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Abstract

An r-dual tower of groups is a nested sequence of finite groups, like the symmetric
groups, whose Bratteli diagram forms an r-dual graded graph. Miller and Reiner
introduced a special case of these towers in order to study the Smith forms of the
up and down maps in a differential poset. Agarwal and the author have also used
these towers to compute critical groups of representations of groups appearing in
the tower. In this paper the author proves that when r = 1 or r is prime, wreath
products of a fixed group with the symmetric groups are the only r-dual tower of
groups, and conjecture that this is the case for general values of r. This implies that
these wreath products are the only groups for which one can define an analog of the
Robinson-Schensted bijection in terms of a growth rule in a dual graded graph.

Mathematics Subject Classifications: 05E10, 05C25, 06A07, 06A11, 20C30

1 Introduction

1.1 Differential posets and dual graded graphs

Differential posets are a class of partially ordered sets introduced by Stanley [13] which
generalize many of the enumerative and combinatorial properties of Young’s lattice Y , the
poset of integer partitions ordered by inclusion of Young diagrams. The reader should see
[14] for basic definitions and conventions for posets in what follows. Dual graded graphs
are a generalization of differential posets developed independently by Fomin [4, 5].

A graded graph is an undirected multigraph P together with a rank function ρ : P →
Z>0 such that P has a unique element 0̂ of rank zero, all ranks Pn = ρ−1({n}) are
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Figure 1: Young’s lattice Y is a 1-dual graded graph and a 1-differential poset.

finite, and such that all edges are between consecutive ranks: if (x, y) is an edge, then
|ρ(x) − ρ(y)| = 1; we denote the multiplicity of this edge by m(x, y). In analogy with
Hasse diagrams of partially ordered sets, we write x 6 y if ρ(x) 6 ρ(y) and there is a
path from x to y in P taking only upward steps. If ρ(y) = ρ(x) + 1 and x < y, we write
x l y and say that y covers x. For a, b ∈ Z>0, we let P[a,b] denote the induced subgraph
on the elements of ranks a, a+ 1, . . . , b.

Definition 1. Let r be a postitive integer, let P be a graded graph, and let CP denote
the complex vector space with basis P ; then P is an r-dual graded graph if DU−UD = rI
where the linear operators U,D : CP → CP are defined by

Ux =
∑
xly

m(x, y)y

Dy =
∑
xly

m(x, y)x.

If in addition all edges multiplicities m(x, y) are 0 or 1, then P is (strictly speaking, the
Hasse diagram of) an r-differential poset.

Remark 2. What we have defined here are usually called self-dual graded graphs. In the
context of towers of groups, self-duality is implied by Frobenius reciprocity, so we do not
address the more general definition here.

Many of the combinatorial properties of Young’s lattice Y are shared by all dual graded
graphs. First, define a pairing 〈, 〉 : CP × CP → C by requiring that 〈x, y〉 = δxy for

x, y ∈ P and extending by bilinearity; let e(x) = 〈Un0̂, x〉 where x ∈ Pn. It is easy to see
that e(x) counts the number of paths from 0̂ to x in P , allowing only upward steps. Then
we have
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Proposition 3 ([4]). ∑
x∈Pn

e(x)2 = rnn!

When P = Y , it is easy to see that e(λ) is the number fλ of standard Young tableaux
of shape λ, and so Proposition 3 reduces to the well known fact that

∑
λ∈Yn f

2
λ = n!,

which follows from the Robinson-Schensted correspondence.

1.2 Towers of groups

A tower of groups G is an infinite nested sequence of finite groups G : {e} = G0 ⊂ G1 ⊂
G2 ⊂ · · · (see Section 1.3 where this notion is distinguished from the more restrictive
sense in which Bergeron, Lam, and Li [2] use the term tower of algebras).

For a finite group G, we let R(G) denote the representation ring of complex linear
combinations of complex G-representations subject to the relations [V ⊕W ] = [V ] + [W ]
and [V ⊗W ] = [V ] · [W ]. As a vector space, R(G) has a distinguished basis consisting of
the classes of irreducible representations [Vλ] for Vλ ∈ Irr(G). For G a tower of groups,
we let

R(G) =
∞⊕
i=0

R(Gi).

Although each R(Gi) has a ring structure, we regard R(G) only as a complex vector
space (see Section 1.3), together with an inner product 〈Vλ, Vµ〉 = δλµ defined so that the
distinguished basis of irreducibles is orthonormal; this inner product coincides with the
usual inner product of characters when restricted to a subspace R(Gi).

The space R(G) has a natural pair of adjoint linear operators Ind,Res : R(G)→ R(G)
defined by

Ind([Vλ]) = [Ind
Gi+1

Gi
Vλ]

Res([Vλ]) = [ResGiGi−1
Vλ]

where Vλ ∈ Irr(Gi), and extended by linearity. We define Res([V ]) = 0 for [V ] ∈ R(G0) ∼=
C. We now define the main object of study.

Definition 4 ([9]). A tower of groups G is an r-dual tower of groups if the linear operators
Ind,Res : R(G)→ R(G) satisfy the relation

Res Ind− Ind Res = rI. (1)

That is, G is an r-dual tower of groups if and only if the Bratteli diagram of G is an
r-dual graded graph P . In this case the operators Ind,Res : R(G)→ R(G) correspond to
U,D : CP → CP and the inner products on CP and R(G) coincide; we write P = P (G).
We also abuse terminology by saying Vλ covers Vµ if λ covers µ in P .

If in addition the branching rules between Gi and Gi+1 are multiplicity-free for all i
then we say that G is an r-differential tower of groups. In this case the Bratteli diagram
forms an r-differential poset P = P (G).
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Miller and Reiner introduced differential towers of groups in order to study the Smith
forms of the up and down maps in the associated differential poset [9]. Agarwal and the
author have also used these towers to compute critical groups of representations of groups
appearing in the tower [1, 6].

Example 5. It is well known (see for example [8]) that irreducible representations of the
symmetric group Sn are indexed by partitions λ of n, and that

ResSnSn−1
Vλ =

⊕
µ

Vµ

where the direct sum is over all partitions µ of n− 1 whose Young diagrams are obtained
from that of λ by removing a single box. That is, S : {e} ⊂ S1 ⊂ S2 ⊂ · · · is a
1-differential tower of groups, with P (S) = Y .

This correspondence can be extended to show that for any abelian group A of order r
the tower

A oS : {e} ⊂ A ⊂ A o S2 ⊂ A o S3 ⊂ · · ·
is an r-differential tower of groups with P (A o S) ∼= Y r [10]. When A is cyclic, A o S
is a complex reflection group [12]; the trivial representation corresponds to the tuple
((n),∅, . . . ,∅) of partitions, and the reflection representations are of the form ((n −
1),∅, . . . ,∅, (1),∅, . . . ,∅) when r > 1 or ((n − 1, 1)) when r = 1. If λ = (λ1, . . . , λr) is
a tuple of partitions with total size n, then the dimension of the corresponding represen-
tation Vλ of A o Sn is: (

n

|λ1|, . . . , |λr|

) r∏
i=1

fλi

where fµ is the dimension of the irreducible Sn representation indexed by µ.
More generally, if H is any finite group of order r with k-conjugacy classes and irre-

ducible representations of dimensions d1, . . . , dk, then

H oS : {e} ⊂ H ⊂ H o S2 ⊂ H o S3 ⊂ · · ·

is an r-dual tower of groups with P (H o Sn) ∼= (d1Y ) × (d2Y ) × · · · × (dkY ) where dY
denotes the d2-dual graded graph whose underlying simple graph is Y , but where all edge
multiplicities are multiplied by d (see [10], Theorem 4.1).

Theorem 6 below shows that this is in fact the only r-dual tower of groups when r = 1
or r is prime. In the rest of the paper, we use the convention that A o S0 = {e} while
A o S1 = A.

In [10], Okada also gives an explicit bijection which generalizes the
Robinson-Schensted correspondence to a bijection between elements of the groups H o Sn
and pairs of paths in Y r. Fomin’s theory of dual graded graphs [4, 5] later showed that
this bijection was a special case of one which holds for any dual graded graph, defined
in terms of growth rules. The main results of this paper, Theorem 6 and Conjecture 7
below, together assert that the groups H oSn are the only groups for which one can define
an analog of the Robinson-Schensted correspondence via growth rules.

the electronic journal of combinatorics 26(1) (2019), #P1.25 4



Theorem 6. Let G : {e} = G0 ⊂ G1 ⊂ G2 ⊂ · · · be an r-dual tower of groups where r is
one or prime. Then P (G) ∼= Y r and Gn

∼= (Z/rZ) o Sn for all n > 0.

Conjecture 7. Let G : {e} = G0 ⊂ G1 ⊂ G2 ⊂ · · · be a tower of groups and let r ∈ Z>0.

(a) If G is r-differential, then P (G) ∼= Y r and there exists an abelian group A of order
r, not depending on n, such that Gn

∼= A o Sn for all n > 0.

(b) If G is an r-dual tower of groups then P (G) ∼= (d1Y )×· · ·×(dkY ) for some d1, . . . , dk
and there exists a group H of order r, not depending on n, such that Gn

∼= H o Sn
for all n > 0.

Clearly part (b) of the conjecture implies part (a).

Remark 8. The general construction outlined in [7] shows that any graded graph can
be realized as the Bratteli diagram of some sequence A0 ⊂ A1 ⊂ A2 ⊂ · · · of complex
semisimple algebras. In particular, for all r each of the (uncountably many) r-differential
posets and r-self-dual graded graphs can be realized in this way; thus the implication in
Theorem 6 that Y r is the only differential poset or dual graded graph which can arise
from a sequence of group algebras may initially be surprising.

1.3 Relation to Bergeron, Lam, and Li’s towers of algebras

In [2], Bergeron, Lam, and Li study what they call towers of algebras; I will call their
notion a strong tower of algebras in order to avoid confusion. Strong towers of algebras are
certain algebras A =

⊕n
i=0Ai whose summands Ai are algebras in their own right which

are subject to several additional conditions; the corresponding branching rules satisfy
the same differential relation as in (1). A pair of Grothendieck groups (G(A), K(A))
bears a similar relationship to A as the vector space R(G) does to a tower of groups G.
The additional conditions required of a strong tower of algebras are restrictive enough
to guarantee that G(A) and K(A) in fact have the structure of dual combinatorial Hopf
algebras. If the Ai are complex semisimple algebras one obtains that G(A) = K(A) is a
positive self-dual Hopf algebra. By Zelevinsky’s classification of such Hopf algebras [15],
this forces G(A) to be isomorphic to a tensor product of copies of the Hopf algebra Λ of
symmetric functions, and therefore forces the corresponding Bratteli diagram for A to be
isomorphic to a product of copies of Young’s lattice.

In the case where Ai = C[Gi] are group algebras for i = 0, 1, . . ., the additional
conditions required of a strong tower of algebras imply in particular that for all n > k > 0
the group Gk × Gn−k is isomorphic to a subgroup of Gn. This condition is clearly not
true for general towers of groups, and it is therefore a notable feature of Theorem 6 and
Conjecture 7 that this condition, and the resulting Hopf structure on R(G), emerge from
the local condition (1) which only relates the branching rules of consecutive pairs of groups
in the tower.
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2 Proof of Theorem 6

Throughout Section 2, let G : {e} = G0 ⊂ G1 ⊂ G2 ⊂ · · · be an r-dual tower of groups
where r is one or prime. The proof of Theorem 6 will proceed by showing inductively
that the groups Gn are complex reflection groups and applying the known classification
[12] of these groups. We first prove the following useful fact:

Proposition 9. For all n > 0, the group Gn has order rnn!.

Proof. First, note that e(λ) = dim(Vλ), since both satisfy the same recurrence (as the sum
of the values for µl λ, with multiplicity) and the initial condition e(0̂) = dim(1G0) = 1.
Thus by Proposition 3 and the standard fact that the sum of the squares of the dimensions
of the irreducibles is the order of the group we have:

|Gn| =
∑

Vλ∈Irr(Gn)

dim(Vλ)
2 =

∑
λ∈Pn

e(λ)2 = rnn!.

Before proceeding with the proof, we state Clifford’s Theorem, which will be used
several times in what follows.

Theorem 10 (Clifford’s Theorem). Let G be a finite group, N a normal subgroup and
ϕ : G→ GL(V ) an irreducible representation of G. Then the irreducible factors appearing
in ResGN V are in a single orbit under the action of G given by ψ(g)(n) = ψ(gng−1).

In particular, all irreducible factors of ResGN V are of the same dimension, and if 1N
appears as a factor, then ResGN V is a direct sum of trivial representations.

2.1 Base case

By assumption we have that G0 = {e} is trivial, and since r is 1 or prime, we know by
Proposition 9 that G1

∼= Z/rZ. In this section we will show:

Proposition 11. When r is one or prime we must have G2
∼= (Z/rZ) o S2 and P[0,2]

∼=
(Y r)[0,2].

Proof. When r = 1 the claim is clear, since |G2| = 2, so assume r is prime. If r 6= 2,
then the Sylow r-subgroup of G2 has order r2 and so must be abelian; since it has index
two, it is also normal in G2. It is a standard fact (see [11]) that dimensions of irreducible
representations must divide the index of an abelian normal subgroup. Thus all irreducible
representations of G2 have dimension 1 or 2. In order to satisfy the relation (1), there
must be

(
r
2

)
2-dimensional irreducibles of G2 which when restricted to G1 give each of the

possible pairs of characters, and there must be 2r linear characters, two of which restrict
to each character of G1. It is a straightforward exercise (see, for example, [3] p. 185) to
check that there are three nonabelian groups G of order 2r2, all of which are semidirect
products of H = 〈h〉 ∼= Z/2Z and the r-Sylow subgroup N . If N the cyclic group Cr2 ,
then h acts on N by inversion; if N is Cr ×Cr, then h acts either by inversion of a single
factor, or inversion of both. In the first and last cases one calculates that the commutator
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subgroup [G,G] is of order r2, thus G has only two linear characters and cannot be G2;
the only remaining possibility is G2 = (Z/rZ) o S2.

When r = 2, there is only one 2-dual graded graph up to rank 2, namely (Y 2)[0,2].
These branching rules imply that G1 is not normal in G2, since the 2-dimensional ir-
reducible restricts to the sum of the trivial representation and a non-trivial summand,
violating Clifford’s theorem. The only nonabelian groups of order 8 are the dihedral
group D4

∼= (Z/2Z) o S2 and the quaternion group Q8. However Q8 is well-known to be
a Hamiltonian group, contradicting the fact that G1 is not normal. Thus we must have
G2
∼= (Z/2Z) o S2 as desired.

2.2 Facts about dual graded graphs

Lemma 12. Let P be an r-dual graded graph such that P[0,m] has no multiple edges and
let x 6= y ∈ Pm. Then

(a) If z, z′ ∈ Pm+1 both cover both x and y, then z = z′.

(b) If z ∈ Pm+1 covers both x and y, then there is some w ∈ Pm−1 which is covered by
both x and y and m(x, z) = m(y, z) = m(w, x) = m(w, y) = 1.

Proof.

(a) Suppose z 6= z′, then the coefficient of y in DUx is at least 2. Therefore the
coefficient of y in UDx must also be at least 2. Since P[0,m] has no multiple edges,
there must be some w 6= w′ ∈ Pm−1 such that x, y both cover w and w′. Repeating
this argument, we arrive at a contradiction, since P0 has a single element. Thus
z = z′.

(b) Since z covers x and y, we know y appears in DUx, and so it must also appear
in UDx; that is, there must be some w ∈ Pm−1 covered by x and y, and by part
(a) this w is unique. There are no multiple edges in P[0,m], so y appears with
coefficient 1 in UDx, thus it must also have coefficient 1 in DUx which forces
m(x, z) = m(y, z) = m(w, x) = m(w, y) = 1.

2.3 Inductive step

By a partial r-dual tower of groups we mean a finite sequence of finite groups {e} = G0 ⊂
G1 ⊂ · · · ⊂ Gm+1 such that for i = 1, . . . ,m we have

Res
Gi+1

Gi
Ind

Gi+1

Gi
− IndGiGi−1

ResGiGi−1
= rI.

and we similarly define a partial r-dual graded graph.

Proposition 13. For m > 2, let {e} = G0 ⊂ G1 ⊂ · · · ⊂ Gm+1 be a partial r-dual tower
of groups with corresponding partial dual graded graph P . Suppose that for n 6 m we
have Gn

∼= (Z/rZ) o Sn and that P[0,m]
∼= (Y r)[0,m]. Then Gm+1

∼= (Z/rZ) o Sm+1 and
P[0,m+1]

∼= (Y r)[0,m+1].
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Proof. The goal is to show that Gm+1 must be an irreducible complex reflection group
of rank m + 1 by identifying a faithful irreducible representation W of dimension m + 1
and a generating set for Gm+1 such that all elements of the generating set act in W as
complex reflections.

Since P[0,m]
∼= (Y r)[0,m] we know that IndGmGm−1

1Gm−1 decomposes into distinct irre-
ducibles as 1Gm ⊕

⊕r
i=1 Ui where U1 has dimension m − 1 and Ui has dimension m for

i > 2. Define distinct irreducible representations Wk by Ind
Gm+1

Gm
1Gm

∼= 1Gm+1⊕
⊕

kW
⊕ck
k

with ck > 0. Let N be the smallest normal subgroup of Gm+1 which contains Gm. By
Lemma 12, there must be some Wk whose restriction to Gm contains both 1Gm and U1,
since both of these representations cover 1Gm−1 . Then by Clifford’s Theorem, Gm is not
normal in Gm+1 since dim(1Gm) 6= dim(U1). Thus N properly contains Gm. Let the Vj
be the distinct nontrivial irreducible representations of N appearing in Res

Gm+1

N Wk for
some k.

We now collect some facts about the representations Ui, Vj and Wk. In order to avoid
naming homomorphisms ϕ : G → GL(V ) corresponding to all representations V , we
abuse notation by writing ker(V ) for ker(ϕ).

Lemma 14.

(a) Either Res
Gm+1

N Wk = 1
⊕c
N or Res

Gm+1

Gm
Wk is a multiplicity-free direct sum of 1Gm

and some of the Ui. In the latter case, Res
Gm+1

N Wk contains a unique Vj such that
ResNGm Vj contains 1Gm, and Vj does so with multiplicity one.

(b) ResNGm Vj must contain some Ui.

(c) No distinct Wk,Wk′ may contain the same Vj in their restriction to N .

(d) No distinct Vj, Vj′ may contain the same Ui in their restriction to Gm.

Proof of lemma 14.

(a) Since N is normal, by Clifford’s Theorem either all irreducible factors in Res
Gm+1

N Wk

are trivial, or none are; in the first case we are done, so assume we are in the second
case. By definition, Res

Gm+1

Gm
Wk must contain 1Gm ; however it must also contain

some nontrivial factor, otherwise Gm ⊆ ker(Wk) but N 6⊆ ker(Wk), contradicting

the fact that N is the smallest normal subgroup containing Gm. Thus Res
Gm+1

Gm
Wk

contains 1Gm and some nontrivial irreducible U . By Lemma 12, U must cover
1Gm−1 , so U is one of the Ui and both 1Gm and Ui appear with multiplicity one in

Res
Gm+1

Gm
Wk. The last statement now follows immediately.

(b) Suppose Vj does not contain any Ui in its restriction; pick Wk which contains Vj in its
restriction. Then, to satisfy the multiplicity freeness condition in part (a) we must
have ResNGm Vj = 1Gm , so dim(Vj) = 1. By Clifford’s theorem Wk only contains
1-dimensional representations in its restriction to N . But any other possible 1-
dimensional representation appearing in this restriction itself restricts to 1Gm , so in
order to satisfy multiplicity freeness, it must be that dim(Wk) = 1 and Res

Gm+1

N Wk =
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1Gm+1

1N

1Gm

1Gm−1

U1 U2 U3

V1 V2 V3

W1 W2 W3 1Gm+1

1N

1Gm

1Gm−1

U1 U2 U3

V1 V2 V3

W1 W2 W3

Figure 2: The two possibilities for the branching rules between the Ui, Vj,Wk when r = 3.
On the left is the case r′ = 1 and on the right the case r′ = r = 3.

Vj. But then ker(Wk) is a normal subgroup of Gm+1 which contains Gm but which
does not contain N , contradicting the minimality of N .

(c) Suppose Res
Gm+1

N Wk and Res
Gm+1

N Wk′ both contain Vj. Since, by part (b), ResNGm Vj
must contain some Ui we see that Wk,Wk′ both cover both 1Gm and Ui, thus by
Lemma 12, Wk = Wk′ .

(d) Suppose ResNGm Vj and ResNGm Vj′ both contain Ui. If Vj, Vj′ are both contained in
the restriction of the same Wk, then this violates multiplicity freeness from part (a).
Otherwise, Vj, Vj′ are contained in the restrictions of Wk 6= Wk′ respectively and
then both Wk,Wk′ cover both 1Gm and Ui, contradicting Lemma 12.

We now return to the proof of Proposition 13. Define r′ = [Gm+1 : N ]. Since repre-
sentations of Gm+1/N are in dimension-preserving bijection with representations of Gm+1

which restrict to a multiple of the trivial representation on N , we see that r′ = 1 +
∑
a2k

where ak is the multiplicity of 1N in Res
Gm+1

N Wk. Let bk > 0 denote the multiplicity of

1Gm in Res
Gm+1

Gm
Wk; clearly we have ak 6 bk, and ak = bk if ak > 0. By the definition

of an r-dual tower of groups, we know
∑

k b
2
k = r. Furthermore, at least one Wk′ must

contain some Ui in its restriction, since 1Gm and Ui must have an upper bound in rank
m+ 1, and thus ak′ = 0 by Lemma 14. Therefore 1 6 r′ 6 r.

Now, we have

dim IndNGm 1Gm = [N : Gm] = [Gm+1 : Gm]/[Gm+1 : N ] =
r(m+ 1)

r′
.

On the other hand, if ak = 0, then bk = 1 by Lemma 14, thus there are r + 1 − r′

representations Wk which contain some Vj. By the same lemma there must be r + 1− r′
of the Vj whose restriction contains 1Gm and each of these Vj’s must contain some Ui,
while only one of them can contain U1. This implies that

dim IndNGm 1Gm > 1 +m+ (r − r′)(m+ 1).

Thus we have r(m+1)
r′

> 1 +m+ (r − r′)(m+ 1), and so

rm+ r > (r′ + rr′ − (r′)2)m+ (r′ + rr′ − (r′)2)
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This forces r > r′ + rr′ − (r′)2, that is:

(r′ − 1)(r − r′) 6 0.

Therefore r′ must be equal to 1 or r.
When r = r′, we have [N : Gm] = (m + 1), this forces there to be some Vj which

restricts exactly to 1Gm ⊕ U1. Then by Clifford’s Theorem, each of the Vj must have
dimension m, so the branching rules are as depicted in Figure 2.3 for r = 3, and extend
in the obvious way to larger r.

Lemma 15. r′ = 1.

Proof of Lemma 15. Suppose r > 1 and r′ = r. Let V1 be the unique Vj whose restriction
contains U1. The representation U1 is the (m − 1)-dimensional representation of Gm =
(Z/rZ) o Sm obtained by projecting onto the symmetric group Sm and applying the usual
irreducible reflection representation of Sm. Thus ker(U1) ∼= (Z/rZ)m is the base group (see
[8], Chapter 4) of the wreath product. In particular |ker(U1)| = rm, and since ResV1 =
1Gm ⊕ U1, we see that |ker(V1)| > rm. By Clifford’s Theorem, the representation V2 is
conjugate to V1; that is, if ϕ1, ϕ2 : N → GLm are the corresponding maps, then for some
g ∈ Gm+1 we have ϕ2(x) = ϕ1(gxg

−1) for all x. This implies that ker(V2) = g−1(ker(V1))g,
so |ker(V2)| > rm. However ResV2 = U2 is faithful, so ker(V2) intersects Gm trivially. This
means that the product group K = (ker(V2)) · Gm has order at least rm · rmm!. But if
r > 1 this is greater than |N | = rm(m+ 1)!, a contradiction.

Lemma 16. We have N = Gm+1 (and so we can identify Vj = Wj for all j, relabeling if
necessary). Let V1 be the unique Vj whose restriction contains U1, then dim(V1) = m and
dim(Vj) = m+ 1 for j 6= 1. Futhermore, Vj is a faithful reflection representation of Gm+1

for j 6= 1 (if r = 1 then V1 is a faithful reflection representation).

Proof of Lemma 16. By definition r′ = [Gm+1 : N ], since r′ = 1 by Lemma 15 we have
Gm+1 = N . The Vj, which were defined by restricting the Wk to N are thus the same as
the Wk and we can relabel to let Vj = Wj. The representation U1 has dimension m − 1
and each other Ui has dimension m. Letting Ui be the unique nontrivial representation
appearing in ResVi for all i we have Res

Gm+1

Gm
Vi = Ui ⊕ 1Gm , so dim(V1) = m and

dim(Vj) = m+ 1 for j 6= 1.
The representations Ui for i 6= 1 can be realized as permutation matrices but with

the 1’s replaced by character values of one of the nontrivial representations of Z/rZ
(see [8]). Let r be prime, then these representations of Z/rZ are faithful, and thus
U2, . . . , Ur are faithful as well. Let ψ2 : Gm → GL(U2) and ϕ2 : Gm+1 → GL(V2) be
the maps corresponding to the representations U2, V2, where, since ResV2 = U2 ⊕ 1Gm ,
we identify GL(U2) as a subgroup of GL(V2) in the natural way. The representation U2

is a reflection representation of Gm, so Gm is generated by elements Xm ⊂ Gm which
act in U2 as complex reflections. Now, since Gm+1 = N is the smallest normal subgroup
containing Gm, it is generated by the conjugacy classes in Gm+1 of the elements in Xm.
Since ResV2 = U2 ⊕ 1Gm , the elements of Xm also act as complex reflections in V2, and
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thus so do their Gm+1 conjugates. Therefore im(ϕ2) is generated as a group by complex
reflections. It remains to check that ϕ2 is faithful.

Let Hm+1 := im(ϕ2) and let Gm
∼= Hm := im(ψ2) ⊂ Hm+1. We know that ψ2

is faithful, so |Hm| = rmm!, and that Hm+1 is an irreducible complex reflection group
of rank m + 1 whose order divides |Gm+1| = rm+1(m + 1)!. By the classification of
irreducible complex reflection groups [12], we must either have |Hm+1| = rm(m + 1)!
or rm+1(m + 1)! (all of the exceptional reflection groups H have multiple prime factors
dividing |H|/rank(H)!, thus Hm+1 must belong to the infinite family). We have [Hm+1 :

Hm] = dim(Ind
Hm+1

Hm
1Hm). But Ind

Hm+1

Hm
1Hm contains summands 1Hm+1 and V2, so [Hm+1 :

Hm] > m+ 2. This forces |Hm+1| = rm+1(m+ 1)!, so ϕ2 is faithful. Therefore, as it is an
irreducible complex reflection group of order rm+1(m+ 1)! and rank m+ 1, we must have
Gm+1

∼= (Z/rZ) o Sm+1.
Finally, if r = 1, then U1 is faithful, it is the usual reflection representation of Sm.

We see that Ind1Gm = V1 ⊕ 1Gm+1 . Since U1 is faithful and appears in the restriction of
V1, we see that V1 is faithful on any conjugacy class intersecting Gm. On any conjugacy
class not intersecting Gm, the character value of Ind1Gm is 0, and so χV1 = −1 on these
conjugacy classes. Thus V1 is faithful and Gm+1 is an irreducible complex reflection group
of rank m and order (m+ 1)!. By the classification, this forces Gm+1

∼= Sm+1.

By [12], we can take Hm+1 to be the standard realization of (Z/rZ) o Sm+1 in GL(V2)

as monomial matrices. Since Res
Gm+1

Gm
V2 ∼= 1Gm ⊕ U2, we see that Hm is conjugate in

Hm+1 to the standard embedding of m ×m monomial matrices into Hm+1. This shows
that the embedding Gm ⊂ Gm+1 is conjugate to the usual one, and so we have the usual
branching rules, thus P[0,m+1]

∼= (Y r)[0,m+1]. The proof of Proposition 13 is now complete.
This result, together with the base case Proposition 11, implies Theorem 6.
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