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Abstract

In the last decades much attention has turned towards centrality measures on
graphs. The Wiener index and the total distance are key tools to investigate the
median vertices, the distance-balanced property and the opportunity index of a
graph. This interest has recently been addressed to graphs obtained via classical
graph products like the Cartesian, the direct, the strong and the lexicographic
product. We extend this study to a relatively new graph product, that is, the
wreath product. In this paper, we compute the total distance for the vertices of an
arbitrary wreath product graph G oH in terms of the total distances in H and of
some distance-based indices of G. We explicitly compute these indices for the star
graph Sn, providing a closed formula for the total distances in Sn o H when H is
complete or a star. As a consequence, we obtain the Wiener index of these graphs,
we characterize the median and the central vertices, and finally we give an upper
and a lower bound for the opportunity index of Sn o Sm in terms of tail conditional
expectations of an associated binomial distribution.

Mathematics Subject Classifications: 05C12, 05C57, 05C76

1 Introduction

Centrality measures on graphs have represented a long standing interest for researchers
both from a theoretical and an application viewpoint. An interesting example is the
placing of one or more facilities on a network, that is, given a set of clients that has to
be served by the facilities, the aim is to find a location for the facilities that optimizes
certain centrality criteria. The classical measures of the centrality of a graph include
the center and the median. These criteria allow to find subsets of vertices with specific
characteristics and properties [17, 18]. These concepts were naturally generalized to some
other measures such as the centdian, the branch weight centroid of a graph, the leaf weight

the electronic journal of combinatorics 26(1) (2019), #P1.21 1



median, the leaf branch weight centroid, the distance balance center, the k-centrum and
so forth. Reid [25] gives a thorough survey of various concepts that have been defined
and studied as a measure of central substructure in a tree. Anyhow, all these measures
are based on the concept of distances or of average distances between vertices in a given
graph, which is strictly related to the classical Wiener index of a connected graph, defined
as the sum of the distances between all pairs of vertices [28]. This index was extensively
studied in the last decades on several classes of graphs. Bounds on the average distance
for trees, cycles, and graphs with minimum degree at least 2 were also provided in [10].
In [9] it is shown that every connected graph of order n and minimum degree δ has a
spanning tree with given bounded average distance.

The study of average distances is also strictly related to the problem of partitioning the
vertex set of a graph. In particular, the notion of balanced bi-partition of the vertices of
a tree has been introduced and studied by many authors (see, e.g., [24] and the references
therein). The problem is to find a bi-partition of the vertex set of the tree such that
the two sums of the distances from a given vertex v to all the vertices in each of the
two subtrees are as close as possible, where the two subtrees have only v in common.
This concept can be further extended to more general classes of graphs and leads to the
definition of distance-balanced graph (see Section 2 for a formal definition). Distance-
balanced graphs were introduced in [21], where the authors studied some basic properties
and local operations. Cabello and Lukšič considered the problem of finding the minimum
number of edges that can be added to a given graph to obtain a distance-balanced graph
[6]. They proved that the problem is NP-hard for graphs of diameter 3, but can be
solved in polynomial time for graphs of diameter 2. Distance-balanced graphs find a
natural application in Game Theory and Strategic Interaction models. Actually, in [10]
the author considers a situation when there are two firms competing in a common market
with an objective to minimize the cost of transport between all the vertices (clients) of
the network. It is desirable to design a network in such a way that its vertex set can
be divided into two subsets so that neither of the two involved firms has an advantage
to the other likewise reducing the cost of distribution and transportation of goods [3].
Another interesting application is in Social Network Analysis, where one wants to identify
(connected) clusters of members with homogenous features. In particular, in the case of a
bi-partition of the vertex set of a network, the minimum of the largest difference between
the relative Wiener indices of the two subsets is an equity measure of the partition of the
vertex set into two equal parts. The largest difference between the Wiener indices of two
subsets is defined as the opportunity index of the graph. Equal opportunity graphs are
precisely those graphs having the opportunity index equal to zero. Furthermore, in [3]
the authors show that equal opportunity graphs are precisely distance-balanced graphs
(of even order) that correspond to a class of graphs first studied in [16] in the case of
partial cubes. Other interesting applications of distance-balanced graphs can be found in
[19].

In this paper we study some centrality measures in the wreath product of graphs,
focusing our attention to some special classes. The wreath product of graphs represents a
graph analogue of the classical wreath product of groups [23]. In the literature (see, e.g.,
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[21]), the relationship between total distance, opportunity index, and distance-balanced
property have been considered for the classical compositions of graphs: the Cartesian, the
direct, the strong, the lexicographic product. Moreover, we mention that in [22] the notion
of strongly distance-balanced graph has been introduced, and it has been investigated in
[2, 22] for graph compositions. The Wiener index of a wreath product has been studied
in [7], and in [4, 13] for some special families of graphs. Spectral computations have
been performed in [5, 13]. However, to the best of our knowledge, the total distance,
the opportunity index and distance-balanced property have never been investigated for
wreath products. Hence, our paper starts this kind of investigation.

The total distance of a vertex in a graph is the sum of the distances between this
vertex and all other vertices. This quantity characterizes the median vertices (vertices
with minimal total distance), the distance-balanced property and the opportunity index of
a graph (see [3]). In this paper, we compute the total distance of the vertices of a wreath
product G oH in terms of the total distance of the vertices of H, and of some distance-
based indices of G, specially defined for the wreath product but independent of the graph
H. The metric structure of a wreath product is interesting because the computation of
the distance between two vertices of G oH involves the minimal length of a walk, in the
graph G, with prescribed start and end vertices, and a subset of the vertices that the
walk has to visit. This is strictly connected to the Travelling Salesman Problem, which
is a well-known NP-hard optimization problem. Our study would open the possibility to
investigate, with further intriguing developments, the distance-balanced property for the
wreath product of graphs. Here, we focus our attention on a non-distance-balanced case,
the star graph Sn, in order to obtain a non-trivial variability of the total distance. Our
explicit computation of the above mentioned indices for the graph Sn allows us to obtain
a formula for the total distance of the vertices in the wreath product Sn o H, whenever
the total distances in H are known. We apply this formula to the case Sn o Km, where
Km is the complete graph on m vertices, and to the case Sn o Sm. This analysis makes us
able to detect the central and the median vertices, to compute the Wiener index and to
obtain an upper and a lower bound for the opportunity index of Sn o Sm.

The paper is organized as follows. In Section 2, we provide some notation and recall
the basic definition of the wreath product of two graphs (Definition 1). In particular,
we present the known relations between total distance, distance-balanced property and
opportunity index. In Section 3, we present some results and notation from [7] in order
to prove the main results of the section, which are Theorem 17 and Corollary 19: they
provide a formula for the total distance in G oH in terms of total distances in H and of
the indices Wρk(u,G) (see Definition 18). In Section 4, we give an explicit computation of
the indices Wρk(u, Sn) (see Theorem 22). This makes us able to analyze the cases Sn oKm

and Sn o Sm, presenting the total distances (Theorem 23 and Theorem 28), detecting
the median vertices (Corollary 24 and Corollary 29) and computing the Wiener index
(Corollary 25 and Corollary 32). Finally, we give in Theorem 38 some lower and upper
bounds for the opportunity index of Sn o Sm, in terms of tail conditional expectations of
the binomial distribution with probability p = m−1

m
.
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2 Preliminaries and motivations

Every graph considered in this paper will be finite, connected, and simple, that is, loops
and multiple edges are not admitted. Such a graph will be denoted byG = (VG, EG), where
VG denotes the vertex set, and EG is the edge set consisting of unordered pairs of type
{u, v}, with u, v ∈ VG. When {u, v} ∈ EG, we say that the vertices u and v are adjacent
in G, and we write u ∼ v. A walk of length ` in G is a sequence u0, u1, . . . , u` of vertices
such that ui ∼ ui+1, for each i = 0, . . . , ` − 1. The walk is said to be closed if u0 = u`.
Since the graph G is connected, for every u, v ∈ VG, there exists a walk u0, u1, . . . , u`
in G such that u0 = u and u` = v. For a graph G, we will denote by dG(u, v) the
geodesic distance (or distance for short) between the vertices u and v, that is, the length
of a shortest walk in G joining u and v. The eccentricity of a vertex u ∈ VG is defined
as eG(u) = maxv∈VG{dG(u, v)} and u is a center for G if eG(u) = minv∈VG{eG(v)}. The
diameter ofG is then defined as diam(G) = maxu∈VG{eG(u)}. In particular, diam(G) <∞
as G is connected. A vertex u ∈ VG has degree k if there exist exactly k vertices in G
adjacent to u. We will write deg u = k. We say that G is regular of degree k, or k-regular,
if deg u = k, for every u ∈ VG.

We recall now the fundamental definition of the wreath product of graphs.

Definition 1. Let G = (VG, EG) and H = (VH , EH) be two graphs, with |VG| = n. Let us
fix an enumeration of the vertices of G so that VG = {x1, x2, . . . , xn}. The wreath product
G oH is the graph with vertex set V VG

H × VG = {(y1, . . . , yn)xi | yj ∈ VH , xi ∈ VG}, where
two vertices u = (y1, . . . , yn)xi and v = (y′1, . . . , y

′
n)xk are connected by an edge if:

1. (edges of type I) either i = k =: i∗ and yj = y′j for every j 6= i∗, and yi∗ ∼ y′i∗ in H;

2. (edges of type II) or yj = y′j, for every j = 1, . . . , n, and xi ∼ xk in G.

It follows from Definition 1 that if |VG| = n and |VH | = m, the graph G oH has nmn

vertices. It is easy to see that G oH is connected if and only if G and H are connected.
Moreover, if G is a regular graph of degree rG and H is a regular graph of degree rH , then
the graph G oH is an (rG + rH)-regular graph.

Notice that, in the case |VG| = 1, the graph G o H is isomorphic to H; on the other
hand, if |VH | = 1, then the graph G oH is isomorphic to G. In the rest of the paper, we
assume |VG| > 1 and |VH | > 1.

It is a classical fact (see, for instance, [29]) that the simple random walk on the graph
G oH is the so called Lamplighter random walk, according to the following interpretation:
suppose that at each vertex of G (the base graph) there is a lamp, whose possible states
(or colors) are represented by the vertices of H (the color graph), so that the vertex
(y1, . . . , yn)xi of G oH represents the configuration of the n lamps at each vertex of G (for
each vertex xj ∈ VG, the lamp at xj is in the state yj ∈ VH), together with the position
xi of a lamplighter walking on the graph G. At each step, the lamplighter may either
go to a neighbor of the current vertex xi and leave all lamps unchanged (this situation
corresponds to edges of type II in G o H), or he may stay at the vertex xi ∈ G, but
he changes the state of the lamp which is in xi to a neighbor state in H (this situation
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corresponds to edges of type I in G oH).
It is worth mentioning that the wreath product of graphs represents a graph analogue
of the classical wreath product of groups, as it turns out that the wreath product of the
Cayley graphs of two finite groups is the Cayley graph of the wreath product of the groups,
with a suitable choice of the generating sets. In the paper [12], this correspondence is
proven in the more general context of generalized wreath products of graphs, inspired by
the construction introduced in [1] for permutation groups. Also, observe that in [8] the
wreath product of matrices has been defined, in order to describe the adjacency matrix
of the wreath product of two graphs and to perform spectral computations.

We recall here the definitions of the four classical products, namely the Cartesian, the
direct, the strong and the lexicographic product, of two graphs G = (VG, EG) and H =
(VH , EH). Observe that all the products have VG × VH as vertex set and are associative
[15].

Definition 2. Let G = (VG, EG) and H = (VH , EH) be two finite graphs.

• The Cartesian product G2H is the graph where two vertices (u, v) and (u′, v′) are
adjacent if u ∼ u′ in G and v = v′ in H, or if v ∼ v′ in H and u = u′ in G.

• The direct product G × H is the graph where two vertices (u, v) and (u′, v′) are
adjacent if u ∼ u′ in G and v ∼ v′ in H.

• The strong product G�H is the graph with edge set EG2H ∪ EG×H .

• The lexicographic product G ◦H is the graph where two vertices (u, v) and (u′, v′)
are adjacent if u ∼ u′ in G, or u = u′ in G and v ∼ v′ in H.

Remark 3. Notice that the graph G o H can be regarded as a spanning subgraph of
H2n2G, where H2n denotes the iterated Cartesian product of H with itself n times.
This embedding relates the geodesic distance in H2n with the geodesic distance in G oH,
as we will point out in Theorem 13.

The study of the opportunity index, that we will develop in Section 4.2 for the wreath
product of two star graphs, is strictly related to the property of a graph of being distance-
balanced. For this reason, we recall here some basic definitions. Distance-balanced graphs
were introduced in [21], where the authors studied some basic properties, local operations,
and the behavior of graph products with respect to this property.

Let G = (VG, EG) be a graph, and let u, v ∈ VG such that u ∼ v. Then one defines:

WG
uv = {z ∈ VG|dG(z, u) < dG(z, v)},

that is, WG
uv is the set of vertices closer to u than to v. Notice that the sets WG

uv, with u, v
adjacent vertices in G, play also an important role in Chemical Graph Theory where, for
instance, the Szeged index of the graph G is defined as Sz(G) =

∑
u∼vW

G
uvW

G
vu (see [27]

for more details).

Definition 4. A graph G = (VG, EG) is distance-balanced if |WG
uv| = |WG

vu|, for every pair
of adjacent vertices u, v ∈ VG.
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Cyclic graphs and complete graphs are simple examples of distance-balanced graphs.
It is shown in [21] that a graph G of diameter 2 is distance-balanced if and only if it is
regular. Moreover, a vertex-transitive graph, that is a graph whose automorphism group
acts transitively on the vertex set, is distance-balanced. On the other hand, it is known
that there exist distance-balanced graphs which are not vertex-transitive (see, e.g., [20]).

It is proven in [21] that the Cartesian product G2H is distance-balanced if and only
if both G and H are distance-balanced; moreover, the lexicographic product G ◦ H is
distance-balanced if and only if G is distance-balanced and H is regular. On the other
hand, it is shown there, by explicit counterexamples, that the direct product and the
strong product do not preserve the property of being distance-balanced.

We also want to mention that in [22] the notion of strongly distance-balanced graph has
been introduced, and it has been investigated in [2, 22] for graph compositions. However,
the property of being distance-balanced has never been investigated for wreath products:
our paper starts this kind of investigation.

Definition 5. Let G = (VG, EG) be a connected graph and let v ∈ VG. The total distance
of v is

W (v,G) =
∑
u∈VG

dG(v, u),

that is, the sum of the distances of v from each vertex of G. The median M(G) of G is
the set of vertices of G for which the value W (v,G) is minimal among all vertices of G.

We will use in Section 3 the following characterization of distance-balanced graphs
given in [2].

Proposition 6. A connected graph G = (VG, EG) is distance-balanced if and only if
M(G) = VG.

It follows that for distance-balanced graphs the condition W (u,G) = W (v,G) is satis-
fied for all vertices u, v ∈ VG. In these graphs, vertices have the same relevance, but they
are not necessarily indistinguishable, so they are of special interest in the study of social
networks, as all people in such graphs are equal in some sense.

For any U ⊆ VG, the relative Wiener index of U is defined as

WU(G) =
∑

{u,v}∈(U
2)

dG(u, v), (1)

that is, WU(G) is the sum of the distances between all the (unordered) pairs of vertices
in U . For U = VG, one gets the classical Wiener index W (G) = 1

2

∑
u,v∈VG dG(u, v) of the

graph G, introduced in [28]. Moreover, the following identity holds:

W (G) =
1

2

∑
v∈VG

W (v,G). (2)

Following [3], we recall now the definition of equal opportunity graph.
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Let G = (VG, EG) be a graph with an even number of vertices 2n, and let V1, V2 be
two subsets of VG such that VG = V1tV2 and |V1| = |V2| = n (we denote by t the disjoint
union). If this is the case, we say that {V1, V2} is a half-partition of G.

The opportunity index opp(G) of a graph G is then defined as

opp(G) = max{|WV1(G)−WV2(G)| : {V1, V2} is a half-partition of G}.

In other words, the opportunity index of G is the largest possible difference between the
relative Wiener indices of the two halves of G, when considering all partitions of its vertex
set into two equal parts.

Definition 7. A graph G = (VG, EG) is said to be an equal opportunity graph if opp(G) =
0.

The following result is proven in [3].

Proposition 8. A graph G = (VG, EG) is an equal opportunity graph if and only if it is
a distance-balanced graph with an even number of vertices.

In particular, it follows that a vertex-transitive graph with an even number of vertices
is an equal opportunity graph.

Example 9. Let us denote by Kn = (VKn , EKn) the complete graph on n vertices (in
Fig. 1, the graph K5 is represented). The complete graph is vertex-transitive and therefore
distance-balanced. Hence, it is an equal opportunity graph when n is even. The vertices
are indistinguishable and then, for every v ∈ VKn :

W (v,Kn) =
∑
u∈VKn

dG(u, v) = n− 1.

In particular, from Equation (2) we get

W (Kn) =
n(n− 1)

2
.

Example 10. Let us denote by Sn = (VSn , ESn) the star graph on n > 3 vertices (in
Fig. 1, the graph S5 is represented). The vertex set of the graph Sn is VSn = {c} t L,
with |L| = n− 1, and the set of edges is ESn = {{c, f} : f ∈ L}. The element c is called
center and the elements in L are called leaves. Then:

W (v, Sn) =

{
n− 1 if v = c

2n− 3 if v 6= c.

In particular, from Equation (2) we get

W (Sn) = (n− 1)2.

By virtue of Proposition 6, the graph Sn is not distance-balanced. If n = 2k, with k ∈ N,
it is easy to see that opp(Sn) = k − 1.
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Figure 1: The graphs Sn and Kn, for n = 5.

3 Distances in a wreath product

In this section we are going to analyze the variability of the total distance in the vertices
of the wreath product G oH. We start by recalling some definitions and results from [7],
where a detailed study of the Wiener index of G oH has been developed.

Definition 11. Let G = (VG, EG) be a graph and let A ⊆ VG. We define a map ρA on
VG × VG such that, for any pair of vertices u and v in VG, the number ρA(u, v) is the
length of a shortest walk joining u and v, visiting all vertices in A. When A = VG, we
write dHa := ρVG , and dHa(u, v) is said the Hamiltonian distance of u and v.

Observe that ρA(u, v) = ρA(v, u), for each A ⊆ VG and u, v ∈ VG.

Definition 12. Let G = (VG, EG) be a graph. For any u ∈ VG, the Hamiltonian eccen-
tricity of the vertex u is

eHa(u) := max{dHa(u, v), v ∈ VG}.

Similarly, the Hamiltonian diameter of G is

diamHa(G) := max{eHa(u), u ∈ VG}.

Recall that, fixed an ordering for the vertices of G, say VG = {x1, . . . , xn}, a vertex u
of G oH can be written as u = (y, xi), with y ∈ (VH)n and i ∈ {1, . . . , n}. The n-tuple y
in (VH)n can be regarded as a vertex of the n-th Cartesian power of H (see Definition 2).
It is well known (see, e.g., [15]) that the distance in the Cartesian product is nothing but
the sum of the distances, computed coordinatewise. In other words, given two vertices
y = (y1, . . . , yn) and y′ = (y′1, . . . , y

′
n) in VH2n , with yi, y

′
i ∈ VH for each i = 1, . . . , n, one

has:

dH2n(y, y′) =
n∑
i=1

dH(yi, y
′
i).

Consider now the graph G o H. Then two vertices y and y′ of VH2n define the following
subset of VG:

δ(y, y′) := {xi ∈ VG : yi 6= y′i}.
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In the Lamplighter interpretation, δ(y, y′) consists of the vertices of the base graph G
where the given lamp configurations y and y′ do not coincide.

Theorem 13. [7] Let G = (VG, EG) and H = (VH , EH) be two graphs. Suppose |VG| = n.
For any vertices u = (y1, . . . , yn)x, v = (y′1, . . . , y

′
n)x′ ∈ G oH, we have:

dGoH(u, v) = dH2n(y, y′) + ρδ(y,y′)(x, x
′) =

n∑
i=1

dH(yi, y
′
i) + ρδ(y,y′)(x, x

′),

where y = (y1, . . . , yn) and y′ = (y′1, . . . , y
′
n).

Corollary 14. [7] For any u = (y1, . . . , yn)x ∈ VGoH we have:

eGoH(u) =
n∑
i=1

eH(yi) + eHa(x).

In particular:
diam(G oH) = n diam(H) + diamHa(G).

As for the investigation of the distances in [7], we start here our study of the total
distance in G oH by analyzing the Cartesian product H2n.

Lemma 15. Let H = (VH , EH) be a graph, with |VH | = m. Let y = (y1, . . . , yn) ∈ VH2n,
with n > 1. Then we have

W (y,H2n) = mn−1
n∑
i=1

W (yi, H).

Proof. Set y′ = (y′1, . . . , y
′
n), with y′i ∈ VH for each i = 1, . . . , n. Then

W (y,H2n) =
∑

y′∈VH2n

dH2n(y, y′) =
∑

y′∈VH2n

n∑
i=1

dH(yi, y
′
i) =

n∑
i=1

∑
y′∈VH2n

dH(yi, y
′
i).

For a fixed i and a fixed u ∈ VH , the contribution dH(yi, u) appears exactly mn−1 times
in the sum. Therefore we obtain:

W (y,H2n) =
n∑
i=1

mn−1
∑
u∈VH

dH(yi, u) = mn−1
n∑
i=1

W (yi, H).

Definition 16. Let G = (VG, EG) be a graph, and let u ∈ VG, and A ⊆ VG. We put
WρA(u,G) :=

∑
v∈VG ρA(u, v).

Theorem 17. Let G = (VG, EG) and H = (VH , EH) be two graphs with |VG| = n,
|VH | = m. Let u = (y, x) = (y1, . . . , yn)x ∈ VGoH . Then:

W (u,G oH) = nmn−1
n∑
i=1

W (yi, H) +
∑
A⊆VG

(m− 1)|A|WρA(x,G). (3)
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Proof. Let u′ = (y′, x′) in VGoH , with y′ ∈ VH2n and x′ ∈ VG. Then, by Theorem 13, we
have

W (u,G oH) =
∑

u′∈VGoH

(dH2n(y, y′) + ρδ(y,y′)(x, x
′)).

For a fixed y′ ∈ H2n, the contribution dH2n(y, y′) appears n times in the sum so that,
using formula of Lemma 15, we get:

∑
u′∈VGoH

dH2n(y, y′) = n
∑

y′∈VH2n

dH2n(y, y′) = nW (y,H2n) = nmn−1
n∑
i=1

W (yi, H).

On the other hand, for any subset A ⊆ VG, we have:

|{y′ ∈ VH2n : δ(y, y′) = A}| = (m− 1)|A|,

since the coordinates of y′ outside A must be equal to the corresponding coordinates of y,
but we can choose |A| coordinates of y′ among the m− 1 elements of VH (they have to be
different from the ones of y). This implies that, for every x′ ∈ VG and any fixed A ⊆ VG,
the contribution given by ρA(x, x′) appears (m− 1)|A| times in the sum, so that:∑

u′∈VGoH

ρδ(y,y′)(x, x
′) =

∑
A⊆VG

∑
x′∈VG

(m− 1)|A|ρA(x, x′).

Then the claim is proven, according to Definition 16.

When the considered wreath product is vertex-transitive (as in the cases studied in
[4, 5, 13]), the graph is distance-balanced and, according to Proposition 6, the total
distance for every vertex is constant and can be easily deduced from the Wiener index
by Equation (2). It is possible to check that, in these special cases, the value of the
total distance via the Wiener index computation in [7] coincides with the one provided
by Equation (3) in Theorem 17.

Notice that the coefficient of the term WρA(u,G) in Equation (3) of Theorem 17 only
depends on the cardinality of |A|. This motivates the following definition.

Definition 18. Let G = (VG, EG) be a graph with |VG| = n, and let u ∈ VG. For any
k ∈ {0, 1, . . . , n}, set

Wρk(u,G) :=
∑

A⊆VG, |A|=k

WρA(u,G).

Corollary 19. Let G = (VG, EG) and H = (VH , EH) be two graphs with |VG| = n,
|VH | = m. Let u = (y, x) = (y1, . . . , yn)x ∈ VGoH . Then we have

W (u,G oH) = nmn−1
n∑
i=1

W (yi, H) +
n∑
k=0

(m− 1)kWρk(x,G). (4)

Proof. It follows from Theorem 17 and Definition 18.
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Observe that the total distance of a vertex u = (y1, . . . , yn)x ∈ VGoH depends on the
total distance of the vertices yi in H and on the quantities Wρk(x,G), for k = 0, . . . , n.
This implies that computing Wρk(x,G) for G allows to immediately deduce the total
distances in any graph G oH, when the total distances in H are known.

Remark 20. Notice that if there exists u ∈ VG such that ρVG(u, u) = n, then ρVG(v, v) = n
for all v ∈ VG, and this is equivalent to the existence of a Hamiltonian cycle, that is, a
closed walk that visits each vertex of G exactly once. For any u, v ∈ VG, u 6= v, we have
that ρVG(u, v) = n − 1 if and only if there exists a Hamiltonian path from u to v, that
is, a walk from u to v visiting each vertex of G exactly once. A graph G is said to be
Hamiltonian-connected from the vertex u if a Hamiltonian path exists from u to every
other vertex v 6= u (see [11]). Then it is easy to observe that

Wρn(u,G) = n2 − n+ 1 ⇐⇒ G is Hamiltonian-connected from u.

In [11] it is stated the NP-completeness of the problem to detect those pairs (G, u) such
that G is Hamiltonian-connected from the vertex u. As a consequence, the problem of
computing Wρn(u,G) is NP-hard.

4 Explicit computations on star graphs

In this section, we focus our attention on a non-distance-balanced example: the star graph
Sn. We start by computing the values of Wρk(x, Sn), which are necessary to analyze the
total distances (and the Wiener index) in wreath products having Sn as first factor graph.
We consider Sn oKm in Section 4.1: in this case, the total distance takes only two distinct
values. The situation becomes more interesting and rich in the case of the graph Sn o Sm,
treated in Section 4.2. Both the graphs Sn oKm and Sn oSm are not distance-balanced. In
the second case, we also provide some upper and lower bounds for the opportunity index
opp(Sn o Sm).

In the star graph Sn = (VSn , ESn), for a given subset A ⊆ VSn we define A∗ := A \ {c},
where c is the center of Sn.

Since the case A = ∅ has been already discussed in Example 10, we can assume |A| > 1.
Given any u, v ∈ VSn \ {c}, one can check that:

ρA(u, v) =



2|A∗|+ 2 if u, v /∈ A
2|A∗| if (u /∈ A, v ∈ A) or (u ∈ A, v /∈ A)

2|A∗| − 2 if u, v ∈ A, u 6= v

2|A∗| if u, v ∈ A, u = v, A 6= {u}
0 if u, v ∈ A, u = v, A = {u}

ρA(u, c) =

{
2|A∗|+ 1 if u /∈ A
2|A∗| − 1 if u ∈ A

ρA(c, c) = 2|A∗|.

(5)
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In particular, for u, v ∈ VSn \ {c}, we deduce:

dHa(u, v) =

{
2n− 4 if u 6= v

2n− 2 if u = v,

dHa(u, c) = 2n− 3,

dHa(c, c) = 2n− 2.

(6)

Proposition 21. For every u ∈ VSn we have

eHa(u) = 2n− 2.

Proof. By virtue of Equation (6), for every u ∈ VSn , we have eHa(u) = max{dHa(u, v), v ∈
VSn} = dHa(u, u) = 2n− 2.

Theorem 22. Let x ∈ VSn. Then:

Wρk(x, Sn) =



2n− 3 if k = 0 and x 6= c

4n2 − 7n + 2 if k = 1 and x 6= c(
n−2
k

)
f(n, k) + 2

(
n−2
k−1
)
f(n, k − 1) +

(
n−2
k−2
)
f(n, k − 2) if 1 < k 6 n and x 6= c

n− 1 if k = 0 and x = c(
n−1
k

)
c(n, k) +

(
n−1
k−1
)
c(n, k − 1) if 1 6 k 6 n and x = c

where
f(n, k) := 2nk + 2n− 2k − 1 and c(n, k) := f(n, k)− n.

Proof. The case k = 0 is treated in Example 10; the case k = 1 can be studied by a direct
computation, using Definition 16 and Equation (5). So assume |A| = k > 1. We want to
prove that:

WρA(x, Sn) =

{
f(n, |A∗ \ {x}|) if x 6= c

c(n, |A∗ \ {x}|) if x = c.

We are going to analyze each case by using Equation (5).
Suppose x 6= c.

If x, c /∈ A, then |A| = |A∗| = |A∗ \ {x}| = k. We get:

WρA(x, Sn) =
∑
y∈VSn

ρA(x, y) =
∑
y∈A

ρA(x, y) +
∑

y∈VSn\(A∪{c})

ρA(x, y) + ρA(x, c)

= |A|(2|A|) + (n− |A| − 1)(2|A|+ 2) + (2|A|+ 1)

= 2k2 + (n− k − 1)(2k + 2) + (2k + 1)

= f(n, k).
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If x ∈ A, c /∈ A, then |A| = |A∗| = k and |A∗ \ {x}| = k − 1. We get:

WρA(x, Sn) =
∑
y∈VSn

ρA(x, y)=
∑

y∈A\{x}

ρA(x, y) + ρA(x, x)+
∑

y∈VSn\(A∪{c})

ρA(x, y) + ρA(x, c)

= (|A| − 1)(2|A| − 2) + 2|A|+ (n− |A| − 1)(2|A|) + (2|A| − 1)

= (k − 1)(2k − 2) + 2k + (n− k − 1)2k + 2k − 1

= f(n, k − 1).

If x /∈ A, c ∈ A, then |A| = k and |A∗| = |A∗ \ {x}| = k − 1. We have:

WρA(x, Sn) = WρA∗ (x, Sn) = f(n, k − 1).

If x, c ∈ A, then |A| = k, |A∗| = k − 1 and |A∗ \ {x}| = k − 2. We have:

WρA(x, Sn) = WρA∗ (x, Sn) = f(n, k − 2).

For a fixed k such that 1 < k 6 n, we have
(
n−2
k

)
subsets A of cardinality k, such that

x /∈ A, c /∈ A (and then |A∗ \ {x}| = k); we have 2
(
n−2
k−1

)
subsets A of cardinality k, such

that x ∈ A, c /∈ A or x /∈ A, c ∈ A (and then |A∗ \ {x}| = k − 1); finally, we have
(
n−2
k−2

)
subsets A of cardinality k, such that x ∈ A, c ∈ A (and then |A∗ \ {x}| = k − 2). This
gives the expression of Wρk(x, Sn) in the claim.

Suppose now x = c.
If c /∈ A, then |A| = |A∗| = |A∗ \ {x}| = k. We have:

WρA(c, Sn) =
∑
y∈VSn

ρA(c, y) =
∑
y∈A

ρA(c, y) +
∑

y∈VSn\(A∪{c})

ρA(c, y) + ρA(c, c)

= |A|(2|A| − 1) + (n− |A| − 1)(2|A|+ 1) + 2|A|
= k(2k − 1) + (n− k − 1)(2k + 1) + 2k

= c(n, k).

If c ∈ A, |A| = k, then |A∗| = |A∗ \ {x}| = k − 1. We have:

WρA(c, Sn) =
∑
y∈VSn

ρA(c, y) =
∑

y∈A\{c}

ρA(c, y) + ρA(c, c) +
∑

y∈VSn\A

ρA(c, y)

= (|A| − 1)(2|A∗| − 1) + 2|A∗|+ (n− |A|)(2|A∗|+ 1)

= (k − 1)(2(k − 1)− 1) + 2(k − 1) + (n− k)(2(k − 1) + 1)

= c(n, k − 1).

For a fixed k such that 1 6 k 6 n, we have
(
n−1
k

)
subsets A of cardinality k, such that

c /∈ A (and then |A∗ \{x}| = k), we have
(
n−1
k−1

)
subsets A of cardinality k, such that c ∈ A

(and then |A∗ \ {x}| = k − 1). This gives the expression of Wρk(c, Sn) in the claim.
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4.1 The wreath product Sn o Km

The first example of wreath product that we consider is the graph Sn o Km. As we will
see in Theorem 23, the total distance of a vertex u = (y1, . . . , yn)x ∈ VSnoKm in this case
can only take two values, depending on the fact that x (the lamplighter position) is the
center of the star, or a leaf.

Before analyzing the total distances, notice that eKm(y) = 1 independently on the
choice of the vertex y in VKm . Combining with Corollary 14 and Proposition 21, for every
u ∈ VSnoKm , we have

eSnoKm(u) = 3n− 2.

Moreover, we recall that, for every vertex y ∈ VKm , one has W (y,Km) = m − 1 (see
Example 9). Then the following result holds.

Theorem 23. Let u = (y1, . . . , yn)x ∈ VSnoKm. We have:

W (u, Sn oKm) =

{
mn−1(3mn2 − 4mn− 3n2 + 3m+ 6n− 4)− 2m if x 6= c

mn−1(3mn2 − 3mn− 3n2 +m+ 4n− 2) if x = c.

Proof. We combine the formula in Corollary 19 with the computation of Wρk(x, Sn) in
Theorem 22.

Corollary 24. Let u = (y1, . . . , yn)x ∈ VSnoKm. If m = 2, or if m = n = 3, the vertex u
is median if and only if x = c. In all the other cases, the vertex u is median if and only
if x 6= c.

Proof. Let uc, ul ∈ VSnoKm be two vertices with lamplighter position at the center c and
at a leaf of Sn, respectively. Then

W (uc, Sn oKm)−W (ul, Sn oKm) = mn−1(mn− 2m− 2n+ 2) + 2m

= mn−1((m− 2)(n− 2)− 2) + 2m.

For m = 2, we obtain:

W (uc, Sn oK2)−W (ul, Sn oK2) = 4− 2n,

that is negative for every n > 2. If m = n = 3, we have:

W (uc, S3 oK3)−W (ul, S3 oK3) = −3.

Finally, when m > 2 and max{m,n} > 3, we have that the contribution (m−2)(n−2)−2
is non-negative, and therefore

W (uc, Sn oKm) > W (ul, Sn oKm).

By taking the sum of the total distance W (u, Sn o Km) over all vertices u ∈ VSnoKm ,
and dividing by 2 (see Equation (2)), we deduce the expression for the Wiener index of
the graph Sn oKm.
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Corollary 25. The Wiener index of the graph Sn oKm is

W (Sn oKm) = m2n−1(m− 1)

(
3

2
n3 − 1

)
+mn+1(n− 1)(3mn−2n− 2mn−1n− 1).

Proof. It follows from Theorem 23, using the fact that the number of vertices (y1, . . . , yn)x
such that x 6= c is (n− 1)mn, and the number of vertices (y1, . . . , yn)x such that x = c is
mn.

Remark 26. In the case n = 3, the graph S3 is isomorphic to P3, the path graph on 3
vertices. According to Corollary 25, we get:

W (S3 oKm) = m4

(
55

2
m2 − 43

2
m− 2

)
.

Notice that we obtain the same value by using the results in [7] for the graph P3.

S3
1 0 2 0 1

K2◦ ◦ ◦ ◦ ◦

Figure 2: The graphs S3 and K2.

Example 27. Consider the graphs S3 and K2 in Fig. 2, and put VS3 = {0, 1, 2} and
VK2 = {0, 1}. Then the wreath product S3 o K2 is presented in Fig. 3. By virtue of
Corollary 24, the median vertices are M(S3 oK2) = {(y1, y2, y3)0 : yi ∈ {0, 1}}; they are
emphasized in black in the picture.

4.2 The wreath product Sn o Sm

In this section, we compute the total distances in the graph Sn o Sm and we give an
approximation of the opportunity index for these graphs, by presenting a lower and an
upper bound in terms of tail conditional expectations of the binomial distribution with
probability p = m−1

m
.

We will use the same notation c in order to denote the central vertex of the first graph
and the central vertex of the second graph, being unlikely to cause confusion. For a vertex
u = (y1, . . . , yn)x ∈ VSnoSm let us put l(u) := |{i ∈ {1, . . . , n} : yi 6= c}|, that is, l(u) is the
number of leaves in the lamp configuration of u.

Before analyzing the total distances, notice that in Sm one has eSm(c) = 1 and eSm(l) =
2 if l ∈ VSm is a leaf. Combining with Corollary 14 and Proposition 21, for every u ∈
Sn oKm we have

eSnoSm(u) = 3n+ l(u)− 2.

In particular the vertices (c, . . . , c)x, for every x ∈ VSn , minimize the eccentricity and are
centers in Sn o Sm; the diameter is diam(Sn o Sm) = 4n− 2.
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Figure 3: The graph S3 oK2.

Theorem 28. Let u = (y1, . . . , yn)x ∈ VSnoSm. Then we have:

W (u, Sn o Sm) =

{
mn−1[3m− 3n2 − 4mn + 3mn2 + 6n− 4 + n(m− 2)l(u)]− 2m if x 6= c

mn−1[m− 3n2 − 3mn + 3mn2 + 4n− 2 + n(m− 2)l(u)] if x = c.

Proof. Recall from Example 10 that in Sm,

W (y, Sm) =

{
m− 1 if y = c

2m− 3 if y 6= c.

Then we have to combine Equation (4) with the computation of the Wρk(x, Sn) given in
Theorem 22.

It is possible to observe that the difference between the total distances of two vertices
u = (y, x), u′ = (y′, x′) ∈ VSnoSm only depends on the difference between the number of
leaves in their lamp configuration (i.e., on l(u) − l(u′)) and on the positions x and x′ of
the lamplighter; on the other hand, the quantity W (u, Sn o Sm)−W (u′, Sn o Sm) does not
depend on the particular values of l(u) and l(u′). If we set:

Wmin := mn−1(3m− 3n2 − 4mn+ 3mn2 + 6n− 4)− 2m,

∆ := mn−1n(m− 2),

∆lc := mn−1(mn− 2m− 2n+ 2) + 2m,
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we obtain

W (u, Sn o Sm) =

{
Wmin + l(u)∆ if x 6= c

Wmin + l(u)∆ + ∆lc if x = c.
(7)

Corollary 29. If max{n,m} > 3, a vertex u = (y1, . . . , yn)x ∈ Sn oSm is a median vertex
if and only if x 6= c and l(u) = 0. That is, M(Sn o Sm) = {(c, . . . , c)x : x ∈ VSn , x 6= c}.

Proof. Notice that, from the proof of Corollary 24, we have that ∆lc is positive for
max{n,m} > 3. Moreover, ∆ is positive whenever m > 2. By virtue of Equation
(7) we can say that u = (y, x) ∈ VSnoSm is median if and only if W (u, Sn o Sm) = Wmin,
and this is possible only when x 6= c and l(u) = 0.

Example 30. The graph S3 o S3 is represented in Fig. 4. This is the only case of wreath
product Sn o Sm such that the total distance of vertices when the lamplighter is in a leaf
position is greater than the total distance of vertices when he is in the center position.
We have:

VS3oS3 = 81, Wmin = 363, ∆ = 27, ∆lc = −3.

In this case Wmin is not the minimal value for the total distance, because the vertex
u0 := (c, c, c)c satisfies W (u0, S3 o S3) = 360 and M(S3 o S3) = {u0}. The maximal value
for the total distance is 444, provided by vertices u = (y1, y2, y3)x for which x 6= c and
l(u) = 3.

Figure 4: The graph S3 o S3.
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For every k = 0, 1, . . . , n, let us set:

Zk : = {u ∈ VSnoSm : l(u) = k},
Lk : = {(y1, . . . , yn)x ∈ Zk : x 6= c},
Ck : = {(y1, . . . , yn)x ∈ Zk : x = c}.

Notice that Zk = Lk t Ck, for each k. Moreover, it is easy to check that:

|Zk| = n

(
n

k

)
(m− 1)k; |Lk| = (n− 1)

(
n

k

)
(m− 1)k; |Ck| =

(
n

k

)
(m− 1)k.

We can observe that the number of lamp coordinates that are leaves of a random
vertex of Sn oSm follows the binomial distribution B(n, p) with parameter n and p := m−1

m
.

Probability p is in fact the probability for a coordinate to be a leaf, and the coordinates
are independent. Then we can consider a random variable Xp such that Xp ∼ B(n, p),
where

P (Xp = k) =
|Zk|
|VSnoSm|

=
n
(
n
k

)
(m− 1)k

nmn
=

(
n

k

)
pk(1− p)n−k.

Note that 1− p = 1
m

.

Remark 31. The following are well known in probability theory (see [14]):

• E(Xp) =
∑n

i=0

(
n
i

)
pi (1− p)n−i i = np = n(m−1)

m
;

• E(Xp|Xp 6 k) =
∑k

i=0 (n
i)pi(1−p)n−ii∑k

i=0 (n
i)pi(1−p)n−i

;

• E(Xp|Xp > k) =
∑n

i=k (n
i)pi(1−p)n−ii∑n

i=k (n
i)pi(1−p)n−i

.

Corollary 32. The Wiener index of the graph Sn o Sm is

W (Sn o Sm) =
nmn

2

(
Wmin +

1

n
∆lc + ∆

(m− 1)n

m

)
. (8)

Proof. By summing the total distances W (u, Sn o Sm) computed in Theorem 28 over all
vertices u ∈ VSnoSm , and dividing by 2 (see Equation (2)), we obtain:

W (Sn o Sm) =
1

2

n∑
i=0

(|Ci|(Wmin + i∆ + ∆lc) + |Li|(Wmin + i∆))

=
|VSnoSm|
2|VSnoSm|

n∑
i=0

(|Ci|(Wmin + i∆ + ∆lc) + |Li|(Wmin + i∆))

=
|VSnoSm|

2

(
Wmin +

1

n
∆lc + ∆

n
∑n

i=0

(
n
i

)
(m− 1)ii

nmn

)

=
|VSnoSm|

2

(
Wmin +

1

n
∆lc + ∆E(Xp)

)
.
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In the remaining part of the paper we will give an estimate of the opportunity index
of the graph Sn o Sm. At first we present some general results and observations. The
following lemma is contained in the proof of Therem 3.1 in [3].

Lemma 33. Let G = (VG, EG) be a graph and consider the partition VG = AtB. Then:

WA(G)−WB(G) =
1

2
(W (A,G)−W (B,G)),

where W (A,G) :=
∑

u∈AW (u,G), and WA(G) is as in Equation (1).

Proof. It suffices to compute the difference between

W (A,G)=
∑
u∈A

W (u,G)=
∑

u∈A,v∈A

dG(u, v)+
∑

u∈A,v∈B

dG(u, v)=2WA(G)+
∑

u∈A,v∈B

dG(u, v),

and

W (B,G)=
∑
u∈B

W (u,G)=
∑

u∈B,v∈B

dG(u, v)+
∑

u∈B,v∈A

dG(u, v)=2WB(G)+
∑

u∈A,v∈B

dG(u, v).

Definition 34. Let G = (VG, EG) be a graph, and let A,B ⊆ VG. We write

B � A,

if ∀u ∈ A, ∀v ∈ B, we have W (v,G) 6 W (u,G).

Lemma 35. Let G = (VG, EG) be a graph and let V1, V2, V3 ⊆ VG such that V1 = V2 t V3,
and V3 � V2. Then

W (V2,G)
|V2| >

W (V1,G)
|V1| .

Proof. The average on a subset of values greater than the others is greater than the
average on all values.

Proposition 36. Let G = (VG, EG) be a graph. Suppose VG = A t B, with |A| = |B|,
and B � A. Then we have

opp(G) =
1

2
(W (A,G)−W (B,G)) = W (A,G)−W (G) = W (G)−W (B,G).

Proof. By virtue of Lemma 33

opp(G) = max

{
1

2
(W (V1, G)−W (V2, G)) : {V1, V2} is a half-partition of VG

}
and it is clear that the partition {A,B} realizes the maximum since B � A by assumption.
The other two equalities easily follow from the fact that 2W (G) = W (A,G) + W (B,G).
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Coming back to the graph Sn o Sm, we are going to approximate the sets A and B of
Proposition 36 by the following sets, with a suitable choice of k:

Ak := {u ∈ VSnoSm : l(u) > k}, Bk := {u ∈ VSnoSm : l(u) 6 k}.

Notice that ∆−∆lc = 2m(mn−1 −mn−2 − 1) > 0. Therefore, by virtue of Equation (7),
if max{n,m} > 3, we have:

Lk � Ck � Lk+1.

From now on we will focus on the case max{n,m} > 3. Let us denote with dp the median
of Xp: by definition, we have

dp = min

{
k ∈ {0, 1, . . . , n} :

k∑
i=0

P (Xp = i) >
1

2

}
.

It follows that

dp = min

{
k ∈ {0, 1, . . . , n} :

k∑
i=0

|Zi| >
|VSnoSm|

2

}
(9)

= max

{
k ∈ {0, 1, . . . , n} : |Ak| >

|VSnoSm|
2

}
= min

{
k ∈ {0, 1, . . . , n} : |Bk| >

|VSnoSm|
2

}
.

Lemma 37. If VSnoSm = A tB, with B � A and |A| = |B|, then:

W (Adp , Sn o Sm)

|Adp |
6
W (A, Sn o Sm)

|A|
6
W (Adp+1, Sn o Sm)

|Adp+1|
,

W (Bdp−1, Sn o Sm)

|Bdp−1|
6
W (B, Sn o Sm)

|B|
6
W (Bdp , Sn o Sm)

|Bdp |
.

(10)

Proof. By the hypothesis B � A and by (9), we can write A = Adp+1tC, with C � Adp+1.
Then by virtue of Lemma 35, we have

W (Adp+1, Sn o Sm)

|Adp+1|
>
W (A, Sn o Sm)

|A|
.

Similarly Adp = A t C ′, with C ′ � A; therefore, by virtue of Lemma 35, we have

W (A, Sn o Sm)

|A|
>
W (Adp , Sn o Sm)

|Adp|
.

The second part of the claim is obtained by applying the same argument for B, as we can
write B = Bdp−1 tD, with Bdp−1 � D, and Bdp = B tD′, with B � D′.
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Theorem 38. Consider the graph Sn o Sm and denote by V its vertex set. Then the
following inequalities hold:

m− 2

2m
|V |2 (E(Xp)− E(Xp|Xp 6 dp)) 6opp(Sn o Sm) 6

m− 2

2m
|V |2 (E(Xp)− E(Xp|Xp < dp)) ;

m− 2

2m
|V |2 (E(Xp|Xp > dp)− E(Xp)) 6opp(Sn o Sm) 6

m− 2

2m
|V |2 (E(Xp|Xp > dp)− E(Xp)) ;

m− 2

4m
|V |2(E(Xp|Xp > dp)− E(Xp|Xp 6 dp)) 6

opp(Sn o Sm) 6

m− 2

4m
|V |2 (E(Xp|Xp > dp)− E(Xp|Xp < dp)) .

Proof. From (10) and by using Proposition 36, we have:

W (Sn o Sm)−
|B|W (Bdp , Sn o Sm)

|Bdp|
6opp(Sn o Sm)6W (Sn o Sm)−

|B|W (Bdp−1, Sn o Sm)

|Bdp−1|
|A|W (Adp , Sn o Sm)

|Adp |
−W (Sn o Sm)6opp(Sn o Sm)6

|A|W (Adp+1, Sn o Sm)

|Adp+1|
−W (Sn o Sm).

(11)

Notice that W (Ak, Sn o Sm) =
∑n

i=k (|Ci|(Wmin + i∆ + ∆lc) + |Li|(Wmin + i∆)) and

W (Bk, Sn o Sm) =
∑k

i=0 (|Ci|(Wmin + i∆ + ∆lc) + |Li|(Wmin + i∆)). Let us focus on the
first inequality in (11). By similar computations as in Corollary 32, we have:

W (Bk, Sn o Sm)

|Bk|
=

∑k
i=0 (|Ci|(Wmin + i∆ + ∆lc) + |Li|(Wmin + i∆))∑k

i=0 |Zi|

=

∑k
i=0 (|Zi|(Wmin + i∆) + |Ci|∆lc)∑k

i=0 |Zi|

= Wmin +
1

n
∆lc + ∆

∑k
i=0 n

(
n
i

)
(m− 1)ii∑k

i=0 n
(
n
i

)
(m− 1)i

= Wmin +
1

n
∆lc + ∆

∑k
i=0

(
n
i

)
(m−1

m
)i( 1

m
)n−ii∑k

i=0

(
n
i

)
(m−1

m
)i( 1

m
)n−i

.

Therefore, from Equation (8), combined with Remark 31, in the case k = dp we have:

W (Sn o Sm)−
|B|W (Bdp , Sn o Sm)

|Bdp |
=

=
|VSnoSm |

2

(
Wmin +

1

n
∆lc + ∆E(Xp)

)
− |B|

(
Wmin +

1

n
∆lc + ∆E(Xp|Xp 6 dp)

)
= |B|∆ (E(Xp)− E(Xp|Xp 6 dp)) .

Analogous computations for Bdp−1, Adp , Adp+1, combined with (11), prove the first two
chains of inequalities in the claim, since we have |A| = |B| = nmn

2
and ∆ = mn−1n(m−2).

The third one is the average of the first two.
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Remark 39. The introduction of the random variable Xp is convenient because the bino-
mial distribution is well studied and there is a rich literature about the estimations of the
tail conditional expectation E(Xp|Xp 6 k) (see, e.g., [14, 26]).

Example 40. Consider the graph S6 o S3. We have:

VS6oS3 = 4374, Wmin = 44949, ∆ = 1458, ∆lc = 492.

The probability is p = m−1
m

= 2
3
, then E(Xp) = 4 and it is possible to check that dp = 4.

Moreover we have:

E(Xp|Xp < dp) ≈ 2.6266, E(Xp|Xp > dp) ≈ 5.25,

E(Xp|Xp 6 dp) ≈ 3.3235, E(Xp|Xp > dp) ≈ 4.6451.

By virtue of Theorem 38 we have:

2157150 6 opp(S6 o S3) 6 4379162; 2057168 6 opp(S6 o S3) 6 3985807,

and the best from the two is:

2157150 6 opp(S6 o S3) 6 3985807.

Consider A,B ⊆ VS6oS3 such that VS6oS3 = A t B, |A| = |B| = 2187 and B � A.
It is easy to see that B = B3 t PB and A = A5 t PA, with PA ∪ PB = Z4. Since
|B| − |B3| = 789 6 1200 = |L4|, then PB contains only vertices with leaf-position and
then PA contains 411 vertices with leaf-position and 240 vertices with center-position.
Combining with Equation (7) we have:

W (A, S6 o S3) = 114101439; W (B, S6 o S3) = 108373323.

Finally opp(S6 o S3) = 2864058.

5 Conclusions and final remarks

The complexity of the computation of total distances in a graph is polynomial in the
number of vertices. However, in the case of the wreath product G o H, if |VG| = n, the
number of vertices is exponential in n. On the other hand, the computation of Wρn(u,G)
is NP-hard (see Remark 20). Nevertheless, Theorem 17 and Corollary 19 are fruitful
when:

• one is interested in computing Wiener index or total distances in a family of wreath
products with fixed first factor G;

• some properties of G make the problem of computing Wρk(u,G) easier.
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A line for future research is to individuate those families of graphs G where it is possible to
obtain, if not even a closed formula, at least a fast algorithm for computing Wρk(u,G). As
a generalization of the family of star graphs, the next candidate can be the family of more
general trees. Another class of graphs, of completely different nature, is given by cycles:
the high symmetry would be a help for the computation of Wρk(u,G). Another direction
that is of interest for its potential applications is the generalization to the weighted graphs.

From a theoretical point of view, the analysis of the total distances in the wreath
product is the first step to understand the distance-balanced property of a wreath product.
Having necessary or sufficient conditions on the factors (for the distance-balance of the
product) would produce many new examples and counterexamples, not obtained via the
four classical products, for many centrality problems (see, e.g., [2, 20, 22]). In fact,
the wreath product has the nice property of preserving regularity, vertex-transitivity,
bipartitedness, and connectedness. This way, starting with few small examples, one can
produce infinite families of non-isomorphic graphs with prescribed properties.
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