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Abstract

We consider the problem of constructing Latin cubes subject to the condition
that some symbols may not appear in certain cells. We prove that there is a constant
γ > 0 such that if n = 2t and A is a 3-dimensional n× n× n array where every cell
contains at most γn symbols, and every symbol occurs at most γn times in every
line of A, then A is avoidable; that is, there is a Latin cube L of order n such that
for every 1 6 i, j, k 6 n, the symbol in position (i, j, k) of L does not appear in the
corresponding cell of A.

Mathematics Subject Classifications: 05B15, 05C15

1 Introduction

Consider an n×n array A in which every cell (i, j) contains a subset A(i, j) of the symbols
in [n] = {1, . . . , n}. If every cell contains at most m symbols, and every symbol occurs
at most m times in every row and column, then A is an (m,m,m)-array. Confirming
a conjecture by Häggkvist [11], it was proved in [1] that there is a constant c > 0 such
that if m 6 cn and A is an (m,m,m)-array, then A is avoidable; that is, there is a Latin
square L such that for every (i, j) the symbol in position (i, j) in L is not in A(i, j) (see
also [3, 2]). The purpose of this note is to prove an analogue of this result for Latin cubes
of order n = 2t.

In order to make this precise, we imagine a 3-dimensional array having layers stacked
on top of each other; we shall refer to such a 3-dimensional array as a cube. Now, a
cube has lines in three directions obtained from fixing two coordinates and allowing the
third to vary. The lines obtained by varying the first, second, and third coordinates
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will be referred to respectively as columns, rows, and files. The first, second, and third
coordinates themselves will be referred to as the indices of the rows, columns, and files.

A Latin cube L of order n on the symbols {1, . . . , n} is an n×n×n cube such that each
symbol in {1, . . . , n} appears exactly once in each row, column and file. The symbol in
position (i, j, k) of L is denoted by L(i, j, k). Latin cubes have been studied by a number
of authors, both with respect to enumeration and e.g. extension from partial cubes. An
extensive survey of early results can be found in [13].

An n×n×n cube where each cell contains a subset of the symbols in the set {1, . . . , n}
is called an (m,m,m,m)-cube (of order n) if the following conditions are satisfied:

(a) No cell contains a set with more than m symbols.

(b) Each symbol occurs at most m times in each row.

(c) Each symbol occurs at most m times in each column.

(d) Each symbol occurs at most m times in each file.

Let A(i, j, k) denote the set of symbols in the cell (i, j, k) of A. If we simplify notation,
and write A(i, j, k) = q if the set of symbols in cell (i, j, k) of A is {q}, then a (1, 1, 1, 1)-
cube is a partial Latin cube, and a Latin cube L is simply a (1, 1, 1, 1)-cube with no empty
cell.

Given an (m,m,m,m)-cube A of order n, a Latin cube L of order n avoids A if there
is no cell (i, j, k) of L such that L(i, j, k) ∈ A(i, j, k); if there is such a Latin cube, then
A is avoidable.

Problems on extending partial Latin cubes have been studied for a long time, with the
earliest results appearing in the 1970s [6]; in the more recent literature we have [4, 5, 12, 8].
The more general problem of constructing Latin cubes subject to the condition that some
symbols cannot appear in certain cells seems to be a hitherto quite unexplored line of
research. Our main result is the following, which establishes an analogue of the main
result of [3], which considered Latin squares, for Latin cubes.

Theorem 1. There is a positive constant γ such that if t > 30 and m 6 γ2t, then any
(m,m,m,m)-cube A of order 2t is avoidable.

The restriction on the order of the cube is not believed to be necessary, but as for
Latin squares, general orders are expected to require far more technical proof (unless
some completely new method is invented). Our proof establishes this result for a small
value of γ which we believe to be far from the optimal one, much like the case for the
similar results for Latin squares. We know from [7] that γ 6 1

3
, since that is an upper

bound for the corresponding result for Latin squares, and every n × n sub-array of an
avoidable (m,m,m,m)-cube of order n must be avoidable (in the sense that there is an
n × n Latin square that avoids this array). It would be interesting to see if this upper
bound could be improved in the setting of Latin cubes.

Problem 2. For how small γ′ = m
n

does there exist an unavoidable (m,m,m,m)-cube A
of order n?
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Since a Latin cube is a more highly structured object than a Latin square, we suspect
that in an (m,m,m,m)-cube yielding an optimal value of γ′ in Problem 2, all n× n sub-
arrays are avoidable. Thus we believe it would be interesting to investigate Problem 2
for the particular case when every n× n sub-array of the (m,m,m,m)-cube is avoidable.
We note that for this latter question, we have the similar bound γ′ 6 1/3, since there are
(γ′n, γ′n, γ′n, γ′n)-cubes of order n with γ′ > 1/3 that are unavoidable, although every
n×n subarray is avoidable. Such an unavoidable cube can be constructed in the following
way: Let S be a Latin cube of order n/2. From S we construct an n/2× n/2× n/2 cube
B by putting symbols 1, . . . , γ′n in every cell of B such that the corresponding cell of S
has an entry from {1, . . . , γ′n}; all other cells of B are empty. From B we construct a
(γ′n, γ′n, γ′n, γ′n)-cube A of order n by taking two copies A1 and A2 of B and placing
them in “opposite” corners of A, i.e., occupying disjoint rows, columns, and files; all other
cells of A are empty. Now, if L is an n × n × n Latin cube avoiding A, then in the
subcube L1 of L corresponding to A1, there are at most (1

8
− γ′

4
)n3 cells with entries from

{1, . . . , γ′n}. Therefore, there must be at least

γ′n3

4
−

(
1

8
− γ′

4

)
n3 =

(
γ′

2
− 1

8

)
n3

cells in the subcube L2 of L corresponding to A2 with entries from {1, . . . , γ′n}. However,
as for L1, in L2 there are at most (1

8
− γ′

4
)n3 cells with entries from {1, . . . , γ′n}. Hence,

γ′ 6 1/3.
We may also note that the main result of this paper, as well as the problem of extending

partial Latin cubes, can be recast as list edge coloring problems on the complete 3-uniform
3-partite hypergraph K3

n,n,n. Problems on extending partial edge colorings for ordinary
graphs have been studied to some extent, see e.g. [9, 10] and the references given there,
but similar problems for hypergraphs remain mostly unexplored.

In Section 2 we give some definitions and preparatory lemmas, and in Section 3 we
prove Theorem 1.

2 Definitions and properties of Boolean Latin cubes

In this section we give some definitions and collect essential properties of Boolean Latin
cubes.

Let A be an n × n × n cube. Given i ∈ [n], row layer i in A is a set of n2 cells
{(i, j∗, k∗) : j∗ ∈ [n], k∗ ∈ [n]}; given j ∈ [n], column layer j in A is a set of n2 cells
{(i∗, j, k∗) : i∗ ∈ [n], k∗ ∈ [n]}; given k ∈ [n], file layer k in A is a set of n2 cells
{(i∗, j∗, k) : i∗ ∈ [n], j∗ ∈ [n]}. As mentioned above, by fixing two coordinates and
varying the third, we obtain rows, columns and files of a n × n × n cube. Formally we
define a row of such a cube A as a set of cells Ri,k = {(i, j∗, k) : j∗ ∈ [n]}, a column as
the set Cj,k = {(i∗, j, k) : i∗ ∈ [n]}, and files Fi,j = {(i, j, k∗) : k∗ ∈ [n]}.

Definition 3. The Boolean Latin square of order 2t is the Latin square with entries as in
the addition table of Zt2 with the elements of Zt2 mapped to the integers 1, . . . , 2t.
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A 4-cycle (or intercalate) in a Latin square L is a set of four cells

{(i1, j1), (i1, j2), (i2, j1), (i2, j2)}

such that L(i1, j1) = L(i2, j2) and L(i1, j2) = L(i2, j1). We note some important properties
of Boolean Latin squares (cf. [3]).

Property 4. Each cell in the n × n Boolean Latin square is in n − 1 distinct 4-cycles.
Permuting the rows, the columns or the symbols does not affect the number of 4-cycles
that a cell is part of.

Property 5. A 4-cycle in the Boolean Latin square is uniquely determined by two cells;
that is, if C is a 4-cycle and (i1, j1), (i1, j2) ∈ C, then (i2, j1), (i2, j2) ∈ C, where i2 is the
row such that L(i1, j1) = L(i2, j2) and L(i1, j2) = L(i2, j1).

Property 6. The intersection of two 4-cycles is either empty, or it contains 1 or 4 cells.

Given an integer t, let ai (1 6 i 6 2t) be the ith smallest element of Zt2. (For example,
with t = 2, a1 = 00, a2 = 01, a3 = 10, a4 = 11.) We define the Boolean Latin cube similarly
as the Boolean Latin square.

Definition 7. The Boolean Latin cube B of order n = 2t on the symbols {1, . . . , n} is an
n× n× n Latin cube such that B(i, j, k) = x with ax = ai + aj + ak (addition in Zt2) for
all 1 6 i, j, k 6 n.

Definition 8. A subcube of order 2 (or just subcube) in a Latin cube L is a set of eight
cells

{(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1), (i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

such that
L(i1, j1, k1) = L(i2, j2, k1) = L(i1, j2, k2) = L(i2, j1, k2)

and
L(i1, j2, k1) = L(i2, j1, k1) = L(i1, j1, k2) = L(i2, j2, k2).

Note that every row, column and file layer of the Boolean Latin cube is isotopic to
a Boolean Latin square. For the Boolean Latin cube we have the following analogue of
Property 4.

Property 9. Each cell in the Boolean Latin cube of order n belongs to n− 1 subcubes.

Proof. Consider an arbitrary cell (i1, j1, k1) of the Boolean Latin cube B which belongs
to a 4-cycle c1 = {(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1)} such that B(i1, j1, k1) =
B(i2, j2, k1) and B(i1, j2, k1) = B(i2, j1, k1). There are n − 1 4-cycles c1 in file layer k1
containing (i1, j1, k1), since by construction, the file layers of the Boolean Latin cube are
isotopic to Boolean Latin squares; this also holds for row and column layers.
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Now, by Property 6, the two cells (i1, j1, k1) and (i2, j1, k1) define a unique 4-cycle

c2 = {(i1, j1, k1), (i2, j1, k1), (i1, j1, k2), (i2, j1, k2)}

in the column layer j1 such that B(i1, j1, k1) = B(i2, j1, k2) and B(i2, j1, k1) = B(i1, j1, k2).
By Definition 7,

ai1 + aj1 + ak1 = ai2 + aj2 + ak1 = ai2 + aj1 + ak2

and
ai1 + aj2 + ak1 = ai2 + aj1 + ak1 = ai1 + aj1 + ak2 .

Hence, we have
ai1 + aj1 + ak2 = ai2 + aj2 + ak2 = ai2 + aj1 + ak1

and
ai1 + aj2 + ak2 = ai2 + aj1 + ak2 = ai1 + aj1 + ak1 ;

or, in other words,

B(i1, j2, k1) = B(i2, j1, k1) = B(i1, j1, k2) = B(i2, j2, k2)

and
B(i1, j1, k1) = B(i2, j2, k1) = B(i1, j2, k2) = B(i2, j1, k2).

This implies that

{(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1), (i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

is a subcube; and so each cell in the Boolean Latin cube belongs to n− 1 subcubes.

Property 10. Let (i1, j1, k1), (i2, j2, k2), (i3, j3, k3) be three cells in the Boolean Latin
cube B such that (i1 − i2)(j1 − j2)(k1 − k2) 6= 0, (i1 − i3)(j1 − j3)(k1 − k3) 6= 0 and
(i2 − i3)(j2 − j3)(k2 − k3) 6= 0. If (i1, j1, k1) and (i2, j2, k2) both are in a subcube C1,
and (i1, j1, k1) and (i3, j3, k3) are in a subcube C2, then (i2, j2, k2) and (i3, j3, k3) are in a
subcube C3.

Proof. Assume B(i1, j1, k1) = x, B(i2, j2, k2) = y, B(i3, j3, k3) = z. Since C1 and C2 are
subcubes, we have that B(i2, j2, k1) = B(i1, j1, k1) = B(i3, j3, k1), i.e, ai2 + aj2 + ak1 =
ai1 + aj1 + ak1 = ai3 + aj3 + ak1 . It follows that ai2 + aj2 = ai3 + aj3 , so ai2 + aj2 +
ak2 = ai3 + aj3 + ak2 , which implies that B(i3, j3, k2) = B(i2, j2, k2) = y. Similarly, we
have B(i3, j2, k3) = B(i2, j3, k3) = B(i2, j2, k2) = y and B(i3, j2, k2) = B(i2, j3, k2) =
B(i2, j2, k3) = B(i3, j3, k3) = z, which implies that (i2, j2, k2) and (i3, j3, k3) are two cells
of a subcube

C3 = {(i2, j2, k2), (i2, j3, k2), (i3, j2, k2), (i3, j3, k2), (i2, j2, k3), (i2, j3, k3), (i3, j2, k3), (i3, j3, k3)}.
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Property 11. The intersection of two subcubes in a Latin cube is either empty, or it
contains 1 or 8 cells.

Proof. Assume that the intersection of two given subcubes contains at least 2 cells. If
these 2 cells lie in a 4-cycle of a layer of the Latin cube, then by Property 6, this 4-cycle
belongs to the intersection of two subcubes. But each 4-cycle defines a unique subcube,
which implies that the intersection of the two subcubes contains 8 cells. If not, these
2 cells must have distinct row, column and file coordinates, so if we denote these two
cells by (i1, j1, k1) and (i2, j2, k2), respectively, then i1 6= i2, j1 6= j2, k1 6= k2. Hence,
the intersection of the two subcubes must be the 8 cells (i1, j1, k1), (i1, j2, k1), (i2, j1, k1),
(i2, j2, k1), (i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2).

Definition 12. Given a subcube

C = {(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1), (i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

in a Latin cube L, a swap on C (or simply a swap) denotes the transformation L → L′

which retains the content of all cells of L except that if

L(i1, j1, k1) = L(i2, j2, k1) = L(i1, j2, k2) = L(i2, j1, k2) = x1

and
L(i1, j2, k1) = L(i2, j1, k1) = L(i1, j1, k2) = L(i2, j2, k2) = x2

then
L′(i1, j1, k1) = L′(i2, j2, k1) = L′(i1, j2, k2) = L′(i2, j1, k2) = x2

and
L′(i1, j2, k1) = L′(i2, j1, k1) = L′(i1, j1, k2) = L′(i2, j2, k2) = x1.

Property 13. Consider an arbitrary column {(i1, j1, k1), . . . , (in, j1, k1)} of a Boolean
Latin cube B of order n. For any k2 (j2), there exists a unique j2 (k2), such that
B(x, j1, k1) = B(x, j2, k2) for every x ∈ {1, . . . , n}.

Proof. For any k2, we can choose j2 satisfying aj2 = aj1 + ak1 − ak2 , and for any j2, we
can choose k2 satisfying ak2 = aj1 + ak1 − aj2 .

Evidently, all rows and files of a Boolean Latin cube have corresponding properties.

Property 14. Let B be a Boolean Latin cube of order n, b an arbitrary symbol in B,
and S1 be the set of cells of B in the first row layer which contain b. For any row layer
i, the set of cells Si of B in row layer i which have the same column and file coordinates
as cells in S1 all contain the same symbol.

Proof. Assume that (i, j1, k1) ∈ Si and B(i, j1, k1) = x, and consider an arbitrary cell
(i, j2, k2) ∈ Si. By definition, there are two cells (1, j1, k1) and (1, j2, k2) such that
B(1, j1, k1) = B(1, j2, k2) = b, that is, a1 + aj1 + ak1 = a1 + aj2 + ak2 . This implies
that ai+aj1 +ak1 = ai+aj2 +ak2 , which means that B(i, j2, k2) = B(i, j1, k1) = x. Hence,
all cells in Si contain the same symbol.
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Note that all column and file layers of B have the same property.
The following simple observation enables us to permute layers and symbols in a Latin

cube.

Property 15. If L is a Latin cube, then the cube obtained by permuting the row layers,
the column layers, the file layers and/or the symbols of L is a Latin cube.

For Boolean Latin cubes an even stronger property holds. If a Latin cube L′ is obtained
from another Latin cube L by permuting row/column/file layers and/or symbols of L, then
we say that L and L′ are isotopic. Henceforth, all Latin cubes have order n.

Property 16. If L is isotopic to a Boolean Latin cube, then any cell of L is in n − 1
subcubes. Moreover, Property 10, 13, and 14 hold for L.

In the following we shall define some sets of cells in Latin cubes that are isotopic to
Boolean Latin cubes.

Definition 17. Let L be a Latin cube that is isotopic to a Boolean Latin cube. A row block
of L is a set of n rows Ri,k such that for every pair of rows Ri1,k1 = {(i1, j, k1) : j ∈ [n]} and
Ri2,k2 = {(i2, j, k2) : j ∈ [n]} in this set, B(i1, x, k1) = B(i2, x, k2) for every x ∈ {1, . . . , n}.
It is obvious that there are n row blocks in total. Column blocks and file blocks are defined
similarly.

Property 18. If

C = {(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1), (i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

is a subcube in a Latin cube L that is isotopic to a Boolean cube, then the two rows Ri1,k1

and Ri2,k2 are in the same row block, as are also the two rows Ri2,k1 and Ri1,k2.

Note that a similar property holds for columns blocks and file blocks.

Definition 19. If L is a Latin cube that is isotopic to a Boolean Latin cube, a transversal-
set t of L is a set of n cells that satisfy the following

• no two cells in t are in the same row/column/file;

• no two cells in t contain the same symbol;

• for any two cells in t, there is a unique subcube that contain these cells.

Note that by Property 10, a transversal-set is well-defined, and every row block, column
block and file block contains exactly n disjoint transversal-sets.

Based on Property 14, we make the following definition.

Definition 20. A symbol-row block of a Latin cube L that is isotopic to a Boolean Latin
cube is a set s of n2 cells satisfying that
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• all cells of s that are in the same row layer contain the same symbol, and

• for every cell of s, there are n − 1 other cells that have the same column and file
coordinate.

Symbol-column blocks and symbol-file blocks are defined similarly.

An intersection between a symbol-row block and a row layer (or a symbol-column
block and a column layer, or a symbol-file block and a file layer) is called a symbol-set.
It is obvious that all cells in a symbol-set contain the same symbol, and that each row
layer, column layer, file layer, symbol-row block, symbol-column block, and symbol-file
block contains n symbol-sets.

Definition 21. A symbol block of a Latin cube L is a set of n2 cells such that all these
cells contain the same symbol.

Note that a Latin cube that is isotopic to a Boolean Latin cube contains n symbol
blocks in total, and for each symbol block, there are three different ways to divide this
symbol block to n disjoint symbol-sets (group the symbol sets based on the row layers,
the column layers or the file layers).

Given an n×n×n cube A where each cell contains a subset of the symbols in {1, . . . , n},
and a Latin cube L of order n that does not avoid A, we say that those cells (i, j, k) of
L where L(i, j, k) ∈ A(i, j, k) are conflict cells of L with A (or simply conflicts of L). An
allowed subcube of L is a subcube

C = {(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1), (i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

in L such that swapping on C yields a Latin cube L′ where none of (i1, j1, k1), (i1, j2, k1),
(i2, j1, k1), (i2, j2, k1), (i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2) is a conflict.

3 Proof of the main theorem

In this section we prove Theorem 1. Our basic proof strategy is similar to the one in [3, 1];
however, due to the extra dimension in a Latin cube, our arguments are considerably more
involved and somewhat technical. Our starting point in the proof is the Boolean Latin
cube; we permute its row layers, column layers, file layers and symbols so that the resulting
Latin cube does not have too many conflicts with a given (m,m,m,m)-cube A. After
that, we find a set of allowed subcubes such that each conflict belongs to one of them,
with no two of the subcubes intersecting, and swap on those subcubes.

The proof of Theorem 1 involves a number of parameters:

α, γ, κ, ε, θ,

and a number of inequalities that they must satisfy. For the reader’s convenience, explicit
choices for which the proof holds are presented here:

α = 1− 38× 2−25, γ = 2−25, κ = 6× 2−25, ε = 2−6, θ = 2−12. (1)

the electronic journal of combinatorics 26(2) (2019), #P1.2 8



By an example of unavoidable (bn
3
c + 1, bn

3
c + 1, bn

3
c + 1)-arrays in [7], the value of

γ for which Theorem 1 holds cannot exceed 1
3
. Thus, since the numerical value of γ for

which the theorem holds is not anywhere near what we expect to be optimal, we have not
put an effort into choosing optimal values for these parameters. Moreover, for simplicity
of notation, we shall omit floor and ceiling signs whenever these are not crucial.

We shall establish that our main theorem holds by proving two lemmas.

Lemma 22. Let α, γ, κ be constants and n = 2t such that(
7n2 (γn)κn

(κn)!
+ 3n3 (2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!

)
< 1.

For any (γn, γn, γn, γn)-cube A of order n there is a quadruple of permutations σ =
(τ1, τ2, τ3, τ4) of the row layers, the column layers, the file layers and the symbols of the
Boolean Latin cube B of order n, respectively, such that applying σ to B, we obtain a
Latin cube L satisfying the following:

(a) No row in L contains more than κn conflicts with A.

(b) No column in L contains more than κn conflicts with A.

(c) No file in L contains more than κn conflicts with A.

(d) No symbol-set in L contains more than κn conflicts with A.

(e) No transversal-set in L contains more than κn conflicts with A.

(f) Each cell of L belongs to at least αn allowed subcubes.

Proof. Let Xa, Xb, Xc, Xd, Xe and Xf be the number of permutations which do not
fulfill the conditions (a), (b), (c), (d), (e) and (f), respectively. Let X be the number of
permutations satisfying the six conditions (a), (b), (c), (d), (e) and (f). There are (n!)4

ways to permute the row layers, the column layers, the file layers and the symbols, so we
have

X > (n!)4 −Xa −Xb −Xc −Xd −Xe −Xf .

We shall prove that X is greater than 0.

• To estimate Xa, assume that for any fixed permutation (τ1, τ3, τ4) of the row layers,
the file layers and the symbols, at most Na choices of a permutation τ2 of the column
layers yield a quadruple (τ1, τ2, τ3, τ4) of permutations that break condition (a); so
Xa 6 n!n!n!Na.

Let R be a fixed row chosen arbitrarily; we count the number of ways a permutation
τ2 of the column layers can be constructed so that (a) does not hold on row R. Let S
be a set of size κn of column layers of A. There are

(
n
κn

)
ways to choose S. In order

to have a conflict at cell (i, j, k) of R, the column layers should be permuted in such a
way that in the resulting Latin cube L, L(i, j, k) ∈ A(i, j, k). Since |A(i, j, k)| 6 γn,
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there are at most (γn)κn ways to choose which column layers of B are mapped by
τ2 to column layers in S so that all cells on row R that are in S are conflicts. The
rest of the column layers can be arranged in any of the (n− κn)! possible ways. In
total this gives at most (

n

κn

)
(γn)κn(n− κn)! =

n!(γn)κn

(κn)!

permutations τ2 that do not satisfy condition (a) on row R. There are n2 rows in
B, so we have

Na 6 n2n!(γn)κn

(κn)!

and

Xa 6 n!n!n!Na 6 n2(n!)4
(γn)κn

(κn)!
.

An analogous argument gives the same bound for Xb, Xc, so in total, we have that

Xa +Xb +Xc 6 3n2(n!)4
(γn)κn

(κn)!
.

• To estimate Xd, assume that for any fixed permutation (τ1, τ3, τ4) of the row layers,
the file layers and the symbols, at most Nd choices of a permutation τ2 of the column
layers give a quadruple (τ1, τ2, τ3, τ4) of permutations that break condition (d); then
Xd 6 n!n!n!Nd.

Let b be a fixed symbol chosen arbitrarily; we count the number of ways a permu-
tation τ2 of the column layers can be constructed so that (d) does not hold for b
in a given row layer. Let RL be a fixed row layer; there are n cells containing b in
RL and these cells belong to n different column layers since B is a Boolean Latin
cube. Let S be a set of size κn of column layers of A; there are

(
n
κn

)
ways to choose

S. Since in A, each symbol occurs at most γn times in each row, there are at most
(γn)κn ways to choose which column layers of B are mapped by τ2 to column layers
in S so that all cells containing b on row layer RL that are in S are conflicts. The
rest of the column layers can be arranged in any of the (n− κn)! possible ways. In
total this gives at most (

n

κn

)
(γn)κn(n− κn)! =

n!(γn)κn

(κn)!

permutations τ2 such that in the resulting Latin cube L, symbol b appears in more
than κn conflicts in the row layer RL. There are n different row layers, n different
column layers and n different file layers in B, so we deduce that there are at most

3n
n!(γn)κn

(κn)!
permutations τ2 that do not satisfy condition (d) on symbol b. There

are n symbols in B, so we have

Nd 6 3n2n!(γn)κn

(κn)!
.
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and

Xd 6 3n2(n!)4
(γn)κn

(κn)!
.

• To estimate Xe, assume that for any fixed permutation (τ1, τ2, τ3) of the row layers,
the column layers, the file layers, at most Ne choices of a permutation τ4 of the
symbols give a quadruple (τ1, τ2, τ3, τ4) of permutations that break condition (e); so
Xe 6 n!n!n!Ne.

Let T be a fixed transversal-set chosen arbitrarily; we count the number of ways a
permutation τ4 of the symbols can be constructed so that (e) does not hold on the
set T . Let S be a set of size κn of cells of T ; there are

(
n
κn

)
ways to choose S. In order

to have a conflict at cell (i, j, k) of T , the symbols should be permuted in such a
way that in the resulting Latin cube L, L(i, j, k) ∈ A(i, j, k). Since |A(i, j, k)| 6 γn,
there are at most (γn)κn ways to choose which symbols of B are mapped by τ4 to
cells in S so that all cells in S are conflicts. The rest of the symbols can be arranged
in any of the (n− κn)! possible ways. In total this gives at most(

n

κn

)
(γn)κn(n− κn)! =

n!(γn)κn

(κn)!

permutations τ4 that do not satisfy condition (e) on the transversal-set T . There
are n2 transversal-sets in B, so we have

Ne 6 n2n!(γn)κn

(κn)!
,

and so

Xe 6 n!n!n!Ne 6 n2(n!)4
(γn)κn

(κn)!
.

• To estimate Xf , assume that for any fixed permutation (τ2, τ4) of the column layers
and the symbols at most Nf choices of a pair (τ1, τ3) of the row layers and the file
layers yield a quadruple (τ1, τ2, τ3, τ4) of permutations that break condition (f), then
Xf 6 n!n!Nf .

Let (i1, j1, k1) be an arbitrary fixed cell of A. Each subcube C containing (i1, j1, k1)
is uniquely determined by the value of j2 6= j1 where (i1, j2, k1) ∈ C; so a pair of
permutations (τ1, τ3) satisfy that the quadruple (τ1, τ2, τ3, τ4) adds to Xf if and only
if there are more than (1−α)n choices for j2 so that the swap along C is not allowed.
We shall count the number of ways of choosing (τ1, τ3) so that this holds.

Let us first note that there are at most 2γn choices for a pair (ix, kx), where i1 =
τ1(ix), k1 = τ3(kx), that yield a subcube C in L that is not allowed because of a
conflict in the row with row index i1 in file layer k1; that is, after swapping on C, we
have a conflict cell on the row with row index i1 in file layer k1. This follows from the
fact that there are γn choices for j2 such that A(i1, j2, k1) contains L(i1, j1, k1), and
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since |A(i1, j1, k1)| 6 γn, we have γn choices for j2 so that L(i1, j2, k1) ∈ A(i1, j1, k1).
So for a permutation (τ1, τ3) to contribute to Nf , (τ1, τ3) must be such that at least
(1 − α − 2γ)n subcubes containing the cell (i1, j1, k1) are not allowed because of
restrictions on rows of A that are distinct from row i1 in file layer k1. Since each
subcube C containing (i1, j1, k1) has cells from three other rows, this implies that at
least (1− α− 2γ)n/3 subcubes cannot be allowed because of conflicts appearing in
one of these rows.

Now, there are n2 ways to choose a row layer ix and a file layer kx so that i1 = τ1(ix)
and k1 = τ3(kx); we fix such a row layer ix and file layer kx. Next, let Nf1 be
the number of pairs of permutations (τ1, τ3) such that at least (1 − α − 2γ)n/3
subcubes containing (i1, j1, k1) are not allowed because swapping yields conflicts in
cells in file layer k1 that are not contained in row layer i1. Let us first note that
there are (n− 1)! ways to permute the remaining file layers of B. Consider a fixed
permutation τ3 of the file layers; we count the number of permutations τ1 of the
row layers such that the pair (τ1, τ3) contributes to Nf1 . Let S be a set of columns,
(|S| = (1− α− 2γ)n/3), such that for every column Cj2,k2 ∈ S, there is a unique i2
satisfying that

C = {(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1),
(i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

is a subcube and this subcube is not allowed because of conflicts arising in row i2
in file layer k1. There are

(
n−1

(1−α−2γ)n/3

)
ways to choose S. Fix a column Cj2,k2 ∈ S;

in column j1 of file layer k1 of A, there are at most γn cells containing L(i1, j1, k1)
and in the column j2 in file layer k1 of A, there are at most γn cells containing
L(i1, j2, k1), so there are up to 2γn choices for τ−11 (i2) in B that would make C
disallowed because of conflicts arising in rows distinct from i1 in the file layer k1.

Since every column in S yields a unique row index, S determines τ1 on (1−α−2γ)n/3
row layers. The remaining row layers can be permuted in (n− 1− (1−α− 2γ)n/3)!
ways. This implies that the total number of permutations τ1 that yield at least
(1−α− 2γ)n/3 subcubes that are not allowed because of conflicts appearing in file
layer k1 that are not contained in row layer i1 is bounded from above by(

n− 1

(1− α− 2γ)n/3

)
(2γn)(1−α−2γ)n/3(n− 1− (1− α− 2γ)n/3)!

=
(n− 1)!(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!
.

Hence, Nf1 6 (n− 1)!
(n− 1)!(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!
.

Let Nf2 be the number of pairs of permutations (τ1, τ3) such that at least (1− α−
2γ)n/3 subcubes containing (i1, j1, k1) are not allowed because swapping on them
yields conflicts in rows contained in the row layer i1 but not in file layer k1. There
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are (n − 1)! ways to permute the remaining row layers of B. We consider a fixed
permutation τ1 of the row layers and count the number of permutations τ3 of the
file layers such that the pair (τ1, τ3) contributes to Nf2 . Let S be a set of files,
(|S| = (1 − α − 2γ)n/3), such that for every file Fi2,j2 ∈ S, there is a unique k2
satisfying that

C = {(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1),
(i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

is a subcube and this subcube is not allowed because of conflicts arising in cells in row
layer i1 that are not in file layer k1. There are

(
n−1

(1−α−2γ)n/3

)
ways to choose S. Fix a

file Fi2,j2 ∈ S; in the file Fi1,j1 of A, there are at most γn cells containing L(i1, j1, k1)
and in the file Fi1,j2 of A, there are at most γn cells containing L(i1, j2, k1), so there
are up to 2γn choices for τ−13 (k2) in B that would make C disallowed because of
possible conflicts in row layer i1 that are not in file layer k1.

As before, S determines how τ3 acts on (1−α−2γ)n/3) file layers, and the remaining
file layers can be permuted in (n − 1 − (1 − α − 2γ)n/3)! ways. This implies that
the total number of permutations τ3 with not enough allowed subcubes due to the
fact that swapping yield conflicts in rows contained in the row layer i1 but not in
file layer k1 is bounded from above by(

n− 1

(1− α− 2γ)n/3

)
(2γn)(1−α−2γ)n/3(n− 1− (1− α− 2γ)n/3)!

=
(n− 1)!(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!
.

Hence, Nf2 6 (n− 1)!
(n− 1)!(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!
.

Let Nf3 be the number of pairs of permutations (τ1, τ3) such that at least (1 −
α − 2γ)n/3 subcubes C containing (i1, j1, k1) are not allowed because swapping on
them yields conflicts in cells which lie in row and file layers distinct from i1 and
k1, respectively. There are (n − 1)! ways to permute the remaining file layers of
B. Consider a fixed permutation τ3 of the file layers; we count the number of
permutations τ1 of the row layers such that the pair (τ1, τ3) contributes to Nf3 . Let
S be a set of columns (|S| = (1−α−2γ)n/3), such that for every column Cj2,k2 ∈ S,
there is a unique i2 satisfying that

C = {(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1),
(i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

is a subcube which is not allowed because swapping yields conflicts in cells in row i2
in file layer k2. There are

(
n−1

(1−α−2γ)n/3

)
ways to choose S. Fix a column Cj2,k2 ∈ S;

in the column Cj2,k2 of A, there are at most γn cells containing symbol L(i1, j1, k1),
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and in the column Cj1,k2 of A, there are at most γn cells containing L(i1, j2, k1); so
there are up to 2γn choices for τ−11 (i2) in B that would make C disallowed because
swapping yields conflicts in cells which lie in row and file layers distinct from i1 and
k1, respectively.

The set S determines how τ1 acts on (1−α−2γ)n/3 row layers. The remaining row
layers can be permuted in (n − 1 − (1 − α − 2γ)n/3)! ways. This implies that the
total number of permutations τ1 with too few allowed subcubes because of conflicts
arising in cells in row and file layers distinct from i1 and k1 is bounded from above
by (

n− 1

(1− α− 2γ)n/3

)
(2γn)(1−α−2γ)n/3(n− 1− (1− α− 2γ)n/3)!

=
(n− 1)!(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!
.

Hence, Nf3 6 (n− 1)!
(n− 1)!(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!
.

The Boolean Latin cube contains n3 cells in total, so

Nf 6 n3(n2Nf1 + n2Nf2 + n2Nf3) 6 3n3(n!)2
(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!

and

Xf 6 (n!)2Nf 6 3n3(n!)4
(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!

Summing up, we conclude that

X > (n!)4 − 7n2(n!)4
(γn)κn

(κn)!
− 3n3(n!)4

(2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!

> (n!)4
(

1− 7n2 (γn)κn

(κn)!
− 3n3 (2γn)(1−α−2γ)n/3

((1− α− 2γ)n/3)!

)
By (1), X is strictly greater than 0, provided that n is large enough.

Lemma 23. Let L be a Latin cube that is isotopic to a Boolean Latin cube, and let A be
an (m,m,m,m)-cube; both of order n. Furthermore, let α, γ, κ, θ, ε be constants, n = 2t

such that εn > 3 and

αn− 21κn− 7εn− 84κ

ε
n− 21θ

ε
n− 80κ

θ
n− 28 > 0.

If L has the following properties:

(a) no row in L contains more than κn conflicts with A;
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(b) no column in L contains more than κn conflicts with A;

(c) no file in L contains more than κn conflicts with A;

(d) no symbol-set in L contains more than κn conflicts with A;

(e) no transversal-set in L contains more than κn conflicts with A;

(f) each cell of L belongs to at least αn allowed subcubes;

then there is a set of disjoint allowed subcubes such that each conflict of L belongs to one
of them. Thus, by performing a number of swaps on subcubes in L, we obtain a Latin
cube L′ that avoids A.

Proof. For constructing L′ from L, we will perform a number of swaps on subcubes, and
we shall refer to this procedure as S-swap. We are going to construct a set S of disjoint
allowed subcubes such that each conflict of L with A belongs to one of them. A cell that
belongs to a subcube in S is called used in S-swap. Since no row in L contains more than
κn conflicts with A, there are at most κn3 conflicts in L, which implies that the total
number of cells that are used in S-swap is at most 8κn3.

A row layer, a column layer, a file layer, a row block, a column block, a file block,
a symbol block, a symbol-row block, a symbol-column block, or a symbol-file block is
overloaded if such a layer or block contains at least θn2 cells that are used in S-swap; note

that no more than
8κn3

θn2
=

8κ

θ
n layers or blocks of each type are S-overloaded. A row,

a column, a file, a transversal-set, or a symbol-set is overloaded if this row, column, file,
transversal-set or symbol-set contains at least εn cells that are used in S-swap.

Using these facts, let us now construct our set S by steps; at each step we consider a
conflict cell (i1, j1, k1) and include an allowed subcube containing (i1, j1, k1) in S. Initially,
the set S is empty.

So let us consider a conflict cell (i1, j1, k1) in L; there are at least αn allowed subcubes
containing (i1, j1, k1). We choose an allowed subcube

C = {(i1, j1, k1), (i1, j2, k1), (i2, j1, k1), (i2, j2, k1), (i1, j1, k2), (i1, j2, k2), (i2, j1, k2), (i2, j2, k2)}

that satisfies the following:

(1) The row layer i2, the column layer j2, the file layer k2, the row block containing the
row Ri2,k1 , the column block containing the column Cj2,k1 , the file block containing
the file Fi1,j2 , the symbol-row block containing two cells (i1, j2, k1) and (i1, j1, k2),
the symbol-column block containing two cells (i2, j1, k1) and (i1, j1, k2), the symbol-
file block containing two cells (i1, j2, k1) and (i2, j1, k1), the symbol block containing

symbol L(i1, j2, k1) are not overloaded. This eliminates at most
10× 8κ

θ
n =

80κ

θ
n

choices.

With this strategy for including subcubes in S, after completing the construction of
S, every layer (or block) contains at most 4κn2+(θn2−1)+4 cells that are used in S-
swap. Hence, the number of overloaded rows (overloaded columns, overloaded files,
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overloaded transversal-sets or overloaded symbol-sets) in each layer (or block) is at

most
4κn2 + θn2 + 3

εn
6

4κ+ θ

ε
n + 1. Note that here the statement “each symbol

block contains at most
4κ+ θ

ε
n + 1 overloaded symbol-sets” is to be taken with

respect to either row layers, column layers or file layers, i.e., when we consider the n
different symbol sets of a given symbol block belonging to n different row layers (or
n different column layers or n different file layers), the number of overloaded such

symbol-sets is at most
4κ+ θ

ε
n+ 1.

(2) Some rows, columns, files, transversal-sets, symbol-sets are not overloaded as the
following:

(2a) The columns Cj2,k1 , Cj1,k2 , Cj2,k2 are not overloaded; this condition eliminates

at most
12κ+ 3θ

ε
n + 3 choices since in the file layer k1 (which contains the

column Cj2,k1) and in the column layer j1 (which contains the column Cj1,k2)
and in the column block which contains the column Cj1,k1 (which also contains

the column Cj2,k2), there are in total at most
4κ+ θ

ε
n+ 1 overloaded columns.

Similarly, we need that the rows Ri2,k1 , Ri1,k2 , Ri2,k2 and the files Fi1,j2 , Fi2,j1 ,

Fi2,j2 are not overloaded; this eliminates at most
24κ+ 6θ

ε
n+ 6 choices.

(2b) The transversal-set t1 containing (i2, j1, k1) and (i1, j2, k2) is not overloaded;

this eliminates at most
4κ+ θ

ε
n + 1 choices, since in the column block which

contains the column Cj1,k1 (which also contains the transversal-set t1), there

are at most
4κ+ θ

ε
n + 1 overloaded transversal-sets. Similarly, we need that

the transversal-set containing (i1, j2, k1) and (i2, j1, k2), and the transversal-set
containing (i2, j2, k1) and (i1, j1, k2) are not overloaded; this eliminates at most
8κ+ 2θ

ε
n+ 2 choices.

(2c) The symbol-set s1 containing (i2, j1, k2) and (i1, j2, k2) is not overloaded; this

eliminates at most
4κ+ θ

ε
n+1 choices, since in the symbol block which contains

(i1, j1, k1) (which also contains the symbol-set s1), there are at most
4κ+ θ

ε
n+1

overloaded symbol-sets. Similarly, we need that the symbol-set containing the
cells (i2, j2, k1) and (i1, j2, k2), and the symbol-set containing (i2, j2, k1) and

(i2, j1, k2) are not overloaded, this eliminates at most
8κ+ 2θ

ε
n+ 2 choices.

(2d) The symbol-set s2 containing (i1, j2, k1) and (i2, j1, k1), and the symbol-set
s3 containing (i1, j2, k1) and (i2, j2, k2) are not overloaded. This requirement

eliminates at most
8κ+ 2θ

ε
n+2 choices, since in the file layer k1 (which contains
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the symbol-set s2), and in the symbol-column block which contains (i1, j1, k1)

(which also contains symbol-set s3), there are at most
4κ+ θ

ε
n+ 1 overloaded

symbol-sets. Similarly, we need that the symbol-set containing (i1, j1, k2) and
(i1, j2, k1), the symbol-set containing (i1, j1, k2) and (i2, j2, k2), the symbol-set
containing (i2, j1, k1) and (i1, j1, k2), the symbol-set containing (i2, j1, k1) and

(i2, j2, k2) are not overloaded. This eliminates at most
16κ+ 4θ

ε
n+ 4 choices.

So in total, this eliminates at most
84κ+ 21θ

ε
n + 21 choices. Note that with this

strategy for including subcubes in S, after completing the construction of S, every
row, column, file, transversal-set, and symbol-set contains at most 2κn+(εn−1)+2
or 2κn+ εn+ 1 cells that are used in S-swap.

(3) Except for (i1, j1, k1), none of the cells in C are conflicts or used before in S-swap.

(3a) The cell (i2, j1, k1) is not a conflict and has not been used before in S-swap;
this eliminates at most 3κn + εn + 1 choices since the column Cj1,k1 contains
at most κn conflict cells and at most 2κn + εn + 1 cells that are used in S-
swap. Similarly, we need that the cell (i1, j2, k1) and the cell (i1, j1, k2) are not
conflicts and has not used before in S-swap; in total, this eliminates at most
6κn+ 2εn+ 2 choices.

(3b) The cell (i1, j2, k2) is not a conflict and has not been used before in S-swap.
This eliminates at most 3κn + εn + 1 choices, since in the symbol-set in row
layer i1 that contains the cell (i1, j1, k1), there are at most κn conflict cells and
at most 2κn + εn + 1 cells that have been used in S-swap. Similarly, we need
that the cell (i2, j1, k2) and the cell (i2, j2, k1) are not conflicts and has not been
used before in S-swap; in total, this eliminates at most 6κn+ 2εn+ 2 choices.

(3c) The cell (i2, j2, k2) is not a conflict and has not been used before in S-swap. This
eliminates at most 3κn+ εn+ 1 choices since in the transversal-set containing
the cell (i1, j1, k1), there are at most κn conflict cells and at most 2κn+ εn+ 1
cells that are used in S-swap.

So in total, this eliminates at most 21κn+ 7εn+ 7 choices.

It follows that we have at least

αn− 21κn− 7εn− 84κ

ε
n− 21θ

ε
n− 80κ

θ
n− 28

choices for an allowed subcube C which contains (i1, j1, k1). By (1), this expression is
greater than zero if n is large enough, so we can conclude that there is a subcube satisfying
these conditions. Thus we may construct the set S by iteratively adding disjoint allowed
subcubes such that each subcube contains a conflict cell.

After this process terminates, we have a set S of disjoint subcubes; we swap on all
subcubes in S to obtain the Latin cube L′. Hence, we conclude that we can obtain a
Latin cube L′ that avoids A.
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Latin squares, Combinatorics, Probability Computing, 22 (2013), 184–212.

[2] L. J. Andrén, C. J. Casselgren and K. Markström, Restricted completion of sparse
partial Latin squares, to appear in Combinatorics, Probability Computing.

[3] L. J. Andrén, Avoiding (m,m,m)-arrays of order n = 2k, Electronic Journal of Com-
binatorics, 19(1) (2012), #P63.

[4] T. Britz and N. J. Cavenagh, Maximal partial Latin cubes, Electronic Journal of
Combinatorics, 22(1) (2015), P1.81.

[5] D. Bryant, N. J. Cavenagh, B. Maenhaut, K. Pula and I. M. Wanless, Non-extendible
latin cuboids, SIAM Journal of Discrete Mathematics, 26 (2012), 239–249.

[6] A. B. Cruse, On the finite completion of partial Latin cubes, Journal of Combinatorial
Theory Series A, 17 (1974), 112–119.
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