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Abstract

For any two integers d, r > 1, we show that there exists an edge ideal I(G)
such that reg (R/I(G)), the Castelnuovo-Mumford regularity of R/I(G), is r, and
deg hR/I(G)(t), the degree of the h-polynomial of R/I(G), is d. Additionally, if G is
a graph on n vertices, we show that reg (R/I(G)) + deg hR/I(G)(t) 6 n.

Mathematics Subject Classifications: 13D02, 13D40, 05C69, 05C70, 05E40

1 Introduction

Let I be a homogeneous ideal of the polynomial ring R = k[x1, . . . , xn] where k is a field.
Associated to I is a graded minimal free resolution of the form

0→
⊕
j∈N

R(−j)βp,j(I) → · · · →
⊕
j∈N

R(−j)β1,j(I) → R→ R/I → 0

where R(−j) denotes the polynomial ring R with its grading twisted by j, and βi,j(I) is
the i, j-th graded Betti number. This resolution encodes a number of important invariants
of R/I. One such invariant is the (Castelnuovo-Mumford) regularity of I, which is defined
by

reg(R/I) = max{j − i | βi,j(I) 6= 0}.
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The Hilbert series of R/I, that is, HR/I(t) =
∑

j∈N dimk(R/I)jt
j, can also be read from

this resolution; in particular, if bi,i+j = βi,i+j(I), then (see [7, p. 100])

HR/I(t) =

∑
i(−1)i

(∑
j bi,i+jt

i+j
)

(1− t)n
.

This rational function may or may not be in lowest terms; when we rewrite HR/I(t) in
lowest terms, the Hilbert-Serre theorem (see [1, Proposition 4.4.1]) says

HR/I(t) =
hR/I(t)

(1− t)dim(R/I)
with h(t) ∈ Z[t] and h(1) 6= 0.

The polynomial hR/I is called the h-polynomial of R/I.
Given that reg(R/I) and deg hR/I(t) are both derived from the graded minimal free

resolution, one can ask if there is any relationship between these two invariants. For
example, from [1, Lemma 4.1.3], it follows that if I has a pure resolution (for each i, there
is at most one j such that βi,i+j(I) 6= 0), then

deg hR/I(t)− reg(R/I) = dim(R/I)− depth(R/I).

The first two authors initiated a comparison of these two invariants in [9, 10, 11]. It was
shown in [9] that for all r, d > 1, there exists a monomial ideal such that reg(R/I) = r and
deg(R/I) = d; in [10], it shown that this monomial ideal could be taken to be a lexsegment
monomial ideal. In both cases, the degrees of the minimal generators of I depend upon
on r and/or d. However, if restrict our family of ideals, one might expect some restriction
on the values of r and d. For example, it is shown in [11] that for 2 6 r 6 d, there exists
a binomial edge ideal (see [8, 14]) JG with reg(R/JG) = r and deg hR/JG(t) = d, and
furthermore, [16, Theorem 2.1] says that deg hR/JG(t) = 1 if reg(R/JG) = 1.

The starting point of this paper is to ask what happens if we restrict to edge ideals.
Recall that if G = (V (G), E(G)) is a finite simple graph on V (G) = {x1, . . . , xn}, then the
edge ideal is the ideal I(G) = (xixj | {xi, xj} ∈ E) ⊆ R = k[x1, . . . , xn]. Our main result
is the perhaps surprising fact that one can obtain the main result of [9] using only edge
ideals (unlike [9, 10] where the degrees of the generators change, our generators always
have degree two):

Theorem 1 (Theorem 4). Let r, d > 1 be integers. Then there is a finite simple graph G
with r = reg (R/I(G)) and d = deg hR/I(G)(t).

Our proof of Theorem 1 uses the following strategy. We show that if G is a graph with
reg (R/I(G)) = r and deg hR/I(G)(t) = d, then one can construct a new graph G′ with
reg(R/I(G′)) = r+1 and deg hR/I(G′)(t) = d+1. The proof of Theorem 1 then reduces to
constructing graphs with (reg (R/I(G)) , deg hR/I(G)(t)) = (1, d) or (r, 1) for any integers
d, r > 1.

Interestingly, reg (R/I(G)) and deg hR/I(G)(t) are related by the following inequality.
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Theorem 2 (Theorem 13). Let G be a graph on n vertices. Then

reg (R/I(G)) + deg hR/I(G)(t) 6 n.

We provide examples to show that this bound is sharp. Note that Theorem 2 gives a
new upper bound on the regularity of edge ideals, i.e., reg (R/I(G)) 6 n− deg hR/I(G)(t),
which complements past research on the regularity of edge ideals (see [5, 6]).

2 Background

We recall the relevant graph theory and commutative algebra background. We continue
to use the notation and terminology from the introduction.

Let G = (V (G), E(G)) be a finite simple graph on the vertex set V (G) = {x1, . . . , xn}
and edge set E(G) consisting of unordered pairs of distinct elements of V (G), that is, if
e ∈ E(G), then e = {xi, xj} for some i 6= j. If G is clear, we write V , respectively E, for
V (G), respectively E(G).

We say that there is a path between the vertices xi and xj if there is a collection of
edges {e1, e2, . . . , et} such that xi ∈ e1, xj ∈ et, and e`∩e`+1 6= ∅ for all ` = 1, . . . , t−1. A
graph G is connected if there is a path between every pair of vertices of G; otherwise, G is
said to be disconnected. A connected component of G is a maximal connected subgraph.

Given any subset W ⊆ V (G), the induced subgraph of G on W is the graph GW =
(W,E(GW )) where E(GW ) = {e ∈ E(G) | e ⊆ W}. Given an x ∈ V (G), the set of
neighbours of x is the set N(x) = {y | {x, y} ∈ E(G)}.

A set of vertices W ⊆ V is an independent set if for all e ∈ E, e 6⊆ W . An independent
set is a maximal independent set if it is maximal with respect to inclusion. We let α(G)
denote the size of the largest maximal independent set. Using the independent sets,
we can build a simplicial complex. In particular, the independence complex of G is the
simplicial complex:

Ind(G) = {W ⊆ V | W is an independent set}.

Note that α(G) is the cardinality of the largest element in Ind(G).
A set of vertices W ⊆ V is a vertex cover if for all e ∈ E, e ∩W 6= ∅. A vertex cover

is a minimal vertex cover if it is minimal with respect to inclusion. We let β(G) denote
the size of the smallest minimal vertex cover. There is duality between independent sets
and vertex covers; specifically, W ⊆ V is an independent set if and only if V \W is a
vertex cover. Consequently

α(G) + β(G) = n. (1)

A set of edges {e1, . . . , es} ⊆ E is said to be a matching if none of the edges share a
common vertex. We let α′(G) denote the size of the maximum matching in G. We then
always have the following inequality:

α′(G) 6 β(G). (2)
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Indeed, for any matching {e1, . . . , es} ⊆ E, any minimal vertex cover must contain at
least one vertex from each ei.

Finally, we will require the following bound on the regularity of R/I(G).

Theorem 3 ([6, Theorem 6.7]). For any finite simple graph G, reg (R/I(G)) 6 α′(G).

3 Main Theorem

In this section we will prove our main theorem:

Theorem 4. Let r, d > 1 be integers. Then there is a finite simple graph G with r =
reg (R/I(G)) and d = deg hR/I(G)(t).

In order to show this theorem, we will prepare some lemmata.

Lemma 5 ([12, Lemma 3.2]). Let R1 = k[x1, . . . , xn′ ] and R2 = k[xn′+1, . . . , xn] be poly-
nomial rings over a field k. Let I1, respectively I2, be a nonzero homogeneous ideal of
R1, respectively R2. We write R for R1 ⊗k R2 = k[x1, . . . , xn] and regard I1 + I2 as a
homogeneous ideal of R. Then

reg(R/I1 + I2) = reg(R1/I1) + reg(R2/I2), and

HR/I1+I2(t) = HR1/I1(t) ·HR2/I2(t).

By virtue of this lemma, one has:

Lemma 6. Let G be a simple graph, and let G1, . . . , G` be the connected components of
G. Then

reg (R/I(G)) =
∑̀
i=1

reg (Ri/I(Gi)) , and deg hR/I(G)(t) =
∑̀
i=1

deg hRi/I(Gi)(t),

where Ri = k [xj | j ∈ V (Gi)] for i = 1, . . . , `, and R = R1 ⊗k · · · ⊗k R`.

Remark 7. By Lemma 6, if G is graph with reg (R/I(G)) = r and deg hR/I(G)(t) = d,
then the graph G′ which is the disjoint union of G and a single edge on two new vertices
{z1, z2} has reg(R′/I(G′)) = r + 1 and deg hR′/I(G′)(t) = d+ 1 where R′ = R ⊗k k[z1, z2].
To prove Theorem 4 we need to show that for each r > 1, there exists a graph G with
reg(R/I(G)) = r and deg hR/I(G)(t) = 1, and for each d > 1, there is a graph G with
reg(R/I(G)) = 1 and deg hR/I(G)(t) = d. We now work towards this goal.

Example 8. Let d > 1 be a positive integer and let Kd,d be the complete bipartite graph,
i.e., the graph with V (Kd,d) = {x1, . . . , xd, y1, . . . , yd} and E(Kd,d) = {xiyj | 1 6 i, j 6 d}.
By virtue of Fröberg’s Theorem [3, Theorem 1], one has reg(R/I(Kd,d)) = 1. In addition,
the Hilbert series of R/I(Kd,d) can be computed from the graded minimal free resolution
(e.g., see [13, Theorem 5.2.4]); in particular:

HR/I(Kd,d)(t) =
−(1− t)d + 2

(1− t)d
.

Hence deg hR/I(Kd,d)(t) = d.
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We now require the following graph construction. Let G be a simple graph on V (G) =
{x1, . . . , xn}. For S ⊂ V (G), the graph GS is defined by

• V (GS) = V (G) ∪ {xn+1}, where xn+1 is a new vertex; and

• E(GS) = E(G) ∪ {{xi, xn+1} | xi ∈ S}.

Lemma 9. Let G be a graph and let S ⊂ V (G). Assume that

• dimR/I(G) > 2 and hR/I(G)(t) = 1 + h1t+ h2t
2;

• reg (R/I(G)) > 2;

• |S| = |V (G)| − dimR/I(G) + 2; and

• For any u ∈ V (G) \ S, there exists u′ ∈ S such that {u, u′} ∈ E(G).

Then

HR′/I(GS)(t) =
1 + (h1 + 1)t+ (h2 − 1)t2

(1− t)dimR/I(G)
and reg

(
R′/I(GS)

)
= r,

where R′ = R⊗k k[xn+1].

Proof. By the assumptions and the definition of GS, we have I(GS) + (xn+1) = (xn+1) +
I(G), and I(GS) : (xn+1) = (xi | xi ∈ S). Hence R′/(I(GS) + (xn+1)) ∼= R/I(G) and
R′/(I(GS) : (xn+1)) ∼= k[xi | xi 6∈ S]⊗k k[xn+1]. Thus, by the additivity of Hilbert series
on the short exact sequence

0→
(
R′/(I(GS) : (xn+1))

)
(−1)

×xn+1−−−−−→ R′/I(GS)→ R′/(I(GS) + (xn+1))→ 0,

we have

HR′/I(GS)(t) = HR′/(I(GS)+(xn+1))(t) + t ·HR′/(I(GS):(xn+1))(t)

= HR/I(G)(t) +
t

(1− t)|V (G)|−|S|+1

=
1 + h1t+ h2t

2

(1− t)dimR/I(G)
+

t

(1− t)dimR/I(G)−1

=
1 + (h1 + 1)t+ (h2 − 1)t2

(1− t)dimR/I(G)
.

Furthermore, we have reg
(
R′/I(GS)

)
= r by virtue of [2, Lemma 2.10].

Example 10. Let G be the two disjoint edges {x1, x2} and {x3, x4} and S = V (G). Then
GS = Gribbon where Gribbon is the following graph:

Gribbon =
x5

x1

x2

x3

x4
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Since I(G) = (x1x2, x3x4) is a complete intersection, we have HR/I(G)(t) =
1 + 2t+ t2

(1− t)2
and reg(R/I(G)) = 2. Hence, by applying Lemma 9, one has

HR′/I(Gribbon)(t) =
1 + 3t

(1− t)2
and reg(R′/I(Gribbon)) = 2.

So deg hR′/I(Gribbon)(t) = 1.

Example 11. Let G0 be the union of Gribbon and a disjoint edge {x6, x7}:

G0 =
x5

x1

x2

x3

x4

x6

x7

Then HR/I(G0)(t) =
1 + 3t

(1− t)2
· 1 + t

1− t
=

1 + 4t+ 3t2

(1− t)3
and reg(R/I(G0)) = 2 + 1 = 3 by

virtue of Lemma 6 and Example 10. Now we set Si = V (Gi) \ {x7} and Gi+1 = GSi
i for

i = 0, 1, 2. Then, by using Lemma 9 repeatedly, one has

HR′/I(G3)(t) =
1 + 7t

(1− t)3
and reg (R′/I(G3)) = 3,

where R′ = k[x1, . . . , x10] and G3 is the following graph:

G3 =
x5

x1

x2

x3

x4

x6

x7

x8 x9

x10

Lemma 9 says that, given r > 2, we can construct a graph G′ with deg hR/I(G′)(t) = 1
and reg(R/I(G′)) = r from a graph G for which deg hR/I(G)(t) = 2 and reg (R/I(G)) = r,
provided the hypotheses of Lemma 9 are met. We use this idea in the next lemma.

Lemma 12. Given an integer r > 3, we put

Yr = {y1,1, y2,1 . . . , yr−2,1, y1,2, y2,2, . . . , yr−2,2},
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Zr =
r−2⋃
i=1

{
z
(i)
1 , z

(i)
2 , . . . , z

(i)

2i+1−1

}
and

X = {x1, x2, x3, x4, x5}.

Let G(r) be the graph on X ∪ Yr ∪ Zr such that

• the induced subgraph G
(r)
X,Yr

is the following:

G
(r)
X,Yr

=
x1

x2

x3

x4

x5

y1,1

y1,2

· · ·

yr−2,1

yr−2,2

• the induced subgraph G
(r)
Zr

is a complete graph, i.e., all vertices are adjacent; and

• for all 1 6 i 6 r − 2 and for all 1 6 j 6 2i+1 − 1,

NG

(
z
(i)
j

)
= X ∪ {y1,1, y2,1, . . . , yr−2,1} ∪ Zr \

{
z
(i)
j

}
.

Let R(r) = k [{X ∪ Yr ∪ Zr}] be the polynomial ring over k whose variables equal to X ∪
Yr ∪ Zr. Then

1. HR(r)/I(G(r))(t) =
1 + (2r − 1)t

(1− t)r
, that is, deg hR(r)/I(G(r))(t) = 1, and

2. reg
(
R(r)/I(G(r))

)
= r.

Proof. We prove this lemma by induction on r > 3. The graph of Example 11 is G(3); we

showed that HR(3)/I(G(3))(t) =
1 + 7t

(1− t)3
and reg

(
R(3)/I(G(3))

)
= 3.

Assume r > 3. Let G′ be the union of G(r−1) and a disjoint edge {yr−2,1, yr−2,2}. Let
R′ = R(r−1) ⊗k k[yr−2,1, yr−2,2]. Then

HR′/I(G′)(t) = HRr−1/I(G(r−1))(t) ·
1 + t

1− t
=

1 + (2r−1 − 1)t

(1− t)r−1
· 1 + t

1− t

=
1 + 2r−1t+ (2r−1 − 1)t2

(1− t)r

and
reg(R′/I(G′)) = reg

(
R(r−1)/I(G(r−1))

)
+ 1 = r − 1 + 1 = r

by the induction hypothesis and Lemma 9.
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Let S0 = X ∪ {y1,1, y1,2, . . . , yr−2,1} ∪ Zr−1. Then |S0| = r + 3 + |Zr−1| and

|V (G′)| − dimR′/I(G′) + 2 = |X|+ |Yr−1|+ |Zr−1|+ 2− r + 2

= 5 + 2(r − 3) + |Zr−1|+ 4− r
= r + 3 + |Zr−1|.

Hence, by virtue of Lemma 9, one has

HR0/I(G0)(t) =
1 + (2r−1 + 1)t+ (2r−1 − 2)t2

(1− t)r
and reg(R0/I(G0)) = r,

where R0 = R′ ⊗k k
[
z
(r−2)
1

]
, G0 = (G′)S0 , and V (G0) = V (G′) ∪

{
z
(r−2)
1

}
.

Now, for each 1 6 j 6 2r−1 − 2, we define Rj, Sj and Gj inductively:

• Rj = Rj−1 ⊗k k
[
z
(r−2)
j+1

]
;

• Sj = Sj−1 ∪
{
z
(r−2)
j+1

}
; and

• Gj = G
Sj

j−1.

Then R2r−1−2 = R(r), G2r−1−2 = G(r), and one has

HR(r)/I(G(r))(t) =
1 + (2r − 1)t

(1− t)r
and reg

(
R(r)/I(G(r))

)
= r

by using Lemma 9 repeatedly.

We are now in a position to finish the proof of Theorem 4.

Proof (of Theorem 4). We discuss each of the following three cases.
Case 1. Suppose that 1 6 r 6 d. Let G be the union of Kd−r+1,d−r+1 and (r − 1)

disjoint edges. By virtue of Lemma 6 and Example 8, one has

reg (R/I(G)) = 1 + (r − 1) = r and deg hR/I(G)(t) = (d− r + 1) + (r − 1) = d.

Case 2. Suppose that r, d > 1 are integers with r − d = 1. Let G be the union of
Gribbon and (r − 2) disjoint edges. By virtue of Lemma 6 and Example 10, one has

reg (R/I(G)) = 2 + (r − 2) = r, and deg hR/I(G)(t) = 1 + (r − 2) = r − 1 = d.

Case 3. Suppose that r, d > 1 are integers with r− d > 1. Let G be the union of the
graph G(r−d+1) of Lemma 12 and (d − 1) disjoint edges. By virtue of Lemma 6 and 12,
one has

reg (R/I(G)) = (r − d+ 1) + (d− 1) = r, and deg hR/I(G)(t) = 1 + (d− 1) = d.
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4 Comparing the regularity and h-polynomial for fixed n

Theorem 4 shows that for all (r, d) ∈ N2
>1, there exists a finite simple graph G with(

reg (R/I(G)) , deg hR/I(G)(t)
)

= (r, d). However, if we fix n = |V (G)|, then the regularity
of R/I(G) and the degree of the h-polynomial must also satisfy the following inequality:

Theorem 13. Let G be a finite simple graph on n vertices. Then

deg hR/I(G)(t) + reg (R/I(G)) 6 n.

Proof. Via the Stanley-Reisner correspondence, the edge ideal I(G) is associated to the
independence complex Ind(G). The Hilbert series of R/I(G) can then be expressed as

HR/I(G)(t) =
d∑
i=0

fi−1t
i

(1− t)i

(see [7, Theorem 6.2.1]) where fj−1 is the number of independent sets of cardinality j in G
(in other words, this in the number of faces of Ind(G) of dimension j − 1). In particular,
d = α(G), the size of the largest independent set. It follows that deg hR/I(G)(t) 6 α(G).
By combining Theorem 3 and the inequality (2), we have the bound reg (R/I(G)) 6
α′(G) 6 β(G). Thus

deg hR/I(G)(t) + reg (R/I(G)) 6 α(G) + β(G) = n,

as desired, where the last equality is (1).

Remark 14. For an alternative proof, [15, Corollary 4.3] can be used to show that
deg hR/I(G)(t) 6 (n− β(G)).

Example 15. The upper bound of Theorem 13 is sharp. In fact, we can give two families
of graphs such that the equality deg hR/I(G)(t) + reg (R/I(G)) = n holds. For the first
family, let n = 2m and let G be the union of m disjoint edges. Then deg hR/I(G)(t) =
reg (R/I(G)) = m. For the second family, let G = K1,n−1 be the star graph. Then
deg hR/I(G)(t) = n− 1 and reg (R/I(G)) = 1.

Remark 16. We end with an observation based upon our computer experiments. For any
graph G with at least one edge, we have reg(R/I(G)) > 1 and deg(R/I(G)) > 1. If we
fix an n = |V (G)|, it is natural to ask if we can describe all pairs (r, d) ∈ N2

>1 for which
there is a graph G on n vertices with r = reg (R/I(G)) and d = deg hR/I(G)(t). Theorem
13 implies that r + d 6 n. Furthermore, note that α′(G) 6 bn

2
c, so we must also have

r 6 bn
2
c by Theorem 3.

However, these inequalities are not enough to desribe all the pairs (r, d) that may be
realizable. For example, when n = 9, we computed

(
reg (R/I(G)) , deg hR/I(G)(t)

)
for all

274668 graphs on nine vertices. We observed that for all such G,(
reg (R/I(G)) , deg hR/I(G)(t)

)
6∈ {(3, 1), (4, 1), (4, 2)}

even though these tuples satisfy the inequalities r + d 6 9 and r 6 4. A similar phe-
nomenon was observed for other n, thus suggesting the existence of another bound relating
reg (R/I(G)) and deg hR/I(G)(t) for a fixed n.
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[3] R. Fröberg, On Stanley-Reisner rings. Topics in algebra, Banach Center Publications,
26 (1990), 57–70.

[4] D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic
geometry. Available at http://www.math.uiuc.edu/Macaulay2/
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