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Abstract

We study three dimensional array of numbers B(n, k, j), 0 6 j, k 6 n, where
B(n, k, j) is the number of type B permutations of order n with k descents and j
minus signs. We prove in particular, that b(n, k, j) := B(n, k, j)/

(
n
j

)
is an integer

and provide two combinatorial interpretations for these numbers.

Mathematics Subject Classifications: 05A05, 20B35

Introduction

Let B(n, k, j) denote the number of type B permutations (0, σ1, . . . , σn) which have k
descents and j minus signs. We study properties of the three-dimensional array B(n, k, j),
0 6 j, k 6 n. Some of these properties appear in the work of Brenti [4]. In particular he
computed the three-variable generating function and proved real rootedness of some linear
combinations of the polynomials Pn,j(x) :=

∑n
k=0B(n, k, j)xk (Corollary 3.7 in [4], see

also Corollary 6.9 in [2]). Here we will prove that the numbers b(n, k, j) := B(n, k, j)/
(
n
j

)
are also integers. We provide two combinatorial interpretations of them.

For a subset U ⊆ {1, . . . , n} and 0 6 k 6 n let Bn,k,U denote the family of all type B
permutations σ = (0, σ1, . . . , σn) that σ has k descents and satisfy: σi < 0 iff |σi| ∈ U .
We will show (Theorem 9) that the cardinality of Bn,k,U is b(n, k, |U |).

Conger [5, 6] defined the refined Eulerian number
〈
n
k

〉
j

as the cardinality of the set

An,k,j of all type A permutations τ = (τ1, . . . , τn) such that τ1 = j and τ has k descents.
He proved many interesting properties of these numbers, like direct formula, asymptotic
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behavior, lexicographic unimodality, formula for the generating function and real root-
edness of the corresponding polynomials. It turns out that for 0 6 j, k 6 n we have
b(n, k, j) =

〈
n+1
k

〉
j+1

. We will prove this equality providing a bijection An+1,k,j+1 →
Bn,k,U , where U = {1, . . . , j} (Theorem 11). The array b(n, k, 1), 1 6 k 6 n, appears in
OEIS [8] as A120434. It also counts permutations σ ∈ An which have k− 1 big descents,
i.e. such descents σi > σi+1 that σi − σi+1 > 2.

Conger proved that the polynomials pn,j(x) :=
∑n

k=0 b(n, k, j)x
k have only real roots

(Theorem 5 in [5]). Brändén [3] showed something stronger: for every n > 1 the sequence
of polynomials {pn,j(x)}nj=0 is interlacing, in particular for every c0, c1, . . . , cn > 0 the
polynomial c0pn,0(x) + c1pn,1(x) + . . . + cnpn,n(x) has only real roots. Here we remark,
that Pn,j(x) =

(
n
j

)
pn,j(x), so the polynomials Pn,j(x) admit the same property, which is a

generalization of Corollary 3.7 in [4] and of Corollary 6.9 in [2].

1 Preliminaries

For a sequence (a0, . . . , as), ai ∈ R, the number of descents, denoted des(a0, . . . , as), is
defined as the cardinality of the set

{
i ∈ {1, . . . , s} : ai−1 > ai

}
. We will use the Iverson

bracket: [p] := 1 if the statement p is true and [p] := 0 otherwise, see [7].
Denote by An the group of permutations of the set {1, . . . , n}. We will identify σ ∈ An

with the sequence (σ1, . . . , σn) (we will usually write σk instead of σ(k)). For 0 6 k 6 n we
define An,k as the set of those σ ∈ An such that the sequence (σ1 . . . , σn) has k descents.
Then the classical type A Eulerian number A(n, k) (see entry A123125 in OEIS) is defined
as the cardinality of An,k. We have the following recurrence relation:

A(n, k) = (n− k)A(n− 1, k − 1) + (k + 1)A(n− 1, k) (1)

for 0 < k < n, with the boundary conditions: A(n, 0) = 1 for n > 0 and A(n, n) = 0 for
n > 1. These numbers can be expressed as:

A(n, k) =
k∑

i=0

(−1)k−i
(
n+ 1

k − i

)
(i+ 1)n. (2)

For the Eulerian polynomials

PA
n (t) :=

n∑
k=0

A(n, k)tk

the exponential generating function is equal to

fA(t, z) :=
∞∑
n=0

PA
n (t)

n!
zn =

(1− t)e(1−t)z

1− te(1−t)z
. (3)

By Bn we will denote the group of such permutations σ of the set

{−n, . . . ,−1, 0, 1, . . . , n}
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such that σ is odd, i.e. σ(−k) = −σ(k) for every −n 6 k 6 n. Then |Bn| = 2nn!.
We will identify σ ∈ Bn with the sequence (0, σ1, . . . , σn). For σ ∈ Bn we define des(σ)
(resp. neg(σ)) as the number of descents (resp. of negative numbers) in the sequence
(0, σ1, . . . , σn). For 0 6 k, j 6 n we define sets

Bn,k := {σ ∈ Bn : des(σ) = k},
Bn,k,j := {σ ∈ Bn : des(σ) = k, neg(σ) = j},

and the numbers B(n, k) := |Bn,k| (type B Eulerian numbers, see entry A060187 in OEIS),
B(n, k, j) := |Bn,k,j|. The numbers B(n, k) satisfy the following recurrence relation:

B(n, k) = (2n− 2k + 1)B(n− 1, k − 1) + (2k + 1)B(n− 1, k), (4)

0 < k < n, with the boundary conditions B(n, 0) = B(n, n) = 1, and can be expressed as

B(n, k) =
k∑

i=0

(−1)k−i
(
n+ 1

k − i

)
(2i+ 1)n. (5)

The type B Eulerian polynomials are defined by

PB
n (t) :=

n∑
k=0

B(n, k)tk,

and the corresponding exponential generating function is equal to

fB(t, z) :=
∞∑
n=0

PB
n (t)

n!
zn =

(1− t)e(1−t)z

1− te2(1−t)z
. (6)

2 Descents and signs in type B permutations

This section is devoted to the numbers B(n, k, j) := |Bn,k,j|. First we observe the following
symmetry.

Proposition 1. For 0 6 j, k 6 n we have

B(n, k, j) = B(n, n− k, n− j). (7)

Proof. It is sufficient to note that the map

(0, σ1, . . . , σn) 7→ (0,−σ1, . . . ,−σn)

is a bijection of Bn,k,j onto Bn,n−k,n−j.

Now we provide two summation formulas.
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Proposition 2.

n∑
j=0

B(n, k, j) = B(n, k), (8)

n∑
k=0

B(n, k, j) =

(
n

j

)
n!. (9)

Proof. The former sum counts all σ ∈ Bn which have k descents, while the latter counts
all σ ∈ Bn which have j minus signs in the sequence (σ1, . . . , σn).

From Corollary 4.4 in [1] we have also

n∑
j=0

j even

B(n, k, j) =
1

2
B(n, k) +

(−1)k

2

(
n

k

)
, (10)

n∑
j=0
j odd

B(n, k, j) =
1

2
B(n, k)− (−1)k

2

(
n

k

)
, (11)

see A262226 and A262227 in OEIS.
Now we present the basic recurrence relations for the numbers B(n, k, j).

Theorem 3. The numbers B(n, k, j) admit the following recurrence:

B(n, k, j) = (k + 1)B(n− 1, k, j) + (n− k)B(n− 1, k − 1, j)

+kB(n− 1, k, j − 1) + (n− k + 1)B(n− 1, k − 1, j − 1)
(12)

for 0 < k, j < n, with boundary conditions:

B(n, 0, j) = [j = 0], B(n, n, j) = [j = n], (13)

B(n, k, 0) = A(n, k), B(n, k, n) = A(n, n− k) (14)

for 0 6 k, j 6 n.

Equality (12) remains true for 0 6 j, k 6 n under convention that B(n, k, j) = 0
whenever j ∈ {−1, n+ 1} or k ∈ {−1, n+ 1}.

Proof. For (σ0, . . . , σn) ∈ Bn, n > 1, we define

Λσ := (σ0, . . . , σ̂i, . . . , σn) ∈ Bn−1,

where i is such that σi = ±n, and the symbol “σ̂i” means, that the element σi has been
removed from the sequence.

For given σ ∈ Bn,k,j, 0 < k, j < n, we have four possibilities:

• σi = n and either i = n or σi−1 > σi+1, 1 6 i < n. Then Λσ ∈ Bn−1,k,j.
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• σi = n and σi−1 < σi+1, 1 6 i < n. Then Λσ ∈ Bn−1,k−1,j.

• σi = −n and σi−1 > σi+1, 1 6 i < n. Then Λσ ∈ Bn−1,k,j−1.

• σi = −n and either i = n or σi−1 < σi+1, 1 6 i < n. Then Λσ ∈ Bn−1,k−1,j−1.

Now, suppose we are given a fixed τ = (τ0, . . . , τn−1) which belongs to one of the sets
Bn−1,k,j, Bn−1,k−1,j, Bn−1,k,j−1 or Bn−1,k−1,j−1. We are going to count all σ ∈ Bn,k,j such
that Λσ = τ .

If τ ∈ Bn−1,k,j then we should either put n at the end of τ , or insert into a descent
of τ , i.e. between τi−1 and τi, where 1 6 i 6 n − 1, τi−1 > τi, therefore we have k + 1
possibilities.

Similarly, if τ ∈ Bn−1,k−1,j then we construct σ by inserting n between τi−1 and τi,
1 6 i 6 n− 1, where τi−1 < τi. For this we have n− k possibilities.

Now assume that τ ∈ Bn−1,k,j−1. Then we should insert −n between τi−1 and τi,
1 6 i 6 n− 1, where τi−1 > τi, for which we have k possibilities.

Finally, if τ ∈ Bn−1,k−1,j−1 then we put −n either at the end of τ or between τi−1 and
τi, 1 6 i 6 n− 1, where τi−1 < τi, for which we have n− k + 1 possibilities.

Therefore the number of σ ∈ Bn,k,j such that Λσ belongs to the set Bn−1,k,j, Bn−1,k−1,j,
Bn−1,k,j−1 or Bn−1,k−1,j−1 is equal to (k + 1)B(n − 1, k, j), (n − k)B(n − 1, k − 1, j),
kB(n− 1, k, j − 1) or (n− k + 1)B(n− 1, k − 1, j − 1) respectively. This proves (12).

For the boundary conditions it is clear that if neg(σ) > 0 then des(σ) > 0, which
yields B(n, 0, j) = [j = 0]. We note that the map (σ0, σ1, . . . , σn) 7→ (σ1, . . . , σn) is a
bijection of Bn,k,0 onto An,k, consequently B(n, k, 0) = A(n, k). For the two others we
refer to (7).

Below we present tables for the numbers B(n, k, j) for n = 0, 1, 2, 3, 4, 5:

k \ j 0
0 1

,
k \ j 0 1

0 1 0
1 0 1

,

k \ j 0 1 2
0 1 0 0
1 1 4 1
2 0 0 1

,

k \ j 0 1 2 3
0 1 0 0 0
1 4 12 6 1
2 1 6 12 4
3 0 0 0 1

,

k \ j 0 1 2 3 4
0 1 0 0 0 0
1 11 32 24 8 1
2 11 56 96 56 11
3 1 8 24 32 11
4 0 0 0 0 1

,

k \ j 0 1 2 3 4 5
0 1 0 0 0 0 0
1 26 80 80 40 10 1
2 66 330 600 480 180 26
3 26 180 480 600 330 66
4 1 10 40 80 80 26
5 0 0 0 0 0 1

.

For example we have B(n, 1, 0) = 2n − n − 1 and B(n, 1, j) =
(
n
j

)
2n−j for 1 6 j 6 n

(cf. A038207 in OEIS). We will see that B(n, k, j)/
(
n
j

)
is always an integer.
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3 Generating functions

Now we define three families of polynomials corresponding to the numbers B(n, k, j):

Pn,j(x) :=
n∑

k=0

B(n, k, j)xk, (15)

Qn,k(y) :=
n∑

j=0

B(n, k, j)yj, (16)

Rn(x, y) :=
n∑

j,k=0

B(n, k, j)xkyj. (17)

The polynomials Rn(x, y) were studied by Brenti [4], who called them “q-Eulerian poly-
nomials of type B”.

The symmetry (7) implies:

Pn,j(x) = xnPn,n−j(1/x), (18)

Qn,k(y) = ynQn,n−k(1/y), (19)

Rn(x, y) = xnynRn(1/x, 1/y). (20)

Proposition 4. The polynomials Pn,j(x) satisfy the following recurrence:

Pn,j(x) = (1 + nx− x)Pn−1,j(x) + (x− x2)P ′n−1,j(x) (21)

+ nxPn−1,j−1(x) + (x− x2)P ′n−1,j−1(x),

with the initial conditions: Pn,0(x) = PA
n (x) for n > 0 and Pn,n(x) = xPA

n (x) for n > 1.

Proof. It is easy to verify that

n∑
k=0

(k + 1)B(n− 1, k, j)xk = Pn−1,j(x) + xP ′n−1,j(x),

n∑
k=0

(n− k)B(n− 1, k − 1, j)xk = nxPn−1,j(x)− xPn−1,j(x)− x2P ′n−1,j(x),

n∑
k=0

kB(n− 1, k, j − 1)xk = xP ′n−1,j−1(x),

and
n∑

k=0

(n− k + 1)B(n− 1, k − 1, j − 1)xk = nxPn−1,j−1(x)− x2P ′n−1,j−1(x).

Summing up and applying (12) we obtain (21).
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Brändén [2], Corollary 6.9, proved that for every nonempty subset S ⊆ {1, . . . , n}
the polynomial

∑
j∈S Pn,j(x) has only real and simple roots. Combining (47) with Ex-

ample 7.8.8 in [3] we will note (Theorem 20) that in fact every linear combination
c0Pn,0(x) + c1Pn,1(x) + . . . + cnPn,n(x), with c0, c1, . . . , cn > 0, has only real roots. The
cases when S is the set of even or odd numbers in {1, . . . , n} were studied in [1]. The
Newton’s inequality implies that if 0 6 j 6 n then the sequence {B(n, k, j)}nk=0 satisfies
a stronger version of log-concavity, namely

B(n, k, j)2 > B(n, k − 1, j)B(n, k + 1, j)
(k + 1)(n− k + 1)

k(n− k)
(22)

for 0 < k < n, in particular this sequence is unimodal.
For the polynomials Qn,k(y) we have the following, see (18) in [4]:

Proposition 5. The polynomials Qn,k(y) satisfy the following recurrence:

Qn,k(y) = (k + 1 + ky)Qn−1,k(y) + (n− k + (n− k + 1)y)Qn−1,k−1(y)

with the initial conditions: Qn,0(y) = 1, Qn,n(y) = yn for n > 0.

The polynomials Qn,k however do not have all roots real. They satisfy the following
versions of Worpitzky identity:

n∑
k=0

(
u+ n− k

n

)
Qn,k(y) = (u+ 1 + uy)n, (23)

n∑
k=0

(
u+ k

n

)
Qn,k(y) = (u+ y + uy)n. (24)

The former is proved in [4], Theorem 3.4, the latter follows from the former and the
symmetry (19).

Now we recall the recurrence relation for Rn(x, y) (see Theorem 3.4 in [4]):

Proposition 6. The polynomials Rn(x, y) admit the following recurrence:

Rn(x, y) = (1 + nxy + nx− x)Rn−1(x, y) + (x− x2)(1 + y)
∂

∂x
Rn−1(x, y),

n > 1, with initial condition R0(x, y) = 1.

Brenti [4] also found the generating function for the numbers B(n, k, j):

f(x, y, z) :=
∞∑
n=0

Rn(x, y)

n!
zn =

(1− x)e(1−x)z

1− xe(1−x)(1+y)z
. (25)

Note that
f(x, y, z) = fA

(
x, (1 + y)z

)
e(x−1)yz. (26)
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4 Refined numbers

For 0 6 k 6 n and a subset U ⊆ {1, 2, . . . , n} we define Bn,k,U as the set of those σ ∈ Bn,k
which have minus sign at σi, 1 6 i 6 n, if and only if |σi| ∈ U . Therefore we have⋃̇

U⊆{1,...,n}
|U |=j

Bn,k,U = Bn,k,j. (27)

The cardinality of Bn,k,U will be denoted b(n, k, U). By convention we put b(n,−1, U) =
b(n, n+ 1, U) := 0. It is quite easy to observe boundary conditions.

Proposition 7. For n > 1, 0 6 k 6 n, U ⊆ {1, . . . , n} we have

b(n, 0, U) = [U = ∅], b(n, n, U) = [U = {1, . . . , n}],
b(n, k, ∅) = A(n, k), b(n, k, {1, . . . , n}) = A(n, n− k).

Now we provide a recurrence relation.

Proposition 8. For 0 6 k 6 n, U ⊆ {1, 2, . . . , n} we have

b(n, k, U) = (k + 1) · b(n− 1, k, U) + (n− k) · b(n− 1, k − 1, U) (28)

if n /∈ U and

b(n, k, U) = k · b(n− 1, k, U ′) + (n− k + 1) · b(n− 1, k − 1, U ′) (29)

if n ∈ U , where U ′ := U \ {n}.

Proof. Both formulas are true when k = 0 or k = n. Assume that 0 < k < n. We will
apply the same map Λ : Bn → Bn−1 as in the proof of Theorem 2.1. Fix σ ∈ Bn,k,U and
assume that i is such that σi = n (when n /∈ U) or σi = −n (when n ∈ U), 1 6 i 6 n.
We have now four possibilities:

• n /∈ U and either i = n or σi−1 > σi+1, 1 6 i < n. Then Λσ ∈ Bn−1,k,U .

• n /∈ U and σi−1 < σi+1, 1 6 i < n. Then Λσ ∈ Bn−1,k−1,U .

• n ∈ U and σi−1 > σi+1, 1 6 i < n. Then Λσ ∈ Bn−1,k,U\{n}.

• n ∈ U and either i = n or σi−1 < σi+1, 1 6 i < n. Then Λσ ∈ Bn−1,k−1,U\{n}.

On the other hand, as in the proof of Theorem 3, we see that for a given τ in Bn−1,k,U
(resp. in Bn−1,k−1,U) there are k + 1 (resp. n − k) such σ’s in Bn,k,U that Λσ = τ . We
simply insert n into a descent or at the end of τ (resp. into an ascent). Similarly, for a
given τ in Bn−1,k,V (resp. in Bn−1,k−1,V ) there are k (resp. n−k+ 1) such σ’s in Bn,k,V ∪{n}
that Λσ = τ .
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Now we will see that b(n, k, U) depends only on n, k and the cardinality of U .

Theorem 9. If 0 6 k 6 n, U, V ⊆ {1, . . . , n} and |U | = |V | then

b(n, k, U) = b(n, k, V ).

Proof. Fix U, V ⊆ {1, . . . , n}, with |U | = |V | and define τ ∈ An as the unique permutation
of {1, . . . , n} such that: τ(U) = V , τ |U preserves the order and τ |{1,...,n}\U preserves the
order. We extend τ to an element of Bn by putting τ(−i) = −τ(i). Now let σ ∈ Bn,k,U .
Then, by definition, τ(σ(i)) < 0 if and only if σ(i) < 0, −n 6 i 6 n. Moreover, if
1 6 i 6 n then τ(σ(i − 1)) < τ(σ(i)) if and only if σ(i − 1) < σ(i). This is clear when
σ(i−1) and σ(i) have different signs. If they have the same sign then this is a consequence
of the order preserving property of τ on U and on {1, . . . , n} \U . Consequently, the map
σ 7→ τ ◦ σ is a bijection of Bn,k,U onto Bn,k,V .

The theorem justifies the following definition: for 0 6 j, k 6 n we put

b(n, k, j) := b(n, k, U),

where U is an arbitrary subset of {1, . . . , n} with |U | = j. In addition, if j < 0 or k < 0
or n < j or n < k then we put b(n, k, j) = 0. From (27) we obtain

Corollary 10. For 0 6 j, k 6 n we have(
n

j

)
b(n, k, j) = B(n, k, j). (30)

5 Connections with permutations of type A

For given n > 0 we define a map Fn : An+1 → Bn in the following way: Fn(σ) = σ̃, where
for 1 6 i 6 n we put

σ̃i :=

{
σi+1 − σ1 if σi+1 < σ1,
σi+1 − 1 if σi+1 > σ1,

(31)

σ̃−i := −σ̃i and σ̃0 := 0. Note that σ̃i−1 > σ̃i if and only if σi > σi+1 for 1 6 i 6 n, so the
number of descents in (0, σ̃1, . . . , σ̃n) is the same as in (σ1, . . . , σn+1). It is easy to see that
Fn is one-to-one. Its image is the set of such τ ∈ Bn which satisfy the following property:
if 1 6 i1, i2 6 n, |τi1 | < |τi2 |, τi2 < 0 then τi1 < 0. Denote

An,k,j := {σ ∈ An,k : σ1 = j}.

The cardinalities of these sets were studied by Conger [5], who denoted
〈
n
k

〉
j

:= |An,k,j|.
From our remarks we have

Theorem 11. For 0 6 j, k 6 n the function Fn maps An+1,k into Bn,k and is a bijection
from An+1,k,j+1 onto Bn,k,{1,...,j}. Consequently,

b(n, k, j) = |An+1,k,j+1| . (32)
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In the rest of this section we briefly collect some properties of the numbers b(n, k, j) =〈
n+1
k

〉
j+1

, most of them are immediate consequences of the results of Conger [5, 6].

Proposition 12. If 0 6 k, j 6 n then

b(n, 0, j) = [j = 0], (33)

b(n, n, j) = [j = n], (34)

b(n, k, 0) = A(n, k), (35)

b(n, k, n) = A(n, n− k), (36)

b(n, k, j) = (k + 1)b(n− 1, k, j) + (n− k)b(n− 1, k − 1, j), j < n, (37)

b(n, k, j) = kb(n− 1, k, j − 1) + (n− k + 1)b(n− 1, k − 1, j − 1), j > 0, (38)

b(n, k, j) = b(n, n− k, n− j). (39)

Proof. These formulas are consequences of Proposition 7, Proposition 8, (7) and (30) (see
formulas (3) and (8) in [5]). Note that (38) is absent in [5].

Applying (37), with j − 1 instead of j, and (38) we obtain (see (10) in [5])

Corollary 13. For 1 6 j, k 6 n

b(n, k, j − 1)− b(n, k, j) = b(n− 1, k, j − 1)− b(n− 1, k − 1, j − 1). (40)

Below we present tables for the numbers b(n, k, j) for n = 0, 1, 2, 3, 4, 5, 6 (they also
appear in Appendix A of [6]):

k \ j 0
0 1

,
k \ j 0 1

0 1 0
1 0 1

,

k \ j 0 1 2
0 1 0 0
1 1 2 1
2 0 0 1

,

k \ j 0 1 2 3
0 1 0 0 0
1 4 4 2 1
2 1 2 4 4
3 0 0 0 1

,

k \ j 0 1 2 3 4
0 1 0 0 0 0
1 11 8 4 2 1
2 11 14 16 14 11
3 1 2 4 8 11
4 0 0 0 0 1

,

k \ j 0 1 2 3 4 5
0 1 0 0 0 0 0
1 26 16 8 4 2 1
2 66 66 60 48 36 26
3 26 36 48 60 66 66
4 1 2 4 8 16 26
5 0 0 0 0 0 1

,

k \ j 0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 57 32 16 8 4 2 1
2 302 262 212 160 116 82 57
3 302 342 372 384 372 342 302
4 57 82 116 160 212 262 302
5 1 2 4 8 16 32 57
6 0 0 0 0 0 0 1

.
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From (30), (37) and (38) we can provide new recurrence formulas for the numbers
B(n, k, j):

Corollary 14. For 0 6 j, k 6 n we have

B(n, k, j) =
(k + 1)n

n− j
B(n− 1, k, j) +

(n− k)n

n− j
B(n− 1, k − 1, j),

if 0 6 j < n and

B(n, k, j) =
kn

j
B(n− 1, k, j − 1) +

(n− k + 1)n

j
B(n− 1, k − 1, j − 1),

if 0 < j 6 n.

Now we introduce the following lexicographic order on the set {0, 1, . . . , n}2: (k1, j1) �
(k2, j2) if and only if either k1 < k2 or k1 = k2, j1 > j2. This is a linear order, in which the
successor of (k, 0), with 0 6 k < n, is (k+1, n), and for 1 6 j 6 n the successor of (k, j) is
(k, j − 1). It turns out that for every n > 1 the array

(
b(n, k, j)

)n
k,j=0

is lexicographically

unimodal, cf. Theorem 7 in [5].

Proposition 15. For every n > 1 we have the following:
a) If either 0 6 k < n/2, 1 6 j 6 n or k = n/2, n/2 < j 6 n then

b(n, k, j − 1) > b(n, k, j).

This inequality is sharp unless either k = 0, 2 6 j 6 n or n is odd, k = (n− 1)/2, j = 1.
b) If either 1 6 k 6 n/2, 0 6 j 6 n or n is odd, k = (n + 1)/2, (n + 1)/2 6 j 6 n

then
b(n, k − 1, j) 6 b(n, k, j)

and this inequality is sharp unless n is even, k = n/2, j = 0.
c) The array of numbers b(n, k, j), 0 6 j, k 6 n, is unimodal with respect to the order

“�”, with the maximal value b(n, n/2, n/2) if n is even and

b(n, (n− 1)/2, n) = b(n, (n+ 1)/2, 0)

if n is odd.

Proof. First we note that (a) implies (c) as a consequence of the symmetry (39) and the
equality

b(n, k − 1, 0) = A(n, k − 1) = A(n, n− k) = b(n, k, n).

Similarly we get (b).
Now assume that the statement holds for n − 1. If either k < n/2 or k = n/2,

n/2 < j then, due to (3), the right hand side of (40) is nonnegative which proves (a),
(b) and consequently (c) for n. Moreover, it is positive unless j = 1, n − 1 = 2k, as
A(2k, k − 1) = A(2k, k).
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Now we note two summation formulas (see (4) and (5) in [5]).

Proposition 16. For 0 6 j, k 6 n we have

n∑
j=0

b(n, k, j) = A(n+ 1, k), (41)

n∑
k=0

b(n, k, j) = n!. (42)

Proof. For (41) we apply (32) to the following decomposition:

An+1,k,1∪̇An+1,k,2∪̇ . . . ∪̇An+1,k,n+1 = An+1,k.

The latter identity is a consequence of (9) and (30).

It turns out that (2) can be generalized to a formula which expresses the numbers
b(n, k, j), see Theorem 1 in [5].

Theorem 17. For any 0 6 j, k 6 n we have

b(n, k, j) =
k∑

i=0

(−1)k−i
(
n+ 1

k − i

)
ij(i+ 1)n−j, (43)

under convention that 00 = 1.

Proof. It can be proved by induction by applying (2), (36) and (38).

From (43) and (30) we can derive a formula for the numbers B(n, k, j).

Corollary 18. For any 0 6 j, k 6 n we have

B(n, k, j) =

(
n

j

) k∑
i=0

(−1)k−i
(
n+ 1

k − i

)
ij(i+ 1)n−j, (44)

under convention that 00 = 1.

Now we can prove Worpitzky type formula:

Proposition 19. For 0 6 j 6 n we have

n∑
k=0

b(n, k, j)

(
x+ n− k

n

)
= xj(1 + x)n−j. (45)

Proof. If x ∈ {0, 1, . . . , n} then

n∑
k=0

(−1)k−i
(
n+ 1

k − i

)(
x+ n− k

n

)
= [x = i]

(see (5.25) in [7]). Applying (43) we see that (45) holds for x ∈ {0, 1, . . . , n} (see formula
(4.18) in [6]). Since the left hand side is a polynomial of degree at most n, this implies
that (45) is true for all x ∈ R.
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6 Real rootedness

For 0 6 j 6 n denote

pn,j(x) :=
n∑

k=0

b(n, k, j)xk (46)

so that

Pn,j(x) =

(
n

j

)
pn,j(x). (47)

By Proposition 4 we have the following recurrence:

pn,j(x) =
n− j
n

(1 + xn− x)pn−1,j(x) +
n− j
n

(x− x2)p′n−1,j(x) (48)

+ jxpn−1,j−1(x) +
j

n
(x− x2)p′n−1,j−1(x),

with the initial conditions: pn,0(x) = PA
n (x) for n > 0 and pn,n(x) = xPA

n (x) for n > 1.
By (32) the polynomial pn,j(x) coincides with An+1,j+1(x) considered by Brändén [3],
Example 7.8.8. He noted that

pn,j(x) =

j−1∑
i=0

xpn−1,i(x) +
n−1∑
i=j

pn−1,i(x), (49)

which is equivalent to

b(n, k, j) =

j−1∑
i=0

b(n− 1, k − 1, i) +
n−1∑
i=j

b(n− 1, k, i) (50)

(see (9) in [5]). Note that if 0 6 j < n then deg pn,j(x) = n − 1 and deg pn,n(x) = n.
In fact, pn,n(x) = xpn,0(x). Conger [5], Theorem 5, proved that all pn,j(x) have only real
roots. It turns out that they admit a much stronger property.

Let f, g ∈ R[x] be real-rooted polynomials with positive leading coefficients. We say
that f is an interleaver of g, which we denote f � g, if

. . . 6 α2 6 β2 6 α1 6 β1,

where {αi}mi=1, {βi}ni=1 are the roots of f and g respectively. A sequence {fi}ni=0 of real-
rooted polynomials is called interlacing if fi � fj whenever 0 6 i < j 6 n.

From [3], Example 7.8.8 and (47) we have the following property of the polynomials
pn,j(x) and Pn,j(x):

Theorem 20. For every n > 1 the sequence {pn,j(x)}nj=0 is interlacing. Consequently,
for any c0, c1, . . . , cn > 0 the polynomial

c0pn,0(x) + c1pn,1(x) + . . .+ cnpn,n(x)

has only real roots.
The same statement holds for the polynomials Pn,j(x).

Note that Theorem 20 generalizes Corollary 3.7 in [4] and Corollary 6.9 in [2].
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