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Abstract
We study the multicolor Ramsey numbers for paths and even cycles, Rk(Pn) and

Rk(Cn), which are the smallest integers N such that every coloring of the complete
graph KN has a monochromatic copy of Pn or Cn respectively. For a long time,
Rk(Pn) has only been known to lie between (k − 1 + o(1))n and (k + o(1))n. A
recent breakthrough by Sárközy and later improvement by Davies, Jenssen and
Roberts give an upper bound of (k − 1

4 + o(1))n. We improve the upper bound to
(k− 1

2 + o(1))n. Our approach uses structural insights in connected graphs without
a large matching.
Mathematics Subject Classifications: 05C15, 05C38, 05C55, 05C75

1 Introduction

A classical theorem by Ramsey from 1930 [18] proves the existence of (finite) Ramsey
numbers. The multicolor Ramsey number R(H1, H2, . . . , Hk) is defined as the smallest
positive integer N such that for every coloring of the edges of the complete graph KN

with k colors there is a monochromatic subgraph Hi in some color i. For convenience, we
write Rk(H) if Hi = H, for all i ∈ [k].

The study of Ramsey numbers started with complete graphs but has been extended
to general graphs and has found the interest of many researchers. Several surveys on the
topic can be found in [6, 12, 17]. Ramsey numbers for complete graphs are known to grow
exponentially and are hard to analyze. The upper and lower bounds for these still differ
by an exponential factor, the most recent bound was by Conlon [5].

Besides the complete graphs, other natural families of graphs to study are paths Pn
and cycles Cn. The two-color Ramsey numbers for paths are known since 1967 [11].
Already for three colors the problem is more difficult and solving it took almost 40 years,
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the invention of Szemerédi’s regularity lemma [20] and the idea of connected matchings.
A matching M is connected in G if all edges of M are in the same component of G. This
idea was suggested by  Luczak [14]. Using these tools, in 2007, Gyárfás, Ruszinkó, Sárközy
and Szemerédi [13] showed the exact bounds for three colors and for large n

R3(Pn) =

2n− 1, n odd,
2n− 2, n even.

Figaj and  Luczak [9] applied them to prove that in the case of Ramsey numbers, connected
matchings, paths and even cycles are closely related (see Lemma 4 below). Connected
matchings have since been used in a series of papers (see e.g. [2, 9, 13, 15]).

For k colors, an easy application of the Erdős-Gallai extremal theorem [Lemma 5]
on each color class gives a bound of Rk(Pn) 6 kn for even n. This does not match
the current best known lower bound by Yongqi, Yuansheng, Feng and Bingxi [21], who
showed that for all k > 3 we have Rk(Cn) > (k − 1 + o(1))n. Note that the bound is
given for cycles but easily extends to paths. The upper bound was best known until a
recent breakthrough by Sárközy [19], who further improved this to (k− k

16k3+1)n. Davies,
Jenssen and Roberts [7] refined his ideas to get

Rk(Pn) 6
(
k − 1

4 + 1
2k

)
n.

Contribution. In this paper, we analyze the structural properties of graphs not contain-
ing large connected matchings as a subgraph. Our improvement on the k-color Ramsey
numbers for paths and even cycles comes from the fact that graphs without connected
matching are conceptually easier to analyze than graphs without paths. We have a tool
similar to Lemma 7 in [10] which states that in these graphs the vertices can be very
clearly partitioned into categories of ‘low’, ‘intermediate’ and ‘high’ degree vertices. In
particular, if a connected component is large compared to n, then only a small number of
vertices have high degree. We introduce a tool for counting edges in such graphs.

While the arguments in the two most recent papers on Rk(Pn) revolve around the over-
lap of dense connected components, we add the analysis on large connected components.
This is important because the construction for the lower bound [21] also contains these
large components. We believe this is an essential step towards achieving exact bounds for
the multicolor Ramsey numbers for paths and cycles.

For this, we consider the following variant of finding monochromatic connected match-
ings in k-colored dense graphs. This will allow us to generalize our results to paths and
cycles using the regularity lemma. The size of a connected matching corresponds to the
number of edges in the matching.

Theorem 1. Let k > 4 be a positive integer and ε, δ constants, such that 0 < ε 6 1/2
and 0 6 δ < ε3

3k2 . Then for every even integer n > 4, every k-colored graph G with
v(G) > (k−1/2 + ε)n and e(G) > (1− δ)

(
v(G)

2

)
has a monochromatic connected matching

of size n/2.
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We will then use the mentioned relationship between avoiding even cycles and con-
nected matching to derive the following theorem.

Theorem 2. For every integer k > 4 and an even integer n

Rk(Cn) 6
(
k − 1

2 + o(1)
)
n.

As as immediate consequence of the above result we obtain an upper bound on the
k-color Ramsey numbers for paths which follows from the fact that Pn ⊆ Cn.

Corollary 3. For every integer k > 4 and integer n

Rk(Pn) 6
(
k − 1

2 + o(1)
)
n.

Outline. Our paper is organized as follows. In Section 2 we show the structural results
for graphs avoiding connected matchings and two tools to apply these structures for
showing Ramsey results. In Section 3 we prove the main result in two steps. First, we use
our structural results from the preceding section to show that we can only have few high-
degree vertices. Second, we remove these vertices and show that the resulting connected
components are then all small (of size at most n). In Sections 4 and 5 we prove the
lemmas we used in Section 2. Finally, in Section 6 we summarize our results and give
some ideas for future work.

2 Methods

All graphs considered in this paper are simple, without loops or multiple edges. For a
graph G = (V,E) we denote by V (G) and E(G) the vertex set and the edge set of the
graph G and we set v(G) and e(G) to be the respective cardinalities.

As mentioned there is a relation between avoiding connected matchings and even cycles
in form of the following lemma which is a variant of a lemma used in [9].

Lemma 4 (Lemma 8 in [15]). Let a real number c > 0 be given. If for every ε > 0 there
exists a δ > 0 and an n0 such that for every even n > n0 and any graph G with v(G) >
(1 + ε)cn and e(G) > (1 − δ)

(
v(G)

2

)
and any k-edge-coloring of G has a monochromatic

component containing a matching of n/2 edges then

Rk(Cn) 6 (c+ o(1))n.

For c > 1 we surely have (1 + ε)cn > (c + ε)n which is more convenient for later
calculations. Observe that Theorem 2 follows from Theorem 1 by using Lemma 4 with
c = k − 1/2.
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2.1 Structure

The structure of graphs without large connected matchings play an important role in this
paper. As a path on n vertices contains a connected matching on bn/2c edges, extremal
results for paths directly give an upper bound for connected matchings.

Lemma 5 (Erdős-Gallai [8]). Let H be a graph which does not contain an n-vertex path.
Then

e(H) 6 n− 2
2 v(H).

Corollary 6. Let H be a graph which does not contain a connected matching of size n/2
for even n. Then

e(H) 6 n− 2
2 v(H).

The extremal graph in both cases consists of disjoint cliques of size n − 1. In [1]
the extremal configurations of connected graphs without a long path are discussed. We
provide a structure for connected graphs without large connected matchings which is very
similar. We capture this in the following lemma which is similar to lemma 7 in [10].

Lemma 7. For every connected graph G = (V,E) without a matching of size n/2 there
is a partition S ∪Q ∪ I of the vertex set such that

(1) |Q|+ 2|S| = min{v(G), n− 1},

(2) I is an independent set; additionally, if v(G) 6 n− 1, then I = ∅,

(3) every vertex in Q has at most one neighbor in I,

(4) every vertex in I has degree less than n/2.

We only want to give an intuition on the structure here and defer its proof to Section 4.
In Figure 1 an example of such a partition can be seen. Our structure has a series of
properties that we use later. From |Q|+ 2|S| 6 n−1 we can easily deduce that |S| < n/2
and |Q| < n. From |Q| + 2|S| 6 v(G) we get |S| 6 |I|, with a strict inequality as
soon as the number of vertices exceeds n − 1. Note that the graph induced by Q and
S can potentially be a clique, and we think of the vertices in S as high degree vertices
because they can potentially have edges to every other vertex. Vertices in Q have at most
|S| + |Q| < n neighbors and if v(G) < n, then I is empty so |S| = 0 and |Q| = v(G)
(using (1)).

From the above properties it also follows that the number of edges is at most
(
|Q|+|S|

2

)
+

|I| · |S| + |Q|. After some careful consideration one can see that this bound is stronger
than the Erdős-Gallai bound as soon as v(G) > n+ 1.
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Q < n

I

Q

S

I

S < n
2

extremal case clique

extremal case large component

Figure 1: Visualization of the structure from Lemma 7 including extremal structures

2.2 Loss Function

In the following we define a function f which intuitively should capture the difference
between the bound of Erdős-Gallai and the bound implied by Lemma 7. Remember
Corollary 6 gave us e(G) 6 n−2

2 v(G) for general graphs. To simplify computations, we
use the bound

e(G) 6 n− 1
2 v(G).

We denote by G the class of all graphs without a connected matching of size n/2. Then
the function f maps G to a positive rational number.

It is important to note that whenever we have connected components we can partition
them as in Lemma 7. This partition may not be unique but we can fix an arbitrary one
to make the definitions consistent.

Definition 8. Let G be the class of all graphs without a connected matching of size n/2.
We define f : G → Q>0 as the difference between n−1

2 v(G) and the number of edges in G,
i.e.

f(G) = n− 1
2 v(G)− e(G).

Observe that Corollary 6 guarantees that f(G) > 0 for any graph without a connected
matching of size n/2. One way to think about f(G) is as the number of edges G loses
in comparison to n−1

2 v(G). In the following we also refer to this value as the loss of G.
Intuitively, this loss can happen for two reasons:

(1) G can lose edges because of large connected components. This part can be captured
by the difference between n−1

2 v(G) and the bound of edges for connected graphs
obtained from Lemma 7.

(2) Edges missing because G is not saturated. These are the edges that are not present
in G but could be added without creating a connected matching of size n/2.

Throughout this paper we only look at the number of lost edges, it will not be im-
portant which exact edges are lost or what the cause was. We introduce a function
distributing this loss among the vertices of G.
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Definition 9. Let G be a graph without a connected matching of size n/2. We denote
by f : V (G) → Q>0 the loss of edges in G compared to n−1

2 caused by a single vertex
v ∈ V (G) defined as follows. Let C be the connected component of G including v and let
S ∪Q ∪ I be a partition of V (C) as described in Lemma 7. We set

f(v) =


n−1

4 , if v ∈ S,
n−1

2 −
deg(v)

2 , if v ∈ Q,
0, if v ∈ I.

From Lemma 7 we have that deg(v) 6 n − 1 for vertices in Q and so the function
f(v) is non-negative and well defined. Since we want to distribute the loss of the graph
over the different vertices we need that the sum of the losses over all vertices is at most
the loss of G. We claim that this holds for f defined as above. We defer the proof of the
following lemma to Section 5.
Lemma 10. Let G be a graph without a connected matching of size n/2. Then∑

v∈V (G)
f(v) 6 f(G).

Let G be a graph with a k coloring of its edges. We introduce three different categories
for the vertices of G. Let v ∈ V (G) be some vertex of our graph and let G1, . . . , Gk be the
monochromatic subgraphs in each color. Then for every color i the vertex v is in exactly
one component of Gi. We denote this component by Cv

i . Then we have Cv
1 , . . . , C

v
k which

are k monochromatic components in different colors, each including the vertex v. We
partition the vertices into three classes depending on their role in the k components.
Definition 11. For a graph G with a k-edge-coloring not containing a monochromatic
connected matching of size n/2 and a vertex v ∈ V (G), let Cv

1 , . . . , C
v
k be the k components

containing v in G1, . . . , Gk. Consider the partition Cv
i = Svi ∪Qv

i ∪ Ivi given by Lemma 7
for every color i. We call the vertex v

(1) strong if it is in Svi for some color i,

(2) Q-saturated if it is in Qv
i for every color i,

(3) small if it is in Ivi for some color i and in Qv
j or Ivj for all other colors j.

Generalizing Definition 8, we define F (G) to be the total loss of edges over all colors
in a graph G without a monochromatic connected matching of size n/2. We consider G
to be the union of k monochromatic graphs, each of which avoids a connected matching
of size n/2. Applying Corollary 6, again with a slight weakening of the bound, for each
of the color classes, gives

e(G) 6 k · n− 1
2 v(G).

This is the bound we use for comparison throughout the paper.
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Definition 12. Let Gc be the class of all k-edge-colored graphs which do not contain a
monochromatic connected matching of size n/2 and let F : Gc → Q>0 be defined as the
difference between k · n−1

2 v(G) and the number of edges in G, i.e.

F (G) = k · n− 1
2 v(G)− e(G).

Observe that F (G) = k · n−1
2 v(G) − e(G) = ∑k

i=1 f(Gi). The above equality holds
because every edge of G is colored in exactly one color and thus counted in exactly one
Gi. This also implies that F (G) is non-negative by the non-negativity of f(Gi).

We again distribute this loss over the vertices in G.

Definition 13. Let G be a k-edge-colored graph without a monochromatic connected
matching of size n/2 and let F : V (G)→ Q>0 denote the loss of edges in G compared to
k · n−1

2 v(G) caused by a single vertex v ∈ V (G). We set

F (v) =


n−1

4 , if v is strong,
k · n−1

2 −
deg(v)

2 , if v is Q-saturated,
0, if v is small.

This is again well defined as a Q-saturated vertex has degree at most n − 1 in every
color by Lemma 7. We conclude deg(v) 6 k · (n− 1) which directly implies that F (v) is
non-negative. We deduce the following corollary from Lemma 10 to again verify that we
have a valid distribution of the loss. The proof is deferred to Section 5.

Corollary 14. Let G be a k-edge-colored graph without a monochromatic matching of
size n/2. Then ∑

v∈V (G)
F (v) 6 F (G).

2.3 Small Components

Finally, we introduce a lemma to find an upper bound on the number of edges of graphs
whose color classes have the special property of consisting only of components which are
not too large.

Lemma 15. For any two integers k > 4 and n > 4 let G be a k-edge-colored graph on
(k− 1/2)n vertices with color classes G1, . . . , Gk such that no Gi has a component of size
larger than n. Then we have

e(G) 6
(
v(G)

2

)
− n2

32 .
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Proof. For sake of contradiction we assume there exists a graph G on (k− 1/2)n vertices
with a k-coloring such that no color class contains a component of size larger than n and

e(G) >
(
v(G)

2

)
− n2

32 . (1)

Additionally, let G be the graph such that the number of edges is maximal among all
graphs satisfying the property above. Choose any color from the graph and without loss
of generality we assume it is blue. Over all possible colorings satisfying that no color
class has a component of size larger than n we choose the coloring which maximizes the
number of blue edges, i.e. blue is the densest color. Let GB be the subgraph of G induced
by the blue edges. We take a closer look at the structure of the blue graph.
Claim 16. The number of components in GB is either k or k + 1.

Proof. If we had only k−1 components, then we could cover at most (k−1)n < (k−1/2)n
vertices. Hence we can be sure we have at least k components. By edge maximality of G
and the choice of the coloring we cannot have more than one component of size less than
n/2 in the blue graph, as otherwise we could add or recolor any edge between the two
components blue. But if we had k + 2 components, then by convexity and the fact that
there is at most one component of size less than n/2, the number of edges is maximized
when we have k − 3 cliques of size n, one clique of size n − 1, 3 cliques of size n/2 and
one isolated vertex. Then

e(GB) 6 (k − 2)
(
n

2

)
+ 3

(
n/2
2

)
6 (k − 2)n

2

2 + 3n
2

8 =
(
k − 5

4

)
n2

2 .

As blue was the densest color, the total number of edges is at most k · e(GB). We
conclude

e(G) 6 k
(
k − 5

4

)
n2

2 .

A simple algebraic transformation gives

e(G) 6
(
k2 − k + 1

4 −
k − 1/2

n

)
n2

2 −
(
k

4 + 1
4 −

k − 1/2
n

)
n2

2 .

Using that the complete graph on (k − 1/2)n vertices has

e(Kv(G)) =
(
v(G)

2

)
= n2

2

(
k2 − k + 1

4 −
k − 1/2

n

)

edges and assuming n > 4 we get

e(G) 6
(
v(G)

2

)
− n2

16 .

Thus, G having at least k + 2 components contradicts our assumption (1) so we
conclude that GB has either k or k + 1 components.
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By convexity and our previous observation that the blue graph has either k or k + 1
components, we obtain the number of blue edges is maximized when there are k compo-
nents: k − 1 of size n and one of size n/2. In this case we have

e(GB) 6 (k − 1)n
2

2 + n2

8 =
(
k − 3

4

)
n2

2 .

Let us now see what this implies for the other components. Consider the color with
the second most edges, say, red. Let GR be the subgraph of G induced by the red edges.
By the choice of G and the coloring, the blue components must be cliques. Thus for all
components CB ⊆ GB and CR ⊆ GR, the edges with both endpoints in V (CB) ∩ V (CR)
are blue. Observe that as the blue color has at most k + 1 components, this implies that
we can view the red graph as a union of (k + 1)-partite components, where the number
of edges is maximized when all components are complete (k+ 1)-partite where every part
has the same size. We observe that by the same reasons as seen for the blue graph, the
red graph cannot have fewer than k components. We conclude that the number of edges
in the red graph is maximized, when there are again k components: k − 1 of size n and
one of size n/2. As GR is (k+ 1)-partite we know that a component of size n has at most((

1− 1
k+1

)
n2

2

)
edges. We get

e(GR) 6
(

1− 1
k + 1

)(
(k − 1)n

2

2 + 1
4
n2

2

)

6
(

1− 1
k + 1

)(
k − 3

4

)
n2

2 .

As red was the second densest color, the number of edges in every other color is at
most the number of red edges. We conclude for the total number of edges

e(G) 6 e(GB) + (k − 1) · e(GR)

6
(
k − 3

4

)
n2

2 + (k − 1)
(

1− 1
k + 1

)(
k − 3

4

)
n2

2 .

Simplifying gives

e(G) 6
(
k2 − 7

4k + 11
4 −

7
2(k + 1)

)
n2

2 .

Using the fact that the graph G has (k − 1
2)n vertices, n > 4 and k > 4, we conclude the

proof of the lemma with

e(G) 6
(
v(G)

2

)
− n2

32 .
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3 Proof of the Main Theorem

The main part of this paper is the proof of Theorem 1 about finding monochromatic
connected matchings in k-edge-colored dense graphs. We restate the theorem for conve-
nience.

Theorem 1. Let k > 4 be a positive integer and ε, δ constants, such that 0 < ε 6 1/2
and 0 6 δ < ε3

3k2 . Then for every even integer n > 4, every k-colored graph G with
v(G) > (k−1/2 + ε)n and e(G) > (1− δ)

(
v(G)

2

)
has a monochromatic connected matching

of size n/2.

In the previous section we stated all the tools we need to prove Theorem 1, so all that
remains is to put all the lemmas together.

Proof of Theorem 1. For 0 < ε 6 1
2 , let α = 1/2 − ε and δ < ε3

3k2 . We proceed to prove
Theorem 1 by contradiction. Let G be an edge maximal graph on (k − α)n vertices with
the property that there is a k-coloring of the edges of G that avoids a monochromatic
connected matching of size n/2. Assume G has many edges,

e(G) > (1− δ)
(
v(G)

2

)
>

(
v(G)

2

)
− δk2n

2

2 . (2)

We then derive a contradiction by showing that G cannot have enough edges.
Firstly, we show that the number of vertices of low degree in G is small. Let V` be all

vertices v ∈ V (G) with deg(v) < (k − 1/2)n.
Claim 17. |V`| 6 δk2n

ε
.

Proof. Observe that every vertex in V` misses at least εn incident edges. Thus we can
find a lower bound on the number of edges missing in G compared to the complete graph
Kv(G) by |V`|εn

2 . As we cannot miss more than δk2 n2

2 edges we conclude |V`| 6 δk2n
ε
.

Observe next that every vertex in the set V (G) \ V` has degree at least (k − 1/2)n.
Recall that, by Lemma 7, we can partition every color class Gi into Si∪Qi∪ Ii, where Si,
Qi and Ii are the unions of the corresponding sets of Lemma 7 given for every connected
component in color i respectively, such that all vertices with very large degree are in Si
and all vertices in Ii have degree less than n/2 and all vertices in Qi have degree less than
n. Let v ∈ V (G)\V` be a vertex which is in the Ii for some color i and thus has degree less
than n/2 in this color. If this vertex was not in Sj for any color j, then it has a maximum
degree of n − 1 in every other color, thus deg(v) < n/2 + (k − 1)(n − 1) < (k − 1/2)n,
contradicting that v ∈ V (G)\V`. We conclude that no vertex in V (G)\V` by Definition 11
is small and thus every vertex in V (G) \ V` is either strong or Q-saturated, meaning it is
in Si for some color i or it is in Qi for all colors 1 6 1 6 k.

Secondly, we show that the number of strong vertices in G also has to be small. Let
Vs be the set of all strong vertices in V (G) \ V` and let β = |Vs|

n
.
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Claim 18. β 6 2δk2

ε2 .

Proof. Remember that we previously saw that we can use the function F from Defini-
tion 13 to capture the loss of edges in a graph caused by vertex v ∈ V (G). By definition
for Q-saturated vertices we have

F (v) = k · n− 1
2 − deg(v)− 1

2 .

As deg(v) 6 v(G)−1 = (k−α)n−1 we conclude that for a Q-saturated vertex v ∈ V (G)

F (v) > k · n− 1
2 − (k − α)n− 1

2 = α
n

2 −
k − 1

2 . (3)

By definition of F we have F (G) = k · n−1
2 v(G) − e(G) and Corollary 14 states that∑

v∈V (G) F (v) 6 F (G), so we can bound the number of edges in G by

e(G) 6 k · n− 1
2 v(G)−

∑
v∈V (G)

F (v).

Next, we use the loss function F of the vertices to find an upper bound on the number
of edges in G. All small vertices in G have to be in V` and thus there cannot be too many
of them, remember for strong vertices we have F (v) = n−1

4 by Definition 13. Using this,
Equation (3) for Q-saturated vertices and the fact that there are only few small vertices
allows us to find an upper bound on the number of strong vertices. We get

e(G) 6 k · n− 1
2 (k − α)n−

∑
v∈V (G)

F (v)

6 k · n− 1
2 (k − α)n−

vertices in V (G)\V`
which are Q-saturated︷ ︸︸ ︷(

k − α− β − δk2

ε

)
n

(
α
n

2 −
k − 1

2

)
−

vertices in V (G)\V`
which are strong︷ ︸︸ ︷
βn

(
n− 1

4

)
.

Now it follows from algebraic transformations and simple estimations that

e(G) 6 n2

2

(
k2 − 2αk + α2 − k − α

n

)
− n2

2

(
β

2 − αβ −
δk2

ε
α

)
.

Observe that
(
v(G)

2

)
= n2

2

(
k2 − 2kα + α2 − k−α

n

)
. Together with α = 1/2− ε this gives

e(G) 6
(
v(G)

2

)
− n2

2

(
εβ − δk2

ε
α

)
.

By the assumption e(G) >
(
v(G)

2

)
− δk2n2

2 we conclude that εβ − δk2

ε
α 6 δk2. Using α 6 1

and ε 6 1 we get a bound on the size of β.

β 6
δk2

ε
+ δk2

ε2 α 6
2δk2

ε2 .

This concludes the proof of Claim 2.
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We look at the induced subgraph on the remaining vertices i.e. V (G) \ {V` ∪ Vs}.
Observe that we get using that δ < ε3

3k2 , α = 1/2− ε and Claims 17 and 18

|V (G) \ (V` ∪ Vs)| > v(G)− δk2n

ε
− 2δk2n

ε2

> v(G)− 3δk2n

ε2

> v(G)− εn = (k − 1/2)n.

We now remove εn vertices from the graph, including the vertices from Vs and V`. We
are left with a graph G′ on (k− 1/2)n vertices such that every vertex was Q-saturated in
G. This means we remove from all components in all colors i the vertices in Ii and Si of
the corresponding partition and we are thus left with only monochromatic components of
size at most n−1. This allows us to apply Lemma 15 which gives us e(G′) 6

(
v(G′)

2

)
− n2

32 6(
v(G′)

2

)
− δk2 n2

2 . Which follows by the choice of ε and δ.
From here we conclude that there are at least δk2 n2

2 edges not present in G′. But
then, even without considering the edges missing in the rest of G we can conclude that
e(G) 6

(
v(G)

2

)
− δk2 n2

2 < (1− δ)
(
v(G)

2

)
edges, yielding the desired contradiction.

4 Proof of Lemma 7

In the following we derive some properties of connected graphs without large matchings.
For convenience we restate the lemma

Lemma 7. For every connected graph G = (V,E) without a matching of size n/2 there
is a partition S ∪Q ∪ I of the vertex set such that

(1) |Q|+ 2|S| = min{v(G), n− 1},

(2) I is an independent set; additionally, if v(G) 6 n− 1, then I = ∅,

(3) every vertex in Q has at most one neighbor in I,

(4) every vertex in I has degree less than n/2.

For a graph G and A ⊆ V (G) we define G \A as the subgraph of G where all vertices
from A and their incident edges are removed. For a matching M ⊆ E we call all vertices
which are not incident to any edge in M the unmatched vertices in M . Furthermore, we
denote by q(G \ S) the number of odd components in G \ S. We use a generalization of
Tutte’s Theorem by Berge [3] in our proof.

Theorem 19 (Berge [3]). Let G = (V,E) be a graph. For any set S ⊆ V and any
matching M , the number of unmatched vertices in M is at least q (G \ S) − |S|. More-
over, there exists a set S ⊂ V such that every maximum matching of G misses exactly
q (G \ S)− |S| vertices.
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Proof of Lemma 7. We distinguish two cases in the proof.

Case 1 (v(G) 6 n − 1). In this case we set Q = V and S = I = ∅. It can be easily
verified that all four conditions are satisfied in this case.

Case 2 (v(G) > n − 1). Let M be a maximum matching in G and let VM be all
vertices covered by the matching. As G has no matching covering n vertices and n is
even, 2|M | 6 n − 2. Then we know by Theorem 19 that there exists a subset of S ⊂ V
such that |V \ VM | = q (G \ S)− |S|.

Let Q = {Q1, . . . , Qq(G\S)} be the set of all odd components in G\S where we assume
without loss of generality that |Q1| > |Q2| > . . . > |Qq(G\S)|. Let I be be an arbitrary
set of vertices from the odd components such that |I ∩ Q1| = 0 and |I ∩ Qi| = 1 for all
2 6 i 6 q(G \ S). Then clearly we have that I is an independent set (proving (2)). Note
that we have

|I| = q(G \ S)− 1.
Let Q = V \ (I ∪ S) be the set of all remaining vertices. Then S ∪ Q ∪ I is clearly a
partition of V and thus |V | = |S|+ |Q|+ |I|. By Theorem 19 we know

n− 2 > 2|M | = |V | − (q(G \ S)− |S|)
= |S|+ |Q|+ |I| − q(G \ S) + |S|
= 2|S|+ |Q|+ 1.

We conclude n− 1 > 2|S|+ |Q|. In case n− 1 > 2|S|+ |Q| we move vertices from I to Q
until the above holds with equality. As we are in the case v(G) > n− 1 this proves (1).

To see that (3) holds, recall that I contains at most one vertex from each odd compo-
nent. Every vertex in Q can thus be adjacent to at most one of the vertices in I, the one
which was in the same component in G \ S. As we by construction did not remove any
vertex from the largest odd component, no vertex in I can have more that |Q|2 neighbors
in Q. Together with the vertices from S we conclude for v ∈ I that

deg(v) 6 |S|+ |Q|2 = n− 1
2 ,

proving (4).

5 Proof of Lemma 10 and Corollary 14

Next we proof Lemma 10, recall that

f(G) = n− 1
2 v(G)− e(G)

and for every connected component C and every vertex v ∈ V (C) = S ∪Q ∪ I we have

f(v) =


n−1

4 , if v ∈ S,
n−1

2 −
deg(v)

2 , if v ∈ Q,
0, if v ∈ I.
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Lemma 10. Let G be a graph without a connected matching of size n/2. Then∑
v∈V (G)

f(v) 6 f(G).

Proof of Lemma 10. Let G be a graph, not necessarily connected, and let C1, . . . , Cm be
the connected components of G. Every vertex and every edge is in exactly one component
thus we get

f(G) = n− 1
2 v(G)− e(G)

=
m∑
i=1

n− 1
2 v(Ci)− e(Ci)

=
m∑
i=1

f(Ci).

If we know that for every component we have ∑v∈v(Ci) f(v) 6 f(Ci), then
∑

v∈V (G)
f(v) =

m∑
i=1

∑
v∈v(Ci)

f(v) 6
m∑
i=1

f(Ci) = f(G).

We can thus without loss of generality assume G is connected. This allows us to partition
G with Lemma 7. We distinguish two cases.

Case 1 (v(G) 6 n − 1). In this case all vertices are in Q as by Lemma 7 (2) we know
I = ∅ and thus |Q|+ 2|S| = v(G) implies S = ∅. We clearly have

f(G) = n− 1
2 v(G)− e(G) =

∑
v∈V (G)

(
n− 1

2 − deg(v)
2

)
=

∑
v∈V (G)

f(v).

Case 2 (v(G) > n − 1). As in the previous case we rewrite the function f

f(G) = n− 1
2 v(G)− e(G) =

∑
v∈V (G)

(
n− 1

2 − deg(v)
2

)
.

Let V (G) = S ∪Q ∪ I. We now distinguish between vertices which are in Q, S or I. By
definition ∑

v∈Q

(
n− 1

2 − deg(v)
2

)
=
∑
v∈Q

f(v). (4)

Then we know that deg(v) for v ∈ S is at most v(G)− 1 and deg(v) for v ∈ I is at most
|S| plus at most |Q| edges in total from the set I to Q. Therefore, for vertices in S and I
we have the inequalities

∑
v∈S

(
n− 1

2 − deg(v)
2

)
>
∑
v∈S

(
n− 1

2 − v(G)− 1
2

)
, and
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∑
v∈I

(
n− 1

2 − deg(v)
2

)
>
∑
v∈I

(
n− 1

2 − |S|2

)
− |Q|2 .

Adding in the fact that v(G) = |Q|+ |I|+ |S| and n− 1 = |Q|+ 2|S| we get
n− 1

2 − v(G)− 1
2 = |S| − |I|+ 1

2 , and

n− 1
2 − |S|2 = |Q|+ |S|2 .

Using the fact that |I| > |S|+ 1 we obtain
∑

v∈S∪I

(
n− 1

2 − deg(v)
2

)
> |S| |S| − |I|+ 1

2 + |I| |Q|+ |S|2 − |Q|2

> |S| |Q|+ |S|2 > |S|n− 1
4 . (5)

Putting inequalities (4) and (5) together finally gives

f(G) =
∑

v∈V (G)

(
n− 1

2 − deg(v)
2

)

>
∑
v∈Q

(
n− 1

2 − deg(v)
2

)
+ |S|n− 1

4 =
∑

v∈V (G)
f(v).

This finishes the proof of Lemma 10.

We deduce Corollary 14 from Lemma 10. For this consider G to be a k-edge-colored
graph. Recall that Gi is the monochromatic induced subgraph in color i. We denote the
associated function from Definition 8 and 9 for the graph Gi in color i with fi.

Proof of Corollary 14. By definition of F (G) and fi(G) we have that F (G) = ∑k
i=1 f(Gi).

We conclude that if F (v) 6 ∑k
i=1 fi(v), then this together with Lemma 10 implies

∑
v∈V (G)

F (v) 6
∑

v∈V (G)

k∑
i=1

fi(v) =
k∑
i=1

∑
v∈V (G)

fi(v) 6
k∑
i=1

fi(Gi) = F (G).

In the following we show that F (v) 6
∑k
i=1 fi(v) indeed holds. For this we look at F (v)

depending on the class of the vertex v.
For every strong vertex v, we know that for at least one color i, v ∈ Si, so we have

fi(v) = n−1
4 . Hence then F (v) = fi(v) 6 ∑k

i=1 fi(v) by the non-negativity of f(v).
For every Q-saturated vertex by definition we have fi(v) = n−1

2 −
degGi

(v)
2 . This means

that for every Q-saturated vertex of G
k∑
i=1

fi(v) =
k∑
i=1

(
n− 1

2 −
degGi

(v)
2

)
= k · n− 1

2 − degG(v)
2 = F (v),

since the graphs Gi are edge-disjoint and their union is G. For every small vertex we
have, by non-negativity of f(v), that F (v) = 0 6

∑k
i=1 fi(v).

the electronic journal of combinatorics 26(1) (2019), #P1.26 15



6 Conclusion

In this paper, we provided some insight into the behavior of graphs avoiding connected
matchings. We introduced strong properties for large connected components without a
matching of size n/2. Also these directly imply a better bound for the multicolor Ramsey
numbers of paths and cycles.

The analysis of these large connected components is important because of the different
extremal constructions that exist for the lower bound of Rk(Pn). Even though there is
a lower bound construction using finite affine planes (see [4]) where all colors have small
connected components, the bound by Yongqi et al. [21] uses large connected components.
We believe for tight bounds, both extremal constructions must be considered.

To prove the bound for Rk(Cn), we first find large connected matchings in k-colored
dense graphs (Theorem 1) and then conclude by applying Lemma 4, which itself applies
the regularity lemma. Because the regularity lemma is such a strong tool, it should be
possible to deduce bounds on Ramsey numbers for other structures than the path or even
cycle, such as bounded degree trees, by adjusting Lemma 4 (see [16] for similar ideas with
three colors).

Although we now have some consideration for large connected components and the
overlap of small components, we do not look at the overlap of large components. Consid-
ering this might lead to better bounds. We would be interested to see these ideas used to
prove an upper bound matching the lower bound.
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[1] P. N. Balister, E. Győri, J. Lehel, and R. H. Schelp. Connected graphs without long
paths. Discrete Mathematics, 308(19):4487–4494, 2008.

[2] F. S. Benevides and J. Skokan. The 3-colored Ramsey number of even cycles. Journal
of Combinatorial Theory, Series B, 99(4):690–708, 2009.

[3] C. Berge. Sur le couplage maximum d’un graphe. C. R. Acad. Sci. Paris, 247:258–
259, 1958.
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