,2,2 (which is strongly
regular with λ = 2) or λ = 0.

Proof. If λ = 3, then Γ is a complete graph, contradicting the assumption on the diameter
of Γ. If λ = 2, then it is not difficult to see that Γ is isomorphic to K2,2,2 (see also the proof
of [1, Lemma 3.2]). Assume finally that λ = 1. Since n is even, inequality (1) implies
that n 6 12. As the number of triangles contained in Γ equals nkλ/6 = 2n/3, we have
that n is divisible by 3, and so n ∈ {6, 12}. It is easy to see that n = 6 is not possible, so
n = 12. By [10, Corollary 6], there are exactly two (12, 4, 1) edge-regular graphs, namely
the line graphs of the cube graph and the Möbius ladder on eight vertices. However, one
can check that both have diameter 3. This finishes the proof.

We finish this section with the following construction providing an infinite family of non-
2-extendable edge-regular graphs of diameter 2.

Construction 10. Let k > 3 be an integer and let W = {w1, w2, . . . , w2k−2}. Let
S1, S2, . . . , Sk be pairwise distinct (k − 1)-element subsets of W such that the following is
satisfied:

(1) for 1 6 i < j 6 k we have Si ∩ Sj 6= ∅;
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(2) for every 2-element subset T of W there exists i (1 6 i 6 k), such that either T ⊆ Si

or T ⊆ W \ Si.

Let Γ be the graph with vertex set {xi | 1 6 i 6 k} ∪ {yi | 1 6 i 6 k} ∪W and edge set
E1 ∪ E2 ∪ E3, where

E1 = {xiyi | 1 6 i 6 k},

E2 =
⋃

16i6k

{xiwj | j ∈ Si}, E3 =
⋃

16i6k

{yiwj | j ∈ W \ Si}.

Proposition 11. Let Γ be as in Construction 10. Then Γ is a (4k − 2, k, 0) edge-regular
graph of diameter 2 which is not 2-extendable.

Proof. Note that each wi is adjacent to precisely one of xj, yj for each 1 6 j 6 k and to no
other vertices. It is now clear that Γ is a k-valent graph of order 4k− 2 without triangles,
and so it is a (4k−2, k, 0) edge-regular graph. Condition (2) from Construction 10 ensures
that the distance between any two vertices from W is 2. The fact that the (k−1)-element
subsets Si of W are pairwise distinct together with the condition (1) from Construction 10
imply that for any 1 6 i < j 6 k the distance between any of xi, yi to any of xj, yj is also
2. Observe also that for 1 6 i 6 k and 1 6 j 6 2k − 2, exactly one of xi, yi is adjacent
with wj. As xi and yi are adjacent, it follows that d(xi, wj) 6 2 and d(yi, wj) 6 2. Thus,
Γ is of diameter 2. Taking S = {xi | 1 6 i 6 k} ∪ {yi | 1 6 i 6 k} Proposition 3 and
Corollary 6 imply that Γ is not 2-extendable.

Remark 12. Observe that a suitable collection of subsets S1, S2, . . . , Sk exists for every
k > 3. Namely, one can take Si = {wi, wk, wk+1, . . . , w2k−3} for 1 6 i 6 k − 1 and
Sk = {w1, w2, . . . , wk−1}. We would also like to point out that one can verify that in the
case of k = 3, all of the graphs from Construction 10 are isomorphic to the Petersen graph
(no matter what the subsets S1, S2 and S3 are). Similarly, it can be shown that for k = 4
all graphs from Construction 10 are isomorphic. However, this does not hold in general.
For instance, for k = 5 there are at least three nonisomorphic graphs that can be obtained
via Construction 10.

3 Odd components

Throughout this section let Γ be a non-2-extendable edge-regular graph with parameters
(n, k, λ), n even, k > 4 and with diameter 2. As non-2-extendable strongly regular graphs
were already classified, we can assume that Γ is not strongly regular. Recall that Γ is
1-extandable by Proposition 3, and so Corollary 6 implies that it contains a subset S
of vertices such that the subgraph induced by S contains two independent edges and
o(Γ − S) = |S| − 2. In this section we prove that all odd components of Γ − S are
singletons.

We first argue that without loss of generality we can assume that all components of
Γ−S are odd. Indeed, suppose that Γ−S has an even component C. Pick x ∈ C and set
S ′ = S∪{x}. Observe that each component of Γ−S, different from C, is also a component
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of Γ − S ′. The remaining components of Γ − S ′ are the components of the subgraph of
Γ, induced on C \ {x}. Since this set is of odd size, at least one of them is odd. Thus
o(Γ−S ′) > o(Γ−S) + 1 = |S|−1 = |S ′|−2. However, as Γ is 1-extendable and o(Γ−S ′)
and |S ′| are of the same parity, Proposition 5 implies that in fact o(Γ − S ′) = |S ′| − 2
holds. Repeating this process of enlarging S until no even component of Γ − S exists
we can thus eliminate all even components of Γ − S. For the rest of the paper we can
thus assume that Γ− S has no even components. For future reference we also name the
endvertices of the chosen two independent edges as follows.

Notation 13. Let Γ be a non-2-extendable edge-regular graph with parameters (n, k, λ), n
even, k > 4 and with diameter 2, which is not strongly regular. Pick a subset S of V (Γ),
such that o(Γ − S) = |S| − 2, that Γ − S has no even components and that the subgraph
induced by S contains 2 independent edges u1v1 and u2v2.

Remark 14. Since |S| > 4, we have that o(Γ − S) > 2. As Γ is of diameter 2, it thus
follows that each v ∈ V (Γ) \ S has at least one neighbour in S.

Lemma 15. With reference to Notation 13, each vertex in Γ− S has at least two neigh-
bours in S.

Proof. Suppose on the contrary that there is a vertex v in an (odd) component C, which
has just one neighbour in S. Denote this neighbour by u. Let C1, C2, . . . , C|S|−3 denote
the other (odd) components of Γ − S and let mi = |Ci| for 1 6 i 6 |S| − 3. Without
loss of generality assume m1 6 m2 6 · · · 6 m|S|−3. As the diameter of Γ is 2, the unique
neighbour u of v from S must be adjacent to all vertices in C1 ∪ C2 ∪ · · · ∪ C|S|−3. Since
u and v also have λ common neighbours (which are all in C), this implies

k > |N(u) \ S| > 1 +m1 +m2 + · · ·+m|S|−3 + λ. (2)

On the other hand, for every vertex w ∈ C1 we have N(w) ⊆ C1 ∪ S. Moreover, since u
is adjacent to each vertex of C1, w can have at most λ neighbours in C1, implying

k 6 λ+ |S|. (3)

We now split our analysis into two cases.

Case 1: m1 > 3. In this case, using (2) and (3), we get |S| = 4. But then u ∈
{u1, u2, v1, v2} has at least one neighbour in S, and so 1 + λ + m1 + 1 6 k. Using this
together with m1 > 3 and (3) we get λ+ 5 6 λ+ 4, a contradiction.

Case 2: m1 = 1. Denote the (unique) vertex in C1 by w1. As u and w1 have λ
common neighbours (which are all contained in S), u must have at least λ neighbours
in S. Therefore, similarly as in (2), we get k > 1 + 1 + m2 + · · · + m|S|−3 + 2λ. As all
neighbours of w1 are clearly in S, we also have k 6 |S|, and so

|S| − 3 +m|S|−3 + 2λ 6 1 + 1 +m2 + · · ·+m|S|−3 + 2λ 6 k 6 |S|. (4)

It follows that λ ∈ {0, 1}.
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If k = |S|, then w1 is a neighbour of u1 and v1, implying λ = 1. Then (4) implies
m|S|−3 = 1, and so k = |S| = 4, since otherwise the unique element of C|S|−3 6= C1 is
another common neighbour of u! and v1. This contradicts Proposition 9.

Therefore, |S| > k, and so (4) implies λ = 0. Consequently at least one of u1, v1 and
at least one of u2, v2 is not adjacent to w1, and so k 6 |S| − 2. But then (4) implies
k = |S| − 2 and m1 = m2 = · · · = m|S|−3 = 1. For each 1 6 i 6 |S| − 3 let wi be the
unique element of Ci. Now, N(u) = {v, w1, . . . , w|S|−3}. As the diameter of Γ is 2, v
must be adjacent to all vertices of C \ {v}, and so |C| = k. Since λ = 0, this shows that
every vertex of C \ {v} has k− 1 neighbours in S. Therefore, there are (k− 1)2 + 1 edges
between C and S. As each of wi (1 6 i 6 |S| − 3) has all of its neighbours in S, there are
(|S|−3)k+ (k−1)2 + 1 = 2k2−3k+ 2 edges between V \S and S. On the other hand, as
there are at least two edges in S there are at most k|S| − 4 = k2 + 2k − 4 edges between
S and V \ S. Therefore 2k2 − 3k + 2 6 k2 + 2k − 4, implying that (k − 3)(k − 2) 6 0.
But this contradicts k > 4.

The proof of the following result is similar to the proof of [1, Lemma 4.3] and is
therefore omitted.

Lemma 16. With reference to Notation 13, suppose C is a component of Γ− S which is
not a singleton. Then there are at least 3k/2 edges between C and S. In particular, for
each component C of Γ− S there are at least k edges between C and S.

Proposition 17. With reference to Notation 13, Γ− S has at most one component with
cardinality at least 3.

Proof. Suppose that Γ − S has two odd components C1, C2 with cardinalities at least 3.
Without loss of generality we can assume that m1 = |C1| 6 m2 = |C2|. Let t denote the
number of edges between S and V \S. Since S contains at least two (independent) edges,
we have that

t 6 k|S| − 4. (5)

Suppose first that k > m1+2. As each vertex of C1 has at least k−(m1−1) neighbours
in S, there are at least km1−m1(m1−1) edges between C1 and S. By Lemma 16 there are
at least 3k/2 edges between C2 and S and at least k edges between any of the remaining
|S| − 4 components of Γ− S and S, which implies

t− (k|S| − 4) > km1 −m1(m1 − 1) +
3k

2
+ k(|S| − 4)− (k|S| − 4) =

k(m1 −
5

2
)−m1(m1 − 1) + 4 > (m1 + 2)(m1 −

5

2
)−m1(m1 − 1) + 4 =

m1

2
− 1 > 0.

But this contradicts (5), and so we have that k 6 m1 + 1.
Recall that, by Lemma 15, each vertex of C1 ∪ C2 has at least two neighbours in S.

Using this and Lemma 16 we find that

k|S| − 4 > t > 2m1 + 2m2 + k(|S| − 4) > 4m1 + k(|S| − 4). (6)
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This implies k > m1 + 1, and therefore k = m1 + 1. But then equality holds in (6), and
so k|S| − 4 = t = 2m1 + 2m2 + k(|S| − 4) = 4m1 + k(|S| − 4). This implies that there
are exactly two edges in S, that m1 = m2, that each vertex in C1 ∪ C2 has exactly two
neighbours in S, and that all of the remaining components of Γ − S are singletons. It
follows that each vertex of C1 (C2, respectively) has exactly m1− 1 neighbours in C1 (C2,
respectively), which implies that the subgraphs induced on C1 and C2 are complete graphs.
Consequently, λ > m1 − 2 > 1, and so Proposition 9 implies k > 4, yielding m1 > 5.
Since λ 6 k−1 = m1 and Γ is not a complete graph, it follows that λ ∈ {m1−1,m1−2}.

Recall that by our assumption Γ is not strongly regular. It follows from [2, Theorem
1.4.3(ii)] that

λ < k +
1

2
−
√

2k + 2 = m1 +
3

2
−
√

2m1 + 4.

Since m1 > 5 we have that m1 + 3
2
−
√

2m1 + 4 < m1 − 2, and so λ < m1 − 2, a
contradiction.

Proposition 18. With reference to Notation 13, all components of Γ− S are singletons.

Proof. Suppose on the contrary that Γ− S has a component with cardinality at least 3.
By Proposition 17, Γ − S has exactly one such component. Denote the vertices of the
singleton components by w1, . . . , w|S|−3 and denote the (odd) component with cardinality
m = 2r + 1 > 3 by C. Let s denote the number of edges contained in S and let t denote
the number of edges between S and C. Counting the number of edges between S and
V (Γ) \ S in two ways we get

k|S| − 2s = k(|S| − 3) + t. (7)

By Lemma 16 we have that t > 3k/2, and so (7) implies s 6 3k/4.
Pick i ∈ {1, 2, . . . , |S| − 3} and observe that N(wi) ⊆ S. Note also that there are

exactly kλ/2 edges contained in N(wi), which implies kλ/2 6 s 6 3k/4. This shows that
λ ∈ {0, 1}.

Case 1: λ = 0. Since Γ is triangle free, so is the subgraph of Γ induced on C. By the
well-known result of Mantel (see [7, Theorem 7.1.1] for a more general Turán’s theorem),
there are at most bm2/4c = r(r + 1) edges contained in C, and so t > km − 2r(r + 1).
Thus (7) gives

k|S| − 2s > k(|S| − 3) + k(2r + 1)− 2r(r + 1),

implying
r(r + 1) > k(r − 1) + s > k(r − 1) + 2. (8)

But this shows that k(r − 1) 6 r(r + 1) − 2 = (r + 2)(r − 1), and so either r = 1 or
k 6 r+ 2 = (m+ 3)/2. In the latter case m > 2k− 3. As every vertex of C sends at least
two edges to S, this implies that t > 2m > 4k − 6, and so (7) gives

k|S| − 2s > k(|S| − 3) + 4k − 6 = k|S|+ k − 6.
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This implies k 6 6 − 2s, and so s > 2 forces k 6 2, a contradiction. Suppose then that
r = 1. By (8) we get s = 2, and so (7) implies t = 3k − 4. Moreover, since λ = 0
the connected component C must be the 2-path, say (z1, z2, z3). Furthermore, since Γ is
of diameter 2, each of the vertices wi, 1 6 i 6 |S| − 3 is adjacent to each vertex from
S ′ = S \ {u1, v1, u2, v2} (recall that s = 2) and to precisely one of u1, v1 and to one of
u2, v2. Therefore, k = |S| − 2. It follows that the number t′ of edges between C and S ′ is
k(|S| − 4)− (k − 2)(|S| − 3) = k − 2. On the other hand, since λ = 0, each of z1 and z3
has at least k − 2 neighbours in S ′ and z2 has at least k − 4 neighbours in S ′. Therefore,
k − 2 = t′ > 2(k − 3) + k − 4 = 3k − 10, implying k = 4. For each of the two vertices of
S ′ to be at distance at most 2 from each of z1, z2, z3 we must have that z2 is adjacent to
both vertices from S ′ (recall that each wi, 1 6 i 6 3 is adjacent to both vertices of S ′).
Thus z1 must have three neighbours in {u1, v1, u2, v2}, contradicting λ = 0.

Case 2: λ = 1. By Proposition 9 we have that k > 5, and so N(w1) ⊆ S, implying that
|S| > 5. Consider N(w1) ∪ N(w2) ⊆ S. Since λ = 1 there are k/2 edges within N(w1)
and k/2 edges within N(w2). But no two vertices in N(w1) ∩ N(w2) can be adjacent
(otherwise λ > 1), and so there are at least k/2 + k/2 = k edges within N(w1) ∪N(w2).
Hence s > k, contradicting s 6 3k/4.

4 Proof of the main theorem

In this section we finally prove our main theorem. With reference to Notation 13, re-
call that by Proposition 18, Γ − S is an empty graph on |S| − 2 which we denote by
w1, . . . , w|S|−2. We start with the following result.

Proposition 19. With reference to Notation 13, there are exactly k edges contained in
S. Furthermore, λ = 0.

Proof. Let s denote the number of edges contained in S. Counting the edges between S
and V (Γ) \ S in two ways we find that

k|S| − 2s = k(|S| − 2) = k|S| − 2k,

and so s = k. Pick i ∈ {1, 2, . . . , |S| − 2} and observe that N(wi) ⊆ S. The number of
edges within N(wi) is kλ/2, and so λ ∈ {0, 1, 2}. We assume that λ 6= 0 and obtain a
contradiction. Since Γ was assumed not to be strongly regular, Proposition 9 implies that
k > 5.

Case 1: λ = 2. Let 1 6 i 6 |S| − 2. By the above argument there are then k edges
within N(wi), and so s = k implies that no x ∈ S \N(wi) can have a neighbour in S. But
then d(x,wi) > 2, a contradiction, which shows that S = N(wi) for all 1 6 i 6 |S| − 2.
But then all of the |S| − 2 = k − 2 vertices wi are common neighbours of u1 and v1. As
λ = 2, this implies k 6 4, a contradiction.

Case 2: λ = 1. We claim that every vertex of S has at least two neighbours in S. If x is
a vertex of S which has no neighbours in S, then x can not have any common neighbours
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with any of the vertices wi (1 6 i 6 |S| − 2), contradicting λ = 1. Suppose then that x
is a vertex of S which has exactly one neighbour, say y, in S. Then x is adjacent with
k − 1 vertices in {wi | 1 6 i 6 |S| − 2}. But if x is adjacent with some wi, then wi and
x must have a common neighbour, and so this common neighbour must be y. Therefore,
y is adjacent to the same k − 1 vertices in {wi | 1 6 i 6 |S| − 2} as is x. But this shows
that x and y have k− 1 common neighbours, which forces 1 = λ > k− 1, a contradiction.
This proves our claim that every vertex of S has at least two neighbours in S. As there
are exactly k edges contained in S and |S| > k, this shows that every vertex of S has
exactly two neighbours in S and k = |S|. Consequently, N(wi) = S for 1 6 i 6 |S| − 2.
As |S| = k > 5, this shows that adjacent vertices u1, v1 have at least three common
neighbours (namely w1, w2 and w3), contradicting λ = 1. This completes the proof.

Our analysis of the remaining possibility λ = 0 is done separately for k = 4 and k > 5.

Proposition 20. With reference to Notation 13, assume k = 4. Then either Γ is iso-
morphic to the lexicographic product C5[2K1] of the 5-cycle with the empty graph on two
vertices, or the subgraph of Γ induced on S is the disjoint union of four copies of the
complete graph K2.

Proof. Recall that by Proposition 19 there are exactly 4 edges within S. By (1) we have
that n 6 16. Moreover, n = 16 is not possible by [8], and so n 6 14. If |S| 6 5, then w1

has at least three neighbours in {u1, v1, u2, v2}, contradicting λ = 0. As n = 2|S|−2 > 14,
this implies 6 6 |S| 6 8.

Case 1: |S| = 6. Let S = {u1, v1, u2, v2, x, y}. As λ = 0, every wi (1 6 i 6 4) is adjacent
with with exactly one of the vertices u1, v1, with exactly one of the vertices u2, v2, and to
both x and y. Therefore, x and y have no neighbours within S. Moreover, as there are 4
edges in S and λ = 0, we can assume that u1 is adjacent with u2 and that v1 is adjacent
with v2. But it is now not difficult to see that Γ ∼= C5[2K1].

Case 2: |S| = 7. Let S = {u1, v1, u2, v2, x, y, z}. Note that since |S| − 2 = 5 and λ = 0,
at least one of u1, v1 can have at most two neighbours in V (Γ)\S, and so has at least one
neighbour in S \{u1, v1}. Similarly, at least one of u2, v2 must have at least one neighbour
in S \ {u2, v2}. But as there are exactly 4 edges within S, this implies that at least one
of x, y, z, say x, has all neighbours in {wi | 1 6 i 6 5}. It follows that the unique vertex
of {wi | 1 6 i 6 5} \N(x) is at distance at least 3 from x, a contradiction.

Case 3: |S| = 8. Similarly as in Case 2 above we can show that for the diameter of Γ to
be 2, every vertex of S must have at least one neighbour in S. But as there are exactly 4
edges within S, this implies that the subgraph of Γ induced on S is the disjoint union of
four copies of the complete graph K2.

Proposition 21. With reference to Notation 13, assume k > 5. Then the subgraph of Γ
induced on S is the disjoint union of k copies of the complete graph K2.

Proof. By Proposition 19 we have that λ = 0, and so N(wi) is an independent set for
each 1 6 i 6 |S| − 2. We first claim that each vertex of S has at least one neighbour in
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S. If some v ∈ S has no neighbours in S, then it must be adjacent to each wi (otherwise
the diameter of Γ would be at least 3), and so k = |S| − 2. Denote the two vertices of
S \ N(w1) by x and y. As N(w1) is an independent set, each of the k edges within S is
incident with at least one of x and y. As x, y are not adjacent with w1, each of them has
a neighbour in N(w1). Pick z ∈ N(w1) ∩N(x).

Assume first that x and y are not adjacent. Then at least one of x, y has at most k/2
neighbours in S, and consequently it has at least k/2 neighbours in {wi | 2 6 i 6 |S|− 2}
(recall that x, y are not adjacent with w1). Without loss of generality we can assume that
this vertex is x. As z can not be adjacent with any other neighbour of w1, it has at least
k−3 neighbours in {wi | 2 6 i 6 |S|−2}. But since z and x have no common neighbours,
this implies that

k − 1 = |S| − 3 = |{wi | 2 6 i 6 |S| − 2}| > (k − 3) +
k

2
,

forcing k 6 4, a contradiction.
Assume now that x and y are adjacent. Similarly as above we can show that at least

one of them, say x, has at least (k−1)/2 neighbours in {wi | 2 6 i 6 |S|−2}. But as z can
not be adjacent with y, this implies that it has k− 2 neighbours in {wi | 2 6 i 6 |S|− 2},
and so

k − 1 = |S| − 3 = |{wi | 2 6 i 6 |S| − 2}| > (k − 2) +
k − 1

2
,

implying that k 6 3, a contradiction. This proves our claim that each vertex in S has at
least one neighbour in S.

If a vertex x ∈ S has all neighbours in S, then for S1 = S \ {x} we have that
o(Γ − S1) = |S| − 1 = |S1|. But then Proposition 5 implies that Γ is not 1-extendable,
contradicting Proposition 3. Therefore, every vertex of S has at least one neighbour in
V (Γ) \ S.

To complete the proof pick any x ∈ S. By the above comments there exists wi such
that x ∈ N(wi). As every vertex of N(wi) has at least one neighbour in S, and this
neighbour can not be in N(wi), the fact that there are exactly k edges within S implies
that each of the k vertices ofN(wi) is incident with exactly one edge whose other endvertex
is in S, and so x has a unique neighbour in S. It follows that each vertex of S has exactly
one neighbour in S, and so Γ(S) is the disjoint union of k copies of the complete graph
K2.

Proposition 22. Let Γ be a (n, k, 0) edge-regular graph of diameter 2 with n even and
k > 3. Suppose there exists a subset S of V (Γ), such that Γ(S) is the disjoint union
of k copies of the complete graph K2, and such that Γ − S consists of |S| − 2 singleton
components. Then Γ is isomorphic to a graph from Construction 10.

Proof. Note that |S| = 2k. Denote the vertices of S by xi, yi (1 6 i 6 k) such that xi ∼ yi
for each 1 6 i 6 k, and let W = {w1, w2, . . . , w2k−2} = V (Γ) \ S. For 1 6 i 6 k define

Si = N(xi) ∩W = N(xi) \ {yi}.
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Note that |Si| = k − 1. As λ = 0, it is clear that N(yi) \ {xi} = W \ Si. Pick arbitrary
1 6 i < j 6 k. As the diameter of Γ is 2 and xi, xj are not adjacent, they must have
a common neighbour, and so Si ∩ Sj 6= ∅. Similarly, as xi, yj are not adjacent, we have
Si ∩ (W \ Sj) 6= ∅, and so Si 6= Sj. Finally, pick ws, wt ∈ W , such that s 6= t. Note that
ws, wt are not adjacent, and so they must have a common neighbour. If xi is a common
neighbour of ws and wt then {ws, wt} ⊆ Si. If however yi is a common neighbour of
ws and wt, then {ws, wt} ⊆ W \ Si. This shows that Γ is isomorphic to a graph from
Construction 10.

We can now finally prove Theorem 2.

Proof. It is easy to check that each of the four graphs from the first four items of the
statement of Theorem 2 is a non-2-extendable edge-regular with diameter 2. The last item
is covered by Proposition 11. Conversely, assume that Γ is a non-2-extendable (n, k, λ)
edge-regular graph of diameter 2, where k > 3 and n > 6 is even. If k = 3, then Theorem
8 implies that Γ is isomorphic either to the Petersen graph, or to the Möbius ladder on
eight vertices. If k > 4 and Γ is strongly regular, then the results from [12, 15] imply that
Γ is isomorphic to the complete multipartite graph K2,2,2. If k > 4 and Γ is not strongly
regular, then it follows from Propositions 20, 21 and 22 that Γ is either isomorphic to the
lexicographic product C5[2K1] or to one of the graphs from Construction 10.
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