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Abstract

We study three dimensional array of numbers B(n,k,j), 0 < j,k < n, where
B(n,k,j) is the number of type B permutations of order n with k descents and j
minus signs. We prove in particular, that b(n, k,j) := B(n,k,j)/(’}) is an integer
and provide two combinatorial interpretations for these numbers.

J
Mathematics Subject Classifications: 05A05, 20B35

Introduction

Let B(n,k,j) denote the number of type B permutations (0,01,...,0,) which have k
descents and j minus signs. We study properties of the three-dimensional array B(n, k, j),
0 < j,k < n. Some of these properties appear in the work of Brenti [4]. In particular he
computed the three-variable generating function and proved real rootedness of some linear
combinations of the polynomials P, ;(z) := >_}_, B(n,k,j)z" (Corollary 3.7 in [4], see
also Corollary 6.9 in [2]). Here we will prove that the numbers b(n, k, j) := B(n, k, ])/(?)
are also integers. We provide two combinatorial interpretations of them.

For a subset U C {1,...,n} and 0 < k < n let B, ;v denote the family of all type B
permutations ¢ = (0,04, ...,0,) that ¢ has k descents and satisfy: o; < 0 iff |o;| € U.
We will show (Theorem 9) that the cardinality of B,, ;¢ is b(n, k, |U|).

Conger [5, 6] defined the refined Eulerian number <Z>] as the cardinality of the set
A, i; of all type A permutations 7 = (7,...,7,) such that 7y = j and 7 has k descents.
He proved many interesting properties of these numbers, like direct formula, asymptotic
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behavior, lexicographic unimodality, formula for the generating function and real root-
edness of the corresponding polynomials. It turns out that for 0 < 7,k < n we have
b(n,k,j) = <"Zl>j+1. We will prove this equality providing a bijection A, 41441 —
B, v, where U = {1,...,j} (Theorem 11). The array b(n,k,1), 1 < k < n, appears in
OEIS [8] as A120434. Tt also counts permutations o € A, which have k — 1 big descents,
i.e. such descents o; > ;.1 that o; — 0,1 = 2.

Conger proved that the polynomials p, ;(x) := > _,_, b(n, k, j)* have only real roots
(Theorem 5 in [5]). Briandén [3] showed something stronger: for every n > 1 the sequence
of polynomials {p, ;(7)}7_, is interlacing, in particular for every co,ci,...,c, = 0 the
polynomial copy,o(2) + c1pn1(z) + ... + ¢ppnn(x) has only real roots. Here we remark,
that P, ;(z) = (?) Pn,j(x), so the polynomials P, ;(z) admit the same property, which is a
generalization of Corollary 3.7 in [4] and of Corollary 6.9 in [2].

1 Preliminaries

For a sequence (ay,...,as), a; € R, the number of descents, denoted des(ay, ..., as), is
defined as the cardinality of the set {z e{l,...;s}:a;_1 > ai}. We will use the Iverson
bracket: [p] := 1 if the statement p is true and [p] := 0 otherwise, see [7].

Denote by A,, the group of permutations of the set {1,...,n}. We will identify o € A,
with the sequence (o4, ..., 0,) (we will usually write o, instead of o(k)). For 0 < k < n we
define A, as the set of those o € A, such that the sequence (o ...,0,) has k descents.
Then the classical type A Eulerian number A(n, k) (see entry A123125 in OEIS) is defined
as the cardinality of A, ;. We have the following recurrence relation:

Aln,k)=n—k)A(n—1,k=1)+ (k+ 1)A(n — 1,k) (1)

for 0 < k < n, with the boundary conditions: A(n,0) =1 for n > 0 and A(n,n) = 0 for
n > 1. These numbers can be expressed as:

A(n, k) = Z(—l)’“‘i (ZJ_F 1) (i +1)" (2)

For the Eulerian polynomials

the exponential generating function is equal to

D), (1= t)eltte
fA(t7 Z) = Z n' = 1 . te(l_t)z : (3)
n=0

By B,, we will denote the group of such permutations o of the set

{-n,...,—1,0,1,....,n}
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such that o is odd, i.e. o(—k) = —o(k) for every —n < k < n. Then |B,| = 2"nl.
We will identify o € B, with the sequence (0,04,...,0,). For o € B, we define des(o)
(resp. neg(o)) as the number of descents (resp. of negative numbers) in the sequence
(0,01,...,0,). For 0 < k,7 < n we define sets

B = {0 € B, : des(o) = k},
By ={c € B, :des(c) = k,neg(c) =j},

and the numbers B(n, k) := |B, x| (type B Eulerian numbers, see entry A060187 in OEIS),
B(n,k,j) := |Bnk, |- The numbers B(n, k) satisfy the following recurrence relation:

B(n,k) = (2n — 2k +1)B(n— 1,k — 1) + (2k + 1)B(n — 1, k), (4)
0 < k < n, with the boundary conditions B(n,0) = B(n,n) = 1, and can be expressed as

k

B(n,k) =Y (1) (Zt 1) (20 +1)™ (5)

1=0

The type B Eulerian polynomials are defined by
PR(t) == B(n,k)t",
k=0

and the corresponding exponential generating function is equal to

= P2(t) (1 —t)elt=z
B R n n o _
f (t, Z) T ; n! Z = 1 — te2(1-t)z ° (6)

2 Descents and signs in type B permutations

This section is devoted to the numbers B(n, k, j) := | B,k ;|. First we observe the following
symmetry.

Proposition 1. For 0 < 5,k < n we have
B(n,k,j) = B(n,n — k,n —j). (7)
Proof. 1t is sufficient to note that the map
(0,01,...,04) — (0,—01,...,—0p)
is a bijection of B,k ; onto By, p—kn—;- O

Now we provide two summation formulas.
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Proposition 2.

n

> B(n,k,j) = B(n, k), (8)

Zzn;B(n, k,j) = C) nl. 9)

Proof. The former sum counts all ¢ € B,, which have k descents, while the latter counts
all o € B,, which have j minus signs in the sequence (o71,...,0,). O

From Corollary 4.4 in [1] we have also

> B(n,k,j) = %B(n,k) + (_21) (Z) (10)

J=0
J even

; B(n.k, j) = %B(n,k) - % (Z) (11)

7 odd

see A262226 and A262227 in OEIS.
Now we present the basic recurrence relations for the numbers B(n, k, j).

Theorem 3. The numbers B(n, k,j) admit the following recurrence:

Bn,k,j)=(k+1)B(n—1,k,j)+ (n—k)B(n—1,k—1,7)

12
+kB(n—1,k,j—1)+(n—k+1)B(n—1,k—1,7—1) (12)
for 0 < k,7 < n, with boundary conditions:
B(n,0,j) =[j = 0], B(n,n,j) = [j = nl, (13)
B(n,k,0) = A(n, k), B(n,k,n) = A(n,n — k) (14)

for0 <k, 7 <n.

Equality (12) remains true for 0 < j,k < n under convention that B(n,k,j) = 0
whenever j € {—=1,n+ 1} or k € {—1,n + 1}.

Proof. For (og,...,0,) € B,, n > 1, we define
Ao = (00,...,04...,0,) € By_1,

where ¢ is such that o; = £n, and the symbol “G;” means, that the element o; has been
removed from the sequence.
For given o € B, 1. ;, 0 < k,j < n, we have four possibilities:

e 0, =n and either i =n or ;-1 > 0,41, 1 <7 <n. Then Ao € B,,_1 ;.
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e o,=nand 0,1 < 0y1, 1 <i<n. Then Ao € B, 1.

e g, = —mnando;_; > Oit1, 1 <i<n. Then Ao € Bn—l,k,j—l.
e 0, = —n and either i =n or 0,1 < 0441, 1 <@ <n. Then Ao € B, j—1,-1-
Now, suppose we are given a fixed 7 = (79, ..., 7,—1) which belongs to one of the sets

Br-1kj, Bo-1k-1;, Bn-1kj-1 or Bn_1x-1;-1. We are going to count all o € B, ; such
that Ao = 7.

If 7 € B,_1,; then we should either put n at the end of 7, or insert into a descent
of 7, i.e. between 7;,_; and 7;, where 1 < i < n —1, 7,_1 > 7;, therefore we have k + 1
possibilities.

Similarly, if 7 € B,_; -1, then we construct ¢ by inserting n between 7,_; and 7,
1 <i<n—1, where 7;,_1 < 7;. For this we have n — k possibilities.

Now assume that 7 € B,_1x;-1. Then we should insert —n between 7,_; and 7,
1 <t <n—1, where 7,_y > 7, for which we have k possibilities.

Finally, if 7 € B,,—1 1—1,;—1 then we put —n either at the end of 7 or between 7,_; and
7, 1 <i<n—1, where 7,_1 < 7;, for which we have n — k + 1 possibilities.

Therefore the number of o € B,, 1, ; such that Ao belongs to the set B,,_1x,;, Bn—1k-1,5:
Byn—1kj-1 o Byp_1x-1j-1 is equal to (k + 1)B(n — 1,k,j), (n — k)B(n — 1,k — 1,j),
kB(n—1,k,j—1)or (n—k+1)B(n—1,k—1,j — 1) respectively. This proves (12).

For the boundary conditions it is clear that if neg(c) > 0 then des(c) > 0, which
yields B(n,0,7) = [j = 0]. We note that the map (og,01,...,0,) — (01,...,0,) is a
bijection of B, ko onto A, j, consequently B(n,k,0) = A(n,k). For the two others we
refer to (7). O

Below we present tables for the numbers B(n, k, j) for n = 0,1,2,3,4,5:

, k\jlo 1 2 3
k\jlo 1 AV 0 |1 0 0 0

k\j|O 0 [1 00
o o [to. o,y 1426 1,
1 |01 o 2 |1 6 12 4
3100 01
Pilo 1 2 3 4 K\jlo 1 2 3 4 5

1 0 0 0 0 O

1 0 0 0 O

\

0

L1l 32 24 8 1 26 80 80 40 10 1
2

3

4

\

0

1
11 56 96 56 11° ; 66 330 600 480 180 26 .
4
5

1 8 24 32 11
0O 0 0 0 1

26 180 480 600 330 66
1 10 40 80 80 26
0 O 0 0 0 1

For example we have B(n,1,0) = 2" —n — 1 and B(n,1,7) = (?)2”_j for1<j<n
(cf. A038207 in OEIS). We will see that B(n, k,j)/(?) is always an integer.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.27 5



3 Generating functions

Now we define three families of polynomials corresponding to the numbers B(n, k, j):

) = ZB(n, k,j)zF, (15)

Ri(x,y) = Z B(n,k, j)z"y’. (17)
k=0

The polynomials R,,(x,y) were studied by Brenti [4], who called them “g-Eulerian poly-
nomials of type B”.
The symmetry (7) implies:

P, j(x) =a"P, (1)), (18)
Qni(Y) = Y Qua—r(1/y), (19)
Ry(z,y) = 2"y "R, (1/z,1/y). (20)

Proposition 4. The polynomials P, j(x) satisfy the following recurrence:

Py j(2) = (1+na — )Py j(2) + (x — 2%) Py () (21)
+neP () + (@ —2?) By (2),

with the initial conditions: P,o(z) = PXx) forn >0 and P, ,(z) = 2P(x) forn > 1.

n

Proof. 1t is easy to verify that

n

Z(k +1)B(n—1, k:,j)$k =P,_1;(z)+ ZEP;L_LJ-({L‘),

k=0

S (= B)B(n— 1k — 1, j)a* = nePy () — 2Pyy y(x) — 2Pl (),

k=0
ZkB —1)a* = 2P 1j-1(T),
and .
d (n—k+1)B(n—1k—1j—1)a*=naP,;1(x) = 2°P,_,; (x).
k=0
Summing up and applying (12) we obtain (21). ]
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Brandén [2], Corollary 6.9, proved that for every nonempty subset S C {1,...,n}
the polynomial ) P, j(x) has only real and simple roots. Combining (47) with Ex-
ample 7.8.8 in [3] we will note (Theorem 20) that in fact every linear combination
coPno(z) + c1Pyi(x) + ... + cpPyn(x), with co,cq,...,¢, = 0, has only real roots. The
cases when S is the set of even or odd numbers in {1,...,n} were studied in [1]. The
Newton’s inequality implies that if 0 < j < n then the sequence {B(n, k, j)}}_, satisfies
a stronger version of log-concavity, namely

k+1)(n—k+1)

Bn,k ) > Bk = 1) B(n b+ 1,) "8

(22)
for 0 < k < n, in particular this sequence is unimodal.
For the polynomials @), x(y) we have the following, see (18) in [4]:

Proposition 5. The polynomials Q, x(y) satisfy the following recurrence:

Qui(y) = (k + 1+ ky)Qnp(y) + (n =k + (n =k +1)y)Qun-15-1(y)
with the initial conditions: Qno(y) =1, Qunn(y) =y forn > 0.

The polynomials @, however do not have all roots real. They satisfy the following
versions of Worpitzky identity:

> (u . k) Qni(y) = (u+1+uy)", (23)

n
k=0

> (u N k) Qni(y) = (u+y + uy)". (24)

n
k=0

The former is proved in [4], Theorem 3.4, the latter follows from the former and the
symmetry (19).
Now we recall the recurrence relation for R, (x,y) (see Theorem 3.4 in [4]):

Proposition 6. The polynomials R, (x,y) admit the following recurrence:

9]
Ru(z,y) = (1 +nxy +nr — 2) Ry (z,y) + (x — 2 (1 + y)%Rn,l(I, ),

n > 1, with initial condition Ry(x,y) = 1.

Brenti [4] also found the generating function for the numbers B(n, k, j):

L = Rn(xuy) n __ (]‘ B x)e(li‘r)z
f('ra Y, Z) T Z_; n 2= 1 — pel—2)(1+y)z" (25>
Note that
fla,y,z) = fA (2, (14 y)z)e e, (26)
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4 Refined numbers

For 0 < k < mnand asubset U C {1,2,...,n} we define B,, ;v as the set of those o € B,
which have minus sign at o;, 1 <14 < n, if and only if |o;| € U. Therefore we have

U Bn,k,U = Bn,k,j- (27)

The cardinality of B,y will be denoted b(n, k,U). By convention we put b(n, —1,U) =
b(n,n+ 1,U) := 0. It is quite easy to observe boundary conditions.

Proposition 7. Forn>1,0< k<n, U C{1,...,n} we have

b(n,0,U) = [U = 0], b(n,n,U)=1[U={1,...,n},
b(n, k,0) = A(n, k), b(n,k,{1,...,n}) = A(n,n — k).

Now we provide a recurrence relation.
Proposition 8. For0 <k <n, U C{l1,2,...,n} we have
b(n,k,U)=(k+1)-b(n—1,kU)+(n—Fk)-b(n—1,k—1,U) (28)
ifné¢ U and
b(n,k,U)=k-b(n—1,kU)+(n—k+1)-bn—1,k—1,U") (29)
ifne U, where U :==U \ {n}.

Proof. Both formulas are true when k& = 0 or £ = n. Assume that 0 < £k < n. We will
apply the same map A : B, = B,,_; as in the proof of Theorem 2.1. Fix o € B,, ;v and
assume that ¢ is such that o; = n (when n ¢ U) or 0;, = —n (whenn € U), 1 < i < n.
We have now four possibilities:

e n ¢ U and either i =n or 0,1 > 0,41, 1 <i <n. Then Ao € B,_1,v.
en¢Uando,_y <01, 1 <i<n. Then Ao € B,,_14-10.

enclUando_; >0, 1 <i<n Then Ao € B,_1 5.0\(n}-

e n € U and either i =n or 0,1 < 0441, 1 <@ <n. Then Ao € By j—1,07\(n}-

On the other hand, as in the proof of Theorem 3, we see that for a given 7 in B,_1 ;s
(resp. in B,,_1 ;—1,v) there are k + 1 (resp. n — k) such o’s in B,, ;¢ that Ao = 7. We
simply insert n into a descent or at the end of 7 (resp. into an ascent). Similarly, for a
given 7 in By,_1 v (resp. in B, x_1,v) there are k (resp. n—k+1) such o’s in B,k yugn)
that Ao = 7. m
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Now we will see that b(n, k, U) depends only on n, k and the cardinality of U.
Theorem 9. If0 < k< n, UV C{l,...,n} and |U| = |V| then
b(n,k,U) =b(n,k,V).

Proof. Fix U,V C{1,...,n}, with |U| = |V| and define 7 € A,, as the unique permutation
of {1,...,n} such that: 7(U) =V, 7|y preserves the order and 7| . 3w preserves the
order. We extend 7 to an element of B, by putting 7(—i) = —7(i). Now let 0 € B,, xv.
Then, by definition, 7(o(i)) < 0 if and only if o(:) < 0, —n < i < n. Moreover, if
1 <i<nthen 7(c(i — 1)) < 7(c(d)) if and only if o(i — 1) < o(i). This is clear when
o(i—1) and o(i) have different signs. If they have the same sign then this is a consequence
of the order preserving property of 7 on U and on {1,...,n}\ U. Consequently, the map
o — T oo is a bijection of B, onto B, v. O

The theorem justifies the following definition: for 0 < j, k < n we put
b<n7 k’j) = b(n7 k? U)?

where U is an arbitrary subset of {1,...,n} with |U| = j. In addition, if j <0 or kK <0
orn < jorn <k then we put b(n, k,j) = 0. From (27) we obtain

Corollary 10. For 0 < j,k < n we have

(Z‘) b(n, k, j) = B(n, k, j). (30)

5 Connections with permutations of type A

For given n > 0 we define a map F, : A, — B, in the following way: F,(0) = 7, where
for 1 <i < n we put

5 .= 1 OO %f Oip1 < 01, (31)

oiq1— 1 ifoi > o0y,
0_; := —0o; and gy := 0. Note that g;,_; > o; if and only if o; > 0;,1 for 1 < i < n, so the
number of descents in (0,77, ..., 0,) is the same as in (01, ...,0,41). It is easy to see that

F,, is one-to-one. Its image is the set of such 7 € B,, which satisfy the following property:
if 1 < 11,12 < N, ‘Ti1| < |Ti2’, Tis < 0 then Tip < 0. Denote

An,k,j = {0’ S An,k 101 = ]}

The cardinalities of these sets were studied by Conger [5], who denoted <Z>J = Ak ]
From our remarks we have

Theorem 11. For 0 < j, k < n the function F,, maps A,41 into B, and is a bijection
from Ay i1k 41 onto By g1, 5. Consequently,

b(n,k,j) = [Aniiksl - (32)
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In the rest of this section we briefly collect some properties of the numbers b(n, k, j) =

<"Zl >j 41> ost of them are immediate consequences of the results of Conger [5, 6].

Proposition 12. If0 < k,j < n then

b(n,0,7) =[5 = 0],

b(n,m, ) = [j = ),

b(n,k,0) = A(n, k),

b(n,k,n) = A(n,n — k),

b(n,k,j) = (k+1)b(n—1,k,5)+ (n—k)b(n—1,k—1,j5), j<n,
b(n,k,j) =kb(n—1,k,j—1)+(n—-k+1bn—-1,k—-1,7—-1), j>0,

b(n7k7]) :b(n7n_k:7n_])

(33
(34
(3
(3
(
(
(

(S

3
38
39

~N
~— — S S ~— —

Proof. These formulas are consequences of Proposition 7, Proposition 8, (7) and (30) (see
formulas (3) and (8) in [5]). Note that (38) is absent in [5].

Applying (37), with j — 1 instead of j, and (38) we obtain (see (10) in [5])

Corollary 13. For 1 < j,k<n

]

(40)

Below we present tables for the numbers b(n, k, 7) for n = 0,1,2,3,4,5,6 (they also
appear in Appendix A of [6]):

. E\jlo 1 2 3
. k\jlo 1 k\jJO 1 2 0 |1 000
k\j|o0 0 |1 00
o 0 [Ty 1 |4 421
1 |01 > |o o1 2 |12 4 4
3 1000 1
B0 1 2 8 4 E\jl0o 1 2 3 4 5
0 |1 0 0 0 0 0
0L 0 0 0 0
Ul o8 o4 9 1 1 /26 16 8 4 2 1
o |11 14 16 14 11 2 |66 66 60 48 36 26 ,
3 |26 36 48 60 66 66
301 2 4 8 11
o o o0 o0 1 4 11 2 4 8 16 26
510 0 0 0 0 1
E\jl o 1 2 3 4 5 6
0|1 0o 0 0 0 0 0
1 |57 32 16 8 4 2 1
2 302 262 212 160 116 82 57
3 302 342 372 384 372 342 302
4 | 57 82 116 160 212 262 302
5 |1 2 4 8 16 32 57
6 |o o o o0 0 0 1
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From (30), (37) and (38) we can provide new recurrence formulas for the numbers

B(n, k, j):
Corollary 14. For 0 < j,k < n we have
(k+1)n

(n—Fk)n

B(n, k,j) = B(n—1,k,j)+

Bn—1,k—1,7),
n—7 n—7

if0<j<nand

kn (n—k+1)n

if 0 <j < n.

Now we introduce the following lexicographic order on the set {0, 1,...,n}% (ki,j1) <
(ka, 72) if and only if either ky < kg or k1 = ks, 71 = j2. This is a linear order, in which the
successor of (k,0), with 0 < k < n, is (k+1,n), and for 1 < 7 < n the successor of (k, j) is
(k,j7 —1). It turns out that for every n > 1 the array (b(n, k, j>):,j:0 is lexicographically
unimodal, cf. Theorem 7 in [5].

Proposition 15. For every n > 1 we have the following:
a) If either 0 < k<n/2, 1<j<nork=n/2, n/2<j<n then

b(n, k,j —1) = b(n,k,j).

This inequality is sharp unless either k =0,2<j<mnornisodd, k= (n—-1)/2, j=1.
b) If either 1 <k <n/2,0<j<nornisodd, k=(n+1)/2, (n+1)/2<j<n
then
b(n,k—1,5) < b(n,k,j)

and this inequality is sharp unless n is even, k =n/2, j = 0.
c) The array of numbers b(n, k,j), 0 < j,k < n, is unimodal with respect to the order
“X” with the mazimal value b(n,n/2,n/2) if n is even and

b(n,(n—1)/2,n) =b(n,(n+1)/2,0)
if n is odd.

Proof. First we note that (a) implies (c) as a consequence of the symmetry (39) and the
equality
b(n,k—1,0) = A(n,k —1) = A(n,n — k) = b(n, k,n).

Similarly we get (b).

Now assume that the statement holds for n — 1. If either £ < n/2 or k = n/2,
n/2 < j then, due to (3), the right hand side of (40) is nonnegative which proves (a),
(b) and consequently (c) for n. Moreover, it is positive unless j = 1, n — 1 = 2k, as

A2k, k — 1) = A(2k, k). 0
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Now we note two summation formulas (see (4) and (5) in [5]).

Proposition 16. For 0 < j,k < n we have

Zn: b(n,k,j) = Aln+1,k), (41)

> b(n,k,j) = mnl. (42)
k=0

Proof. For (41) we apply (32) to the following decomposition:
An-{—l,k,lUAn-l—l,k,QU cee UAn+1,k,n+1 = An+1,k-
The latter identity is a consequence of (9) and (30). O

It turns out that (2) can be generalized to a formula which expresses the numbers
b(n,k,j), see Theorem 1 in [5].

Theorem 17. For any 0 < 7,k < n we have
k

n—+1 -
b(n,k,j) = -1 1) 4
k) =30 (3 v (43
under convention that 0° = 1.
Proof. It can be proved by induction by applying (2), (36) and (38). O

From (43) and (30) we can derive a formula for the numbers B(n, k, 7).

Corollary 18. For any 0 < j,k < n we have

B(n, k,j) = ()i (”+1> I+ 1) (44)

1=

under convention that 0° = 1.
Now we can prove Worpitzky type formula:
Proposition 19. For 0 < j < n we have

S bin. k) <$ e k) — (14 a) . (45)

k=0
Proof. If x € {0,1,...,n} then

S o () (T ) —em

k=0

(see (5.25) in [7]). Applying (43) we see that (45) holds for x € {0,1,...,n} (see formula
(4.18) in [6]). Since the left hand side is a polynomial of degree at most n, this implies
that (45) is true for all x € R. O
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6 Real rootedness

For 0 < j < n denote

so that
Prate) = (1 )asto) (47)

By Proposition 4 we have the following recurrence:

pes(e) = "L (1 an — sy ) + L @ () (15)

. J
+ japn_1j-1(x) + E(l’ - 372)17;171,%1(@7

with the initial conditions: p,o(z) = P2X(z) for n > 0 and p, () = 2P*(z) for n > 1.
By (32) the polynomial p, j(x) coincides with A,;; j41(x) considered by Bréndén [3],
Example 7.8.8. He noted that

n—1
pnj Z ITPn—1 K ) + anfl,i (-CE)’ (49)
i=j

which is equivalent to
—1
b(n,k,j) = bn—1k—1, +Zb —1,k,4) (50)

(see (9) in [5]). Note that if 0 < j < n then degp, j(z) = n — 1 and degp, .(z) = n.
In fact, pnn(z) = xppo(z). Conger [5], Theorem 5, proved that all p, ;(z) have only real
roots. It turns out that they admit a much stronger property.

Let f,g € R[z] be real-rooted polynomials with positive leading coefficients. We say
that f is an interleaver of g, which we denote f < g, if

ag < P2 <y < Py,

where {a;}7,, {8}, are the roots of f and g respectively. A sequence {f;}!, of real-
rooted polynomials is called interlacing if f; < f; whenever 0 <@ < j < n.

From [3], Example 7.8.8 and (47) we have the following property of the polynomials
Pn,j(x) and P, ;(z):
Theorem 20. For every n > 1 the sequence {pn j(x)}}_y is interlacing. Consequently,
for any co, cq,...,c, =0 the polynomial

CoPn.o(T) + c1Ppna(T) + . .. + CuPrn(x)

.

Il
o

has only real roots.
The same statement holds for the polynomials P, j(x).

Note that Theorem 20 generalizes Corollary 3.7 in [4] and Corollary 6.9 in [2].
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