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Abstract

The Tu–Deng Conjecture is concerned with the sum of digits w(n) of n in base 2
(the Hamming weight of the binary expansion of n) and states the following: assume
that k is a positive integer and t ∈ {1, . . . , 2k − 2}. Then∣∣∣{(a, b) ∈

{
0, . . . , 2k − 2

}2
: a + b ≡ t mod 2k − 1, w(a) + w(b) < k

}∣∣∣ 6 2k−1.

We prove that the Tu–Deng Conjecture holds almost surely in the following
sense: the proportion of t ∈ {1, . . . , 2k − 2} such that the above inequality holds
approaches 1 as k →∞.

Moreover, we prove that the Tu–Deng Conjecture implies a conjecture due to
T. W. Cusick concerning the sum of digits of n and n + t.

Mathematics Subject Classifications: Primary: 11A63, 68R05, 11T71; Sec-
ondary: 05A20, 05A16

1 Introduction and results

Z. Tu and Y. Deng’s Conjecture [16] is concerned with the Hamming weight w(n) of the
binary expansion of a nonnegative integer n (the sum of digits of n in base two) and
addition modulo 2k − 1. This conjecture is as follows.

Key words and phrases. Tu–Deng Conjecture, Hamming weight, sum of digits, Cusick conjecture.
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Conjecture 1. TD Assume that k is a positive integer and t ∈
{

1, . . . , 2k − 2
}

. Define

St,k =
{

(a, b) ∈
{

0, . . . , 2k − 2
}2

: a+ b ≡ t mod 2k − 1, w(a) + w(b) < k
}
.

Then Pt,k := |St,k|/2k 6 1/2.

The conjecture arose in the construction of Boolean functions with optimal algebraic
immunity (see Tu and Deng [16, 17]). Indeed, if the conjecture is true, the functions
defined by Tu and Deng have this property.

Such functions are used in the construction of stream ciphers, which are widely used
encryption methods due to their high speed and low hardware requirements [3]. However,
they are prone to serious attacks [1, 4, 5]. In order to prevent them from these known
attacks algebraic immunity was introduced [11]. We refer the reader to the above-cited
papers by Tu and Deng for a more extensive discussion of the rôle of their conjecture
within the cryptographic context.

So far the conjecture could only be solved for some special cases:

• Cusick, Li and Stănică [6] identified six different classes for which it holds using
three different counting strategies. These are t = 2i, t = 2j + 2i; t = 2k − 2i,
t = 2k − 2j − 2i; t = 2k − 2j − 2i − 1, and t = 2k − 2l − 2j − 2i − 1. They also
proposed an equivalent conjecture.

• Flori, Randriambololona, Cohen and Mesnager [10] reformulate the problem in terms
of carries and, among other things, prove that it is true for certain values of t such
that the blocks of 1s and/or 0s are long enough. Moreover, they prove convergence
of Pt,k to 1/2 for certain families of values of t.

• Deng and Yuan [7] show that it is true for special binary block structures of t, like
for example t = 10s110s2 . . . 1sr such that si + sj > r − 2. This includes the cases
w(t) 6 6.

• Qarboua, Schreck and Fontaine [12] deduced another family of integers t with a spe-
cial mirror-symmetry for which the conjecture holds using the previous two results.

• Moreover, it was checked using a computer algorithms for all k 6 29 by Tu and
Deng [16] and for k 6 40 by Flori [9, Section 2.9.3] who distributed his computations
on about 400 cores.

Let us give a probabilistic (and combinatorial) interpretation of the conjecture. Let

Sk :=
⋃2k−2
t=1 St,k. Let us consider an arbitrary pair (a, b) of Sk. On the one hand, the

number of 1s in the binary expansion of a (and b) is at most k−1. On the other hand, the
constraint on the Hamming weights implies that the total number of 1s in both integers
is less than k. Finally, note that all such pairs except (0, 0) are part of Sk. Therefore,
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considering how we may (or actually may not) distribute 1s on the 2k digits in base 2 of
a and b together we get

|Sk| = 22k −
2k∑
i=k

(
2k

i

)
− 1 =

1

2

(
22k −

(
2k

k

))
− 1. (1)

The sequence including (0, 0), i.e., the sequence for |Sk|+ 1 is A000346 in Sloane’s OEIS1.
It is then easy to compute the asymptotic expansion of this sequence as

|Sk| =
22k

2

(
1− 1√

πk
+O

(
1

k3/2

))
. (2)

As there are 2k−2 possible choices for t we see by the pigeonhole principle that at least one
of the sets St,k has to be asymptotically of size 2k/2. Therefore, the Tu–Deng Conjecture
describes a uniform distribution among the possible sets St,k.

While working on the Tu–Deng Conjecture, T. W. Cusick (private communication,
2011, 2015) formulated a related conjecture on the Hamming weight:

Conjecture 2. C Assume that t is a nonnegative integer. Then

ct := dens
{
n ∈ N : w(n+ t) > w(n)

}
>

1

2
,

where densA denotes the asymptotic density of a set A ⊆ N (which exists in this case).

Also, note that the density in Conjecture 2 exists, which follows, for example, from
the “Lemma of Bésineau” [2, Lemme 1], see also [8, Lemma 2.1]. In fact, we have

ct =
1

2k
∣∣{n < 2k : w(n+ t) > w(n)}

∣∣ (3)

for k > α + µ, where α = w(t) + 1 and 2µ 6 t < 2µ+1 [8, equation (10) and Section 3.3].
We also studied [8] a statement complementary to Cusick’s Conjecture:

Conjecture 3. CC Assume that t is a nonnegative integer. Then

c̃t := dens
{
n ∈ N : w(n+ t) > w(n)

}
6

1

2
.

Analogously to the case ct, we have

c̃t =
1

2k−1
∣∣{n < 2k−1 : w(n+ t) > w(n)}

∣∣. (4)

for k large enough. Taken together, Conjectures 2 and 3 locate quite precisely the median
of the random variable Xt on Z defined by

j 7→ dens
{
n : w(n+ t)− w(n) = j

}
.

Numerical experiments reveal that c̃t 6 1/2 < ct for all t < 230. In fact, Drmota, Kauers,
and the first author [8] proved that Conjectures 2 and 3 are satisfied for almost all t in
the sense of asymptotic density. In the present paper, we want to show that an analogous
result holds for Conjecture 1.

1http://oeis.org
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Theorem 4. Define Pt,k as before,

Pt,k =
1

2k

∣∣∣{(a, b) ∈
{

0, . . . , 2k − 2
}2

: a+ b ≡ t mod 2k − 1, w(a) + w(b) < k
}∣∣∣ .

For each ε > 0, we have for k →∞
∣∣{t ∈ {1, . . . , 2k − 2} : Pt,k 6∈ (1/2− ε, 1/2)

}∣∣ = O
(

2k

k

)
.

In particular,

lim
k→∞

1

2k
∣∣{t ∈ {1, . . . , 2k − 2} : 1/2− ε < Pt,k < 1/2

}∣∣ = 1.

Moreover, we will prove that Conjectures 2 and 3 are in fact implied by Conjecture 1.

Proposition 5. Conjecture 1 implies Conjectures 2 and 3.

In fact, we will see that Conjectures 2 and 3 are contained as “extremal cases” in
Conjecture 1, choosing t and letting k →∞.

However, so far we did not succeed in proving the opposite implication. Meanwhile, due
to the similarity of the conjectures, it is reasonable to expect that a proof of Conjecture 2,
when one is found (and if it is found first), will lead to a proof of Conjecture 1. We wish
to highlight this similarity between the conjectures.

Proposition 6. For integers k > 1 and a, b we define

a⊕k b = (a+ b) mod (2k − 1).

Conjecture 1 is equivalent to the statement that

|{n ∈ {0, . . . , 2k − 1} : w(n⊕k t) > w(n)}| > 2k−1 (5)

for all k > 1 and t ∈ {1, . . . , 2k − 2}. Conjecture 2 is equivalent to the statement that

|{n ∈ {0, . . . , 2k − 1} : w(n+ t) > w(n)}| > 2k−1 (6)

for all k, t > 1.

The binary operation ⊕k can also be seen as “circular addition” in base 2: if a carry
occurs at the index k−1 in the addition a+ b, this carry does not propagate into position
k, but into the lowest bit instead. Moreover, if a+ b = 2k − 1, the result is set to zero.

By Proposition 6, we may summarize the content of Conjectures 1 and 2 by the fol-
lowing elementary question: how does the sum of digits change under (modular) addition
of a constant? It is this formulation in particular that makes the Tu–Deng Conjecture a
mathematically interesting problem.
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Remark 7. We do not have an analogous formulation of Conjecture 3 as in Proposition 6:
if we define

At,k = 2−k|{n ∈ {0, . . . , 2k − 1} : w(n+ t) > w(n)}|,
then A3,0 = 1 > 1/2 and A3,3 = 3/8 < 1/2, while indeed c̃t = 3/8 < 1/2.

The idea of the proof of Theorem 4 is to show a concentration result using Chebyshev’s
inequality. More precisely, we consider the moments

1

2k

∑
06t<2k

|St,k| and
1

2k

∑
06t<2k

|St,k|2

and derive asymptotic expansions for them. (Note that |S0,k| = 1 and |S2k−1,k| = 1, so
that the cases t ∈ {0, 2k − 1} will not matter asymptotically.) These expansions are then
used to prove that the values Pt,k concentrate well below 1/2, as k → ∞. This idea of
proof is analogous to the method used by Drmota, Kauers, and the first author [8]. In
fact, the trivariate rational generating function we are going to encounter is very similar
to the one in that paper.

The remaining part of this paper is dedicated to the proofs of Theorem 4 and Propo-
sitions 5 and 6.

2 Proof of Proposition 5

We first rewrite the Tu–Deng Conjecture. Let us split the set St,k according to whether
a+ b < 2k − 1: set

S
(1)
t,k =

{
a ∈ {0, . . . , t} : w(a) + w(t− a) < k

}
,

S
(2)
t,k =

{
a ∈

{
t+ 1, . . . , 2k − 2

}
: w(a) + w

(
2k − 1 + t− a

)
< k
}
.

Note that the sets M
(1)
t,k = {(a, t−a) : a ∈ S(1)

t,k } and M
(2)
t,k = {(a, 2k− 1 + t−a) : a ∈ S(2)

t,k }
form a partition of St,k. We define the quantity

βt,k,j =
∣∣{a ∈ {0, . . . , t

}
: w
(
a+ 2k − 1− t

)
− w(a) = j

∣∣,
where k > 1, 0 6 t < 2k and j are integers. By the identity w

(
2k − 1− t

)
= k − w(t) we

have
S
(1)
t,k =

{
a ∈ {0, . . . , t} : w(a) < w

(
a+ 2k − 1− t

)}
and

S
(2)
t,k =

{
a ∈

{
t+ 1, . . . , 2k − 2

}
: w(a) < w(a− t)

}
=
{
a ∈

{
0, . . . , 2k − 2− (t+ 1)} : w

(
2k − 1− (a+ 1)

)
< w

(
2k − 1− (a+ t+ 1)

)}
=
{
a ∈

{
1, . . . , 2k − 2− t

}
: w(a) > w(a+ t)

}
.
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Since w(0) 6> w(0 + t) and w
(
2k − 1− t

)
6> w

(
2k − 1

)
, we obtain

|St,k| =
∣∣S(1)

t,k

∣∣+
∣∣S(2)

t,k

∣∣
=
∣∣{a ∈ {0, . . . , t

}
: w
(
a+ 2k − 1− t

)
> w(a)

}∣∣
+
∣∣{a ∈ {0, . . . , 2k − 1− t

}
: w(a) > w(a+ t)

}∣∣
=
∑
j>1

(
βt,k,j + β2k−1−t,k,−j

)
.

(7)

Both Conjecture 2 and Conjecture 3 are trivial if t = 0. Let t > 1 be given and assume
that k′ > 1 is such that t < 2k

′ − 1; we choose k > 2k′. With this choice we have
w(a) 6 w

(
a + 2k − 1 − t

)
as long as 0 6 a 6 t. This is the case since 2k − 2k

′
+ 1 6

a+2k−1−t 6 2k−1, therefore the tail of 1s at the left of the binary expansion of 2k−1−t,
having length at least k′, is not touched by the addition of a. Therefore

∣∣S(1)
t,k

∣∣ = t+ 1 for
large k. Assuming that Conjecture 1 holds, we obtain

2k−1 > t+ 1 +
∣∣{a ∈ {0, . . . , 2k − 1− t

}
: w(a) > w(a+ t)

}∣∣
>
∣∣{a ∈ {0, . . . , 2k − 1} : w(a) > w(a+ t)

}∣∣
This last expression equals 2k

(
1− ct

)
if k is chosen large enough (see (3)), which implies

ct > 1/2. To derive Conjecture 3, we replace t in the Tu–Deng Conjecture by 2k − 1− t.
Noting that

∑
j∈Z βt,k,j = t+ 1, we obtain

2k−1 > |S2k−1−t,k| =
∑
j>1

(
β2k−1−t,k,j + βt,k,−j

)
=
∣∣{a ∈ {0, . . . , 2k − 1− t} : w(a+ t)− w(a) > 0}

∣∣+O(t)

=
∣∣{a ∈ {0, . . . , 2k − 1} : w(a+ t)− w(a) > 0}

∣∣+O(t).

Letting k →∞ and using (4) we obtain c̃t 6 1/2.

Remark 8. The quantities βt,k,j are linked to divisibility by powers of two in Pascal’s
triangle: We define (see e.g. [14])

ϑ(j, n) =

∣∣∣∣{k ∈ {0, . . . , n} : ν2

(
n

k

)
= j

}∣∣∣∣.
(Here ν2(m) denotes the largest j such that 2j divides m.) Then for k > 1, 0 6 t < 2k

and j > 0 we have the identity

βt,k,k−w(t)−j = ϑ(j, t).

Proof. By the identity ν2(n!) = n − w(n) we have ν2
(
n
k

)
= w(k) + w(n − k) − w(n) for

0 6 k 6 n. By the substitution a 7→ t − a and the formula w
(
2k − 1 −m

)
= k − w(m),

valid for m < 2k, we obtain

βt,k,k−w(t)−j =
∣∣{a ∈ {0, . . . , t} : w

(
2k − 1− t+ a

)
− w(a) = k − w(t)− j

}∣∣
=
∣∣{a ∈ {0, . . . , t} : w

(
2k − 1− t+ (t− a)

)
− w(t− a) = k − w(t)− j

}∣∣
=
∣∣{a ∈ {0, . . . , t} : w(a) + w(t− a)− w(t) = j

}∣∣
= ϑ(j, t).
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3 Proof of Proposition 6

In what follows, we will use the notation tck = 2k− 1− t. We will assume that 0 6 t < 2k;
then the binary expansion of tck is the Boolean complement of the binary expansion of t,
padded with 1s up to the index k − 1.

Using the identity w(2k − 1− t) = k − w(t) (see also the proof of Proposition 5 from
the previous section), we see that

|St,k| = |{a ∈ {0, . . . , t} : w(a) < w(a+ tck)}|
+ |{a ∈ {t+ 1, . . . , 2k − 2} : w(a) < w(a+ tck − 2k + 1)}|.

We wish to replace addition by ⊕k. To do so, we note that w(t) < w(t + tck), but
w(t) ≮ w(t⊕k tck). It follows that

|St,k| = 1 + |{a ∈ {0, . . . , 2k − 2} : w(a) < w(a⊕k tck)}|,

the correction term 1 being due to the aforementioned inequalities at a = t.
For all t ∈ {1, . . . , 2k−2} and a ∈ {0, . . . , 2k−2} we have the identity (a⊕k t)⊕k tck = a,

therefore

|St,k| = 1 + |{a ∈ {0, . . . , 2k − 2} : w(a⊕k t) < w(a)}|
= |{a ∈ {0, . . . , 2k − 1} : w(a⊕k t) < w(a)}|,

where we used w((2k − 1)⊕k t) < w(2k − 1). From this the first equivalence follows.
We proceed to the proof of the second statement. Define

Ct,k = 2−k
∣∣{n ∈ {0, . . . , 2k − 1} : w(n+ t) > w(n)}

∣∣.
By (3), we have Ct,k = ct for k > k0. We prove that it is sufficient to show that the values
Ct,k are nonincreasing in k: assume that we have this monotonicity and ct > 1/2. Then for
k0 large enough, Ct,k > Ct,k0 = ct > 1/2 for k 6 k0, moreover the same holds if k > k0 by
the equality Ct,k = ct; on the other hand, if Ct,k > 1/2 for all k > 1, then ct = Ct,k > 1/2
for some k. (Note that this monotonicity does not hold for Tu–Deng; otherwise we would
have a proof of the implication 2⇒1.) We proceed by induction on t and show the more
general statement that the values vt,k,j = 2−k

∣∣{n ∈ {0, . . . , 2k−1} : w(n+ t)−w(n) > j}
∣∣

are nonincreasing in k, for each j ∈ Z.
We first prove the statement for t = 1, using the identity w(n+1)−w(n) = 1−ν2(n+1).

Here ν2(a) is the 2-valuation of a > 1, that is, the largest k such that 2k | a. By this
identity we have v1,k,j = 0 for j > 2. Moreover, ν2(n + 1) > ` if and only if the lowest `
digits of n are 1. Therefore we obtain

|{n ∈ {0, . . . , 2k − 1} : ν2(n+ 1) > `}| =
{

0, k < `;

2k−`, k > `

for all ` > 0, and the statement follows.

the electronic journal of combinatorics 26(1) (2019), #P1.28 7



In the following, we write d(n, t) = w(n + t) − w(n) for brevity. Assume that the
statement holds for t; we wish to prove it for 2t and 2t + 1 in place of t. We have
d(2n, 2t) = d(2n + 1, 2t) = d(n, t), therefore v2t,0,j = v2t,1,j for all j. Moreover, for k > 0
we get∣∣{n ∈ {0, . . . , 2k+1 − 1} : d(n, 2t) > j}

∣∣ =
∣∣{2n : n ∈ {0, . . . , 2k − 1}, d(2n, 2t) > j}

∣∣
+
∣∣{2n + 1 : n ∈ {0, . . . , 2k − 1}, d(2n + 1, 2t) > j}

∣∣
= 2
∣∣{n ∈ {0, . . . , 2k − 1}, d(n, t) > j}

∣∣,
therefore v2t,k+1,j = vt,k,j 6 vt,k−1,j = v2t,k,j for k > 1.

It remains to treat the case 2t+ 1. We have d(0, 2t+ 1) = w(2t+ 1)−w(0) = w(t) + 1
and d(1, 2t + 1) = w(2t + 2) − w(1) = w(t + 1) − 1, which implies v2t+1,0,j > v2t+1,1,j by
the inequality w(n+ 1) 6 w(n) + 1.

Moreover, we have d(2n, 2t + 1) = d(n, t) + 1 and d(2n + 1, 2t + 1) = d(n, t + 1) − 1,
therefore we have for all k > 0∣∣{n ∈ {0, . . . , 2k+1 − 1} : d(n, 2t+ 1) > j}

∣∣
=
∣∣{2n : n ∈ {0, . . . , 2k − 1}, d(2n, 2t+ 1) > j}

∣∣
+
∣∣{2n+ 1 : n ∈ {0, . . . , 2k − 1}, d(2n+ 1, 2t+ 1) > j}

∣∣
=
∣∣{2n : n ∈ {0, . . . , 2k − 1}, d(n, t) > j − 1}

∣∣
+
∣∣{2n+ 1 : n ∈ {0, . . . , 2k − 1}, d(n, t+ 1) > j + 1}

∣∣.
It follows that v2t+1,k+1,j = 1

2
vt,k,j−1 + 1

2
vt+1,k,j+1 6 1

2
vt,k−1,j−1 + 1

2
vt+1,k−1,j+1 = v2t+1,k,j for

k > 1.

4 Proof of Theorem 4

Let us define the values
γt,k,j = βt,k,j + βtck,k,−j.

and
Γt,k,j =

∑
i>j

γt,k,i.

By equation (7) the Tu–Deng Conjecture states that Pt,k = Γt,k,1/2
k 6 1/2.

Our strategy is to show that the standard deviation of the random variable t 7→ Γt,k,1
is much smaller than the distance to 2k−1, such that the values Pt,k concentrate below
1/2 by Chebyshev’s inequality. We are therefore interested in the mean value and the
variance of t 7→ Γt,k,1 on the intervals [0, 2k). First, we want to find a recurrence for the
values

βt,k,j =
∣∣{a ∈ {0, . . . , t} : w

(
a+ tck

)
− w(a) = j

}∣∣,
where k > 1, 0 6 t < 2k and j ∈ Z. For convenience, we set β−1,j,k = 0.
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Proposition 9. Let k > 0 and j be integers. Then

β0,k,j = δk,j,

β0ck,k,j = 2kδj,0,

β2t,k+1,j = βt,k,j−1 + βt−1,k,j+1 for 0 6 t < 2k,

β2t+1,k+1,j = 2βt,k,j for 0 6 t < 2k,

β(2t)ck+1,k+1,j = 2βtck,k,j for 0 6 t < 2k,

β(2t+1)ck+1,k+1,j = βtck,k,j−1 + β(t+1)ck,k,j+1 for 0 6 t < 2k.

Furthermore, we have βt,k,j = 0 for |j| > k.

Proof. The last claim βt,k,j = 0 for |j| > k follows by induction. The first two statements
and the cases t = 0 are clear. We note the almost trivial identities (2t)ck+1 = 2tck + 1,
(2t + 1)ck+1 = 2tck and (t + 1)ck = tck − 1, which hold for all t and k. We calculate for
1 6 t < 2k:

β2t,k+1,j =
∣∣{a ∈ {0, . . . , 2t} : w

(
a+ (2t)ck+1

)
− w(a) = j

∣∣
=
∣∣{a ∈ {0, . . . , t} : w

(
2a+ 2tck + 1

)
− w(2a) = j

∣∣
+
∣∣{a ∈ {0, . . . , t− 1} : w

(
2a+ 2tck + 2

)
− w(2a+ 1) = j

∣∣
= βt,k,j−1 +

∣∣{a ∈ {0, . . . , t− 1} : w
(
a+ (t− 1)ck

)
− w(a) = j + 1

∣∣
= βt,k,j−1 + βt−1,k,j+1.

The statement also holds for t = 0, using β−1,k,j = 0. Moreover, for 0 6 t < 2k we have

β2t+1,k+1,j =
∣∣{a ∈ {0, . . . , 2t+ 1} : w

(
a+ (2t+ 1)ck+1

)
− w(a) = j

∣∣
=
∣∣{a ∈ {0, . . . , t} : w

(
2a+ 2tck

)
− w(2a) = j

∣∣
+
∣∣{a ∈ {0, . . . , t} : w

(
2a+ 2tck + 1

)
− w(2a+ 1) = j

∣∣
= 2βt,k,j

and

β(2t)ck+1,k+1,j =
∣∣{a ∈ {0, . . . , 2tck + 1} : w(a+ 2t)− w(a) = j

}∣∣
=
∣∣{a ∈ {0, . . . , tck} : w(2a+ 2t)− w(2a) = j

}∣∣
+
∣∣{a ∈ {0, . . . , tck} : w(2a+ 2t+ 1)− w(2a+ 1) = j

}∣∣
= 2βtck,k,j.

Finally, for 0 6 t < 2k − 1 we have

β(2t+1)ck,k+1,j =
∣∣{a ∈ {0, . . . , 2tck} : w(a+ 2t+ 1)− w(a) = j

}∣∣
=
∣∣{a ∈ {0, . . . , tck} : w(2a+ 2t+ 1)− w(2a) = j

}∣∣
+
∣∣{a ∈ {0, . . . , tck − 1} : w(2a+ 2t+ 2)− w(2a+ 1) = j

}∣∣
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= βtck,k,j−1 +
∣∣{a ∈ {0, . . . , (t+ 1)ck} : w(a+ t+ 1)− w(a) = j + 1

}∣∣
= βtck,k,j−1 + β(t+1)ck,k,j+1

and the last statement also holds for t = 2k − 1.

We want to compute the first moments of the values βt,k,j. Define

mk,j =
2k−1∑
t=0

βt,k,j.

Clearly, we have
m0,j = δ0,j.

Using the above recurrence, we obtain for k > 1

mk,j =
2k−1−1∑
t=0

β2t,k,j +
2k−1−1∑
t=0

β2t+1,k,j

=
2k−1−1∑
t=0

(
βt,k−1,j−1 + βt−1,k−1,j+1

)
+ 2

2k−1−1∑
t=0

βt,k−1,j

=
2k−1−1∑
t=0

βt,k−1,j−1 +
2k−1−2∑
t=0

βt,k−1,j+1 + 2mk−1,j

= mk−1,j−1 + 2mk−1,j +mk−1,j+1 − β2k−1−1,k−1,j+1

= mk−1,j−1 + 2mk−1,j +mk−1,j+1 − 2k−1δj,−1

We define the bivariate generating function F :

F (x, y) =
∑
k>0
`>0

mk,k−`x
ky`.

Since βt,k,j = 0 for j > k and 0 6 t < 2k (which can be proved by induction) this function
captures all interesting values. Moreover, we have βt,k,j = 0 for j 6 −k + 1.

Using the recurrence for mk,j, we obtain

F (x, y) =
∑
`>0

m0,−`y
` +
∑
k>1
`>0

mk,k−`x
ky`

= 1 +
∑
k>1
`>0

xky`
(
mk−1,k−1−` + 2mk−1,k−` +mk−1,k+1−` − 2k−1δk−`,−1

)

= 1 + xF (x, y) + 2
∑
k>1

xkmk−1,k + 2xyF (x, y) +
∑
k>1

06`61

xky`mk−1,k+1−`
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+ xy2F (x, y)−
∑
k>1

2k−1xkyk+1

= 1 + x(1 + y)2F (x, y)− xy2

1− 2xy
,

therefore

F (x, y) =
1− 2xy − xy2

(1− 2xy)
(
1− x(1 + y)2

)
Moreover, we define

m̃k,j :=
2k−1∑
t=0

βtck,k,−j = mk,−j

and
F̃ (x, y) :=

∑
k>0
`>0

m̃k,k−`x
ky`.

As above, we calculate for k > 1:

m̃k,j =
2k−1−1∑
t=0

β(2t)ck,k,−j +
2k−1−1∑
t=0

β(2t+1)ck,k,−j

= 2
2k−1−1∑
t=0

βtck−1,k−1,−j + β(2k−1)ck,k,−j +
2k−1−2∑
t=0

βtck−1,k−1,−j−1

+
2k−1−2∑
t=0

β(t+1)ck−1,k−1,−j+1

= 2m̃k−1,j + m̃k−1,j−1 + m̃k−1,j+1

− β(2k−1−1)ck−1,k−1,−j−1 − β0ck−1,k−1,−j+1 + δk,−j

= m̃k−1,j−1 + 2m̃k−1,j + m̃k−1,j+1 − 2k−1δj,1

Therefore

F̃ (x, y) =
∑
`>0

m̃0,−`y
` +
∑
`>0
k>1

xky`
(
m̃k−1,k−`−1 + 2m̃k−1,k−` + m̃k−1,k−`+1 − 2k−1δk−`,1

)

= 1 + xF̃ (x, y) + 2
∑
k>0

xk+1m̃k,k+1 + 2xyF̃ (x, y) +
∑
k>0

06`61

xk+1y`m̃k,k+2−`

+ xy2F̃ (x, y)−
∑
k>0

2k−1xk+1yk

= 1 + x(1 + y)2F̃ (x, y)− x

1− 2xy
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and we get

F̃ (x, y) =
1− 2xy − x

(1− 2xy)
(
1− x(1 + y)2

) .
The first moments of the random variable t 7→ βt,k,j, where t ∈ {0, . . . , 2k − 1} are

contained in certain diagonals of the bivariate rational function F (x, y) (to be precise,
the diagonal contains the values mk,j, which are first moments multiplied by 2k). The
moments corresponding to j = 0 are contained in the main diagonal.

We define

Mk,l =
2k−1∑
t=0

Γt,k,k−`

and are interested in Mk,k−1.
We have

Mk,` =
∑
i>k−`

2k−1∑
t=0

(
βt,k,i + βtck,k,−i

)
=
∑
i>k−`

(
mk,i + m̃k,i

)
=
∑̀
j=0

(
mk,k−j + m̃k,k−j

)
=
∑̀
j=0

[
xkyj

](
F (x, y) + F̃ (x, y)

)
=
[
xky`

]
G(x, y),

where

G(x, y) =
2− 4xy − x− xy2

(1− y)(1− 2xy)
(
1− x(1 + y)2

) .
The first moment of t 7→ 2kΓt,k,1 is therefore given by Mk,k−1 =

[
xkyk−1

]
G(x, y). Extract-

ing this diagonal, we rediscover the result given in the introduction.

Recall from the introduction Sk =
⋃2k−2
t=1 St,k. Now, we have that Mk,k−1 = |Sk|+1, as

we changed the range of t to {0, 1, . . . , 2k− 1}. In the introduction we presented a simple
combinatorial argument proving the following result, compare (1) and (2). However,
we decided to also keep this longer proof for two reasons: on the one hand, we have
captured the first moments of all Γt,k,k−` in one generating function, which better shows
the underlying structure; on the other hand, this proof is a gentle introduction to the
method used for the second moment later.

Proposition 10. We have for k > 1

Mk,k−1 =
1

2

(
4k −

(
2k

k

))
=

4k

2

(
1− 1√

πk
+

1

8
√
πk3
− 1

128
√
πk5

+O
(

1√
k7

))
.

the electronic journal of combinatorics 26(1) (2019), #P1.28 12



Proof. The idea of the proof is to extract the (shifted) diagonal of G(x, y). First note that
[xkyk−1]G(x, y) = [xkyk]yG(x, y). The diagonal is given by ∆(yG)(z) :=

∑
k>1Mk,k−1z

k.
The computation is then a routine exercise in enumerative combinatorics (see e.g. [15,
Chapter 6.3]) and can be automatized to a great extent using computer algebra. We do
not present this standard argument here. More details can be found in the accompanying
Maple Worksheet [18] implementing the manipulations on the power series using the gfun
package [13].

We get

∆(yG)(z) =
1

2

(
1

1− 4z
− 1√

1− 4z

)
from which we extract coefficients noting

∑
n>0

(
2n
n

)
zn = (1 − 4z)−1/2. The asymptotics

is directly computed (to any needed order) from the known asymptotics of the central
binomial coefficient.

We proceed to the second moments of the values Γt,k,j. Define

M
(2)
k,`,m =

∑
06t<2k

Γt,k,k−`Γt,k,k−m.

The second moment of t 7→ Γt,k,1 = Pt,k is obviously given by 1
8k
M

(2)
k,k−1,k−1, which we

want to realize as a diagonal of a trivariate rational generating function.

Proposition 11. We have

M
(2)
k,`,m =

[
xky`zm

]
F (x, y, z),

where

F (x, y, z) =
1

1− y
1

1− z
(
A+ A′ + A′′ + A′′′

)
(x, y, z),

A(x, y, z) =
1− xy2z2

1−4xyz

(
1 + 2xy

1−2xy(1+yz) + 2xz
1−2xz(1+yz)

)
D(x, y, z)

A′(x, y, z) =
1

1− 2xz(1 + yz)
·

1− x(1 + yz)2 − xyz
1−2xy(1+yz) − xyz

D(x, y, z)

A′′(x, y, z) =
1

1− 2xy(1 + yz)
·

1− x(1 + yz)2 − xyz
1−2xz(1+yz) − xyz

D(x, y, z)

A′′′(x, y, z) =
1− x

1−4xyz

(
1 + 2xy2z

1−2xy(1+yz) + 2xyz2

1−2xz(1+yz)

)
D(x, y, z)

and
D(x, y, z) = 1− x(1 + yz)2 − xyz

1− 2xy(1 + yz)
− xyz

1− 2xz(1 + yz)
.
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Proposition 12. We have the asymptotic expansion

1

8k
M

(2)
k,k−1,k−1 =

1

4
− 1

2
√
πk

+
1

4πk
+

1

16
√
πk3/2

+
17

72πk2
+O(k−5/2).

Corollary 13. Let Xk be the discrete random variable defined by Xk(t) = Pt,k = |St,k|/2k,

where 1 6 t < 2k − 1, and let σk =
√
E(Xk − EXk)2 be the corresponding standard

deviation. Then for k →∞ we have

σk ∼
√

43

12
√
π
k−1.

Proof. The first and second moments of the random variable t 7→ 1
2k
|St,k| are given by

1
4k
Mk,k−1 and 1

8k
M

(2)
k,k−1,k−1, of which the asymptotics have been computed in Proposi-

tions 10 and 12. By considering E(X2
k) − (EXk)

2, we see that all terms up to O(k−2)
cancel, leaving only the asymptotics 43/(144πk2) +O(k−5/2).

Finally, in an analogous manner as in [8, Section 4.4] the proof of Theorem 4 is
completed by Chebyshev’s inequality.

The remaining part of this paper is devoted to the proofs of Propositions 11 and 12.

4.1 Proof of Proposition 11

Define

ak,`,m =
2k−1∑
t=0

βt,k,k−`βt,k,k−m.

and auxiliary values

bk,`,m =
2k−2∑
t=0

βt,k,k−`βt+1,k,k−m,

ck,`,m =
2k−2∑
t=0

βt+1,k,k−`βt,k,k−m.

We calculate, for k > 1 and `,m > 0:

ak,`,m =
2k−1−1∑
t=0

β2t,k,k−`β2t,k,k−m +
2k−1−1∑
t=0

β2t+1,k,k−`β2t+1,k,k−m

=
∑

06t<2k−1

(
βt,k−1,k−1−` + βt−1,k−1,k+1−`

)(
βt,k−1,k−1−m + βt−1,k−1,k+1−m

)
+ 4

∑
06t<2k−1

βt,k−1,k−`βt,k−1,k−m
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=
∑

06t<2k−1

βt,k−1,k−1−`βt,k−1,k−1−m +
∑

06t<2k−1−1

βt,k−1,k+1−`βt+1,k−1,k−1−m

+
∑

06t<2k−1−1

βt+1,k−1,k−1−`βt,k−1,k+1−m +
∑

06t<2k−1−1

βt,k−1,k+1−`βt,k−1,k+1−m

+ 4
∑

06t<2k−1

βt,k−1,k−`βt,k−1,k−m

= ak−1,`,m + bk−1,`−2,m + ck−1,`,m−2 + ak−1,`−2,m−2 + 4ak−1,`−1,m−1

− β2k−1−1,k−1,k+1−`β2k−1−1,k−1,k+1−m

= ak−1,`,m + bk−1,`−2,m + ck−1,`,m−2 + ak−1,`−2,m−2 + 4ak−1,`−1,m−1

− 22(k−1)δk+1,`δk+1,m

Assume now that k > 1. We have

bk,`,m =
∑

06t<2k−1

β2t,k,k−`β2t+1,k,k−m +
∑

06t<2k−1−1

β2t+1,k,k−`β2t+2,k,k−m

=
∑

06t<2k−1

(
βt,k−1,k−1−` + βt−1,k−1,k+1−`

)
2βt,k−1,k−m

+
∑

06t<2k−1−1

2βt,k−1,k−`
(
βt+1,k−1,k−1−m + βt,k−1,k+1−m

)
Noting that β1,k,k−m = 2β0,k−1,k−m, we obtain

bk,`,m = 2
∑

06t<2k−1

βt,k−1,k−1−`βt,k−1,k−m

+ 2
∑

06t<2k−1−1

βt,k−1,k+1−`βt+1,k−1,k−m + 2
∑

06t<2k−1−1

βt,k−1,k−`βt+1,k−1,k−1−m

+ 2
∑

06t<2k−1

βt,k−1,k−`βt,k−1,k+1−m − 2β2k−1−1,k−1,k−`β2k−1−1,k−1,k+1−m

= 2ak−1,`,m−1 + 2bk−1,`−2,m−1 + 2bk−1,`−1,m + 2ak−1,`−1,m−2 − 22k−1δk,`δk+1,m.

By the obvious identities ak,`,m = ak,m,` and bk,`,m = ck,m,` we have

ck,`,m = 2ak−1,`−1,m + 2ck−1,`−1,m−2 + 2ck−1,`,m−1 + 2ak−1,`−2,m−1 − 22k−1δk+1,`δk,m.

We define generating functions

A(x, y, z) =
∑

k,`,m>0

ak,`,mx
ky`zm

B(x, y, z) =
∑

k,`,m>0

bk,`,mx
ky`zm

C(x, y, z) =
∑

k,`,m>0

ck,`,mx
ky`zm
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Summing over k, `,m, the above recurrences translates to identities for these functions:
noting that ak,`,m = 0 for ` < 0 or m < 0, and that∑

`,m>0

a0,`,my
`zm =

∑
`,m>0

β0,0,−`β0,0,−my
`zm = 1,

we obtain

A(x, y, z) = 1 + x(1 + 4yz + y2z2)A(x, y, z) + xy2B(x, y, z) + xz2C(x, y, z)

− 1

4

∑
k>1

4kxkyk+1zk+1

= 1 + x(1 + 4yz + y2z2)A(x, y, z) + xy2B(x, y, z) + xz2C(x, y, z)

− yz

4

4xyz

1− 4xyz
.

Moreover, we have
∑

`,m>0 b0,`,my
`zm = 0, therefore

B(x, y, z) = 2xz(1 + yz)A(x, y, z) + 2xy(1 + yz)B(x, y, z)− 1

2

∑
k>1

4kxkykzk+1

= 2xz(1 + yz)A(x, y, z) + 2xy(1 + yz)B(x, y, z)− z

2

4xyz

1− 4xyz
.

Finally, we have

C(x, y, z) = 2xy(1 + yz)A(x, y, z) + 2xz(1 + yz)C(x, y, z)− 1

2

∑
k>1

4kxkyk+1zk

= 2xy(1 + yz)A(x, y, z) + 2xz(1 + yz)C(x, y, z)− y

2

4xyz

1− 4xyz
.

We have

B(x, y, z) =
2xz(1 + yz)A(x, y, z)− z

2
4xyz

1−4xyz

1− 2xy(1 + yz)

and

C(x, y, z) =
2xy(1 + yz)A(x, y, z)− y

2
4xyz

1−4xyz

1− 2xz(1 + yz)
.

Inserting these identities into the equation for A(x, y, z), we obtain

A(x, y, z)

(
1− x(1 + 4yz + y2z2)− xy2 2xz(1 + yz)

1− 2xy(1 + yz)
− xz2 2xy(1 + yz)

1− 2xz(1 + yz)

)
= 1− yz

4

4xyz

1− 4xyz
− xy2

z
2

4xyz
1−4xyz

1− 2xy(1 + yz)
− xz2

y
2

4xyz
1−4xyz

1− 2xz(1 + yz)
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After some rewriting we obtain

A(x, y, z) =
1− xy2z2

1−4xyz

(
1 + 2xy

1−2xy(1+yz) + 2xz
1−2xz(1+yz)

)
1− x(1 + yz)2 − xyz

1−2xy(1+yz) −
xyz

1−2xz(1+yz)

Note that the denominator is the same as in [8, Equation (19)].
Define

a′k,`,m =
∑

06t<2k

βt,k,k−`βtck,k,−k+m

b′k,`,m =
∑

06t<2k−1

βt,k,k−`β(t+1)ck,k,−k+m

c′k,`,m =
∑

06t<2k−1

βt−1,k,k−`β(t+1)ck,k,−k+m

We have for k > 1

a′k,`,m =
∑

06t<2k−1

β2t,k,k−`β(2t)ck,k,−k+m +
∑

06t<2k−1

β2t+1,k,k−`β(2t+1)ck,k,−k+m

=
∑

06t<2k−1

(
βt,k−1,k−`−1 + βt−1,k−1,k−`+1

)
2βtck−1,k−1,−k+m

+
∑

06t<2k−1

2βt,k−1,k−`
(
βtck−1,k−1,−k+m−1 + β(t+1)ck−1,k−1,−k+m+1

)
= 2

∑
06t<2k−1

βt,k−1,k−1−`βtck−1,k−1,−(k−1)+m−1

+ 2
∑

06t<2k−1−1

βt,k−1,k−1−(`−2)β(t+1)ck−1,k−1,−(k−1)+m−1

+ 2
∑

06t<2k−1

βt,k−1,k−1−(`−1)βtck−1,k−1,−(k−1)+m−2

+ 2
∑

06t<2k−1

βt,k−1,k−1−(`−1)β(t+1)ck−1,k−1,−(k−1)+m

= 2a′k−1,`,m−1 + 2b′k−1,`−2,m−1 + 2a′k−1,`−1,m−2 + 2b′k−1,`−1,m

Moreover

b′k,`,m =
∑

06t<2k−1

β2t,k,k−`β(2t+1)ck,k,−k+m

+
∑

06t<2k−1−1

β2t+1,k,k−`β(2(t+1))ck,k,−k+m

=
∑

06t<2k−1

(
βt,k−1,k−`−1 + βt−1,k−1,k−`+1

)(
βtck−1,k−1,−k+m−1 + β(t+1)ck−1,k−1,−k+m+1

)
the electronic journal of combinatorics 26(1) (2019), #P1.28 17



+ 4
∑

06t<2k−1−1

βt,k−1,k−`β(t+1)ck−1,k−1,−k+m

= a′k−1,`,m−2 + b′k−1,`−2,m−2 + b′k−1,`,m + c′k−1,`−2,m + 4b′k−1,`−1,m−1

and

c′k,`,m =
∑

06t<2k−1

β2t−1,k,k−`β(2t+1)ck,k,−k+m +
∑

06t<2k−1

β2t,k,k−`β(2(t+1))ck,k,−k+m

= 2
∑

06t<2k−1

βt−1,k−1,k−`
(
βtck−1,k−1,−k+m−1 + β(t+1)ck−1,k−1,−k+m+1

)
+ 2

∑
06t<2k−1

(
βt,k−1,k−`−1 + βt−1,k−1,k−`+1

)
β(t+1)ck−1,k−1,−k+m

= 2bk−1,`−1,m−2 + 2ck−1,`−1,m + 2bk−1,`,m−1 + 2ck−1,`−2,m−1

We define generating functions

A′(x, y, z) =
∑

k,`,m>0

a′k,`,mx
ky`zm

B′(x, y, z) =
∑

k,`,m>0

b′k,`,mx
ky`zm

C ′(x, y, z) =
∑

k,`,m>0

c′k,`,mx
ky`zm.

We have ak,`,m = 0 for ` < 0 or m < 0, and∑
`,m>0

a′0,`,my
`zm =

∑
`,m>0

β0,0,−`β0,0,−my
`zm = 1,

moreover ∑
`,m>0

b′0,`,my
`zm =

∑
`,m>0

c′0,`,my
`zm = 0.

We obtain

A′(x, y, z) = 1 + 2xzA′(x, y, z) + 2xy2zB′(x, y, z) + 2xyz2A′(x, y, z) + 2xyB′(x, y, z)

= 1 + 2xz(1 + yz)A′(x, y, z) + 2xy(1 + yz)B′(x, y, z),
(8)

B′(x, y, z) = xz2A′(x, y, z) + (xy2z2 + x+ 4xyz)B′(x, y, z) + xy2C ′(x, y, z)

and

C ′(x, y, z) = 2xz(1 + yz)B′(x, y, z) + 2xy(1 + yz)C ′(x, y, z).
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It follows that

A′(x, y, z) =
1 + 2xy(1 + yz)B′(x, y, z)

1− 2xz(1 + yz)

C ′(x, y, z) =
2xz(1 + yz)B′(x, y, z)

1− 2xy(1 + yz)

and therefore

B′(x, y, z) =

(
xz2

2xy(1 + yz)

1− 2xz(1 + yz)
+ x(1 + 4yz + y2z2) + xy2

2xz(1 + yz)

1− 2xy(1 + yz)

)
B′(x, y, z)

+
xz2

1− 2xz(1 + yz)
.

Inserting this into (8), we obtain after some elementary manipulation

A′(x, y, z) =
1

1− 2xz(1 + yz)
·

1− x(1 + yz)2 − xyz
1−2xy(1+yz) − xyz

1− x(1 + yz)2 − xyz
1−2xy(1+yz) −

xyz
1−2xz(1+yz)

.

Define
a′′k,`,m =

∑
06t<2k

βtck,k,−k+`βt,k,k−m

and
A′′(x, y, z) =

∑
k,`,m>0

a′′k,`,mx
ky`zm

By exchanging the roles of ` and m resp. y and z we obtain

A′′(x, y, z) =
1

1− 2xy(1 + yz)
·

1− x(1 + yz)2 − xyz
1−2xz(1+yz) − xyz

1− x(1 + yz)2 − xyz
1−2xy(1+yz) −

xyz
1−2xz(1+yz)

.

Finally, we define

a′′′k,`,m =
∑

06t<2k

βtck,k,−k+`βtck,k,−k+m

b′′′k,`,m =
∑

06t<2k

βtck,k,−k+`β(t+1)ck,k,−k+m

c′′′k,`,m =
∑

06t<2k

β(t+1)ck,k,−k+`βtck,k,−k+m

and we have

a′′′k,`,m =
∑

06t<2k−1

β(2t)ck,k,−k+`β(2t)ck,k,−k+m +
∑

06t<2k−1

β(2t+1)ck,k,−k+`β(2t+1)ck,k,−k+m

= 4
∑

06t<2k−1

βtck−1,k−1,−(k−1)+`−1βtck−1,k−1,−(k−1)+m−1

the electronic journal of combinatorics 26(1) (2019), #P1.28 19



+
∑

06t<2k−1

(
βtck−1,k−1,−(k−1)+`−2 + β(t+1)ck−1,k−1,−(k−1)+`

)
×
(
βtck−1,k−1,−(k−1)+m−2 + β(t+1)ck−1,k−1,−(k−1)+m

)
= 4a′′′k−1,`−1,m−1 + a′′′k−1,`−2,m−2 + b′′′k−1,`−2,m + c′′′k−1,`,m−2 + a′′′k−1,`,m

− β0ck−1,k−1,−(k−1)+`β0ck−1,k−1,−(k−1)+m

= 4a′′′k−1,`−1,m−1 + a′′′k−1,`−2,m−2 + b′′′k−1,`−2,m + c′′′k−1,`,m−2 + a′′′k−1,`,m

− 22(k−1)δk,`+1δk,m+1

b′′′k,`,m =
∑

06t<2k−1

β(2t)ck,k,−k+`β(2t+1)ck,k,−k+m +
∑

06t<2k−1

β(2t+1)ck,k,−k+`β(2(t+1))ck,k,−k+m

= 2
∑

06t<2k−1

βtck−1,k−1,−(k−1)+`−1
(
βtck−1,k−1,−(k−1)+m−2 + β(t+1)ck−1,k−1,−(k−1)+m

)
+ 2

∑
06t<2k−1

(
βtck−1,k−1,−(k−1)+`−2 + β(t+1)ck−1,k−1,−(k−1)+`

)
β(t+1)ck−1,k−1,−(k−1)+m−1

= 2a′′′k−1,`−1,m−2 + 2b′′′k−1,`−1,m + 2b′′′k−1,`−2,m−1 + 2a′′′k−1,`,m−1

− 2β0ck−1,k−1,−k+`+1β0ck−1,k−1,−k+m

= 2a′′′k−1,`−1,m−2 + 2b′′′k−1,`−1,m + 2b′′′k−1,`−2,m−1 + 2a′′′k−1`,m−1 − 22k−1δk,`+1δk,m

and

c′′′k,`,m = b′′′k,m,`

= 2a′′′k−1,m−1,`−2 + 2b′′′k−1,m−1,` + 2b′′′k−1,m−2,`−1 + 2a′′′k−1,m,`−1 − 22k−1δk,m+1δk,`

= 2a′′′k−1,`−2,m−1 + 2c′′′k−1,`,m−1 + 2c′′′k−1,`−1,m−2 + 2a′′′k−1,`−1,m − 22k−1δk,`δk,m+1.

Again we translate this to generating functions. We note that∑
`,m>0

a′′′0,`,my
`zm =

∑
`,m>0

β0,0,−`β0,0,m =
∑
`,m>0

δ`,0δm,0 = 1

and that ∑
`,m>0

b′′′0,`,my
`zm =

∑
`,m>0

c′′′0,`,my
`zm = 0.

Therefore

A′′′(x, y, z) = 1 + x(4yz + y2z2 + 1)A′′′(x, y, z) + xy2B(x, y, z) + xz2C(x, y, z)

−
∑
k>1

4k−1xkyk−1zk−1
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= 1 + x(4yz + y2z2 + 1)A′′′(x, y, z) + xy2B(x, y, z) + xz2C(x, y, z)

− x

1− 4xyz

and

B′′′(x, y, z) = 2xz(1 + yz)A′′′(x, y, z) + 2xy(1 + yz)B′′′(x, y, z)− 2
∑
k>1

4k−1xkyk−1zk

= 2xz(1 + yz)A′′′(x, y, z) + 2xy(1 + yz)B′′′(x, y, z)− 2xz

1− 4xyz

C ′′′(x, y, z) = 2xy(1 + yz)A′′′(x, y, z) + 2xz(1 + yz)C ′′′(x, y, z)− 2xy

1− 4xyz
.

It follows that

B′′′(x, y, z) =
2xz(1 + yz)A′′′(x, y, z)− 2xz

1−4xyz

1− 2xy(1 + yz)

and

C ′′′(x, y, z) =
2xy(1 + yz)A′′′(x, y, z)− 2xy

1−4xyz

1− 2xz(1 + yz)

and therefore

A′′′(x, y, z)

(
1− x(1 + 4yz + y2z2)− xy2 2xz(1 + yz)

1− 2xy(1 + yz)
− xz2 2xy(1 + yz)

1− 2xz(1 + yz)

)
= 1− x

1− 4xyz
− xy2

2xz
1−4xyz

1− 2xy(1 + yz)
− xz2

2xy
1−4xyz

1− 2xz(1 + yz)
.

It follows that

A′′′(x, y, z) =
1− x

1−4xyz

(
1 + 2xy2z

1−2xy(1+yz) + 2xyz2

1−2xz(1+yz)

)
1− x(1 + yz)2 − xyz

1−2xy(1+yz) −
xyz

1−2xz(1+yz)
.

We have

M
(2)
k,`,m =

∑
i6`
j6m

∑
06t<2k

γt,k,k−iγt,k,k−j

=
∑
i6`
j6m

(
ak,i,j + a′k,i,j + a′′k,i,j + a′′′k,i,j

)
=
[
xky`zm

] 1

1− y
1

1− z
(
A+ A′ + A′′ + A′′′

)
(x, y, z).

the electronic journal of combinatorics 26(1) (2019), #P1.28 21



4.2 Proof of Proposition 12

We write

F (x, y, z) =
1

(1− y)(1− z)

G(x, y, z)

D(x, y, z)
,

where
G = B +B′ +B′′ +B′′′,

B(x, y, z) = 1− xy2z2

1− 4xyz

(
1 +

2xy

1− 2xy(1 + yz)
+

2xz

1− 2xz(1 + yz)

)
B′(x, y, z) =

1− x(1 + yz)2 − xyz
1−2xy(1+yz) − xyz

1− 2xz(1 + yz)

B′′(x, y, z) =
1− x(1 + yz)2 − xyz

1−2xz(1+yz) − xyz
1− 2xy(1 + yz)

B′′′(x, y, z) = 1− x

1− 4xyz

(
1 +

2xy2z

1− 2xy(1 + yz)
+

2xyz2

1− 2xz(1 + yz)

)
and

D(x, y, z) = 1− x(1 + yz)2 − xyz

1− 2xy(1 + yz)
− xyz

1− 2xz(1 + yz)
.

The proof is analogous to [8, Proposition 10]. We copy the following two lemmata. (We
denote the open disk with radius δ around a ∈ C by Bδ(a).)

Lemma 14. There exist δ, δ1, ε > 0 and a unique smooth function f : Bδ(1)×Bδ(1)→ C
such that f(1, 1) = 1/8 and

D(f(y, z), y, z) = 0

for |y − 1| < δ and |z − 1| < δ, such that

[xn]F (x, y, z) =
1

(1− y)(1− z)

(−G(f(y, z), y, z)

Dx(f(y, z), y, z)
f(y, z)−n−1 +O

(
8(1−ε)n)) (9)

uniformly for |y − 1| < δ and |z − 1| < δ, and such that

[xn]F (x, y, z) = O(8(1−ε)n) (10)

uniformly for all y, z satisfying |y| 6 1 + δ1, |z| 6 1 + δ1 and (|y − 1| > δ or |z − 1| > δ).
Furthermore, we have the local expansions

f(y, z) =
1

8
− 1

8
(y − 1)− 1

8
(z − 1) +

3

32
(y − 1)2 +

3

32
(z − 1)2 +

1

8
(y − 1)(z − 1)

− 1

16
(y − 1)3 − 1

16
(z − 1)3 − 3

32
(y − 1)2(z − 1)− 3

32
(y − 1)(z − 1)2

+
5

128
(y − 1)4 +

5

128
(z − 1)4 +

1

16
(y − 1)3(z − 1) +

1

16
(y − 1)(z − 1)3
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+
13

192
(y − 1)2(z − 1)2 +O

(
|y − 1|5 + |z − 1|5

)
and

log f(y, z) = − log 8− (y − 1)− (z − 1) +
1

4
(y − 1)2 +

1

4
(z − 1)2

− 1

12
(y − 1)3 − 1

12
(z − 1)3 +

1

32
(y − 1)4 +

1

32
(z − 1)4

− 1

48
(y − 1)2(z − 1)2 +O

(
|y − 1|5 + |z − 1|5

)
at (1, 1) ∈ C2.

The next lemma will be needed for computing the asymptotic expansion of the coef-
ficients of ynzn. It summarizes results on the normal distribution.

Lemma 15. We have ∫ ∞
−∞,=(s)>0

e−s
2/4ds

s
= −πi,

and for k > 0 ∫ ∞
−∞

e−s
2/4skds =

{
2
√
π k!

(k/2)!
, k even,

0, k odd.

We begin by determining the coefficient [yn−1zn−1] using Cauchy integration,

[xnyn−1zn−1]F (x, y, z) =
1

(2πi)2

∫∫
γ×γ

[xn]F (x, y, z)
dy

yn
dz

zn
,

where the contour of integration γ consists of two pieces: a part γ1 inside the disk of
radius δ around 1, which connects the points 1 ± iδ and passes 1 on the left hand side,
and a part γ2, which is just a circular arc around 0 connecting the points 1 ± iδ, see
Figure 1.

By (9) and (10) the integral along γ2, is of order O(8(1−ε)n) which will turn out to be
exponentially smaller than the main part arising from the integral along γ1. Therefore we
may replace γ by γ1, obtaining

[xnyn−1zn−1]F (x, y, z) = O
(
8(1−ε)n)

+
1

(2πi)2

∫∫
γ1×γ1

1

(1− y)(1− z)

−yz G(f(y, z), y, z)

Dx(f(y, z), y, z)

(
f(y, z)yz

)−n−1
dy dz.

For y, z ∈ γ1 we set

y = 1 + i
s√
n

and z = 1 + i
t√
n
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and obtain after this substitution

[xnyn−1zn−1]F (x, y, z) =
1

(2πi)2

∫∫
|s|,|t|6δ

√
n,

=(s),=(t)>0

Pn(s, t)e−(n+1) gn(s,t)
ds dt

st
+O

(
8(1−ε)n),

where

Pn(s, t) =
−yz G(f(y, z), y, z)

Dx(f(y, z), y, z)

∣∣∣∣
y=1+is/

√
n, z=1+it/

√
n

and
gn(s, t) = (log f(y, z) + log y + log z)|y=1+is/

√
n, z=1+it/

√
n .

Using the Taylor expansion of f(x, y) and a computer algebra system, we obtain

−yz G(f(y, z), y, z)

Dx(f(y, z), y, z)
=

1

8
− 1

32
(y − 1)2 − 1

32
(z − 1)2 +O

(
|y − 1|3 + |z − 1|3

)
,

from which it follows that

Pn(s, t) =
1

8

(
1 +

s2

4n
+
t2

4n
+O

( |s|3 + |t|3
n3/2

))
.

Lemma 14 implies

log f(y, z) + log y + log z = − log 8− 1

4
(y − 1)2 − 1

4
(z − 1)2 +

1

4
(y − 1)3 +

1

4
(z − 1)3

− 7

32
(y − 1)4 − 7

32
(y − 1)4 − 1

48
(y − 1)2(z − 1)2

+O
(
|y − 1|5 + |z − 1|5

)
,

so that

−(n+ 1) gn(s, t) = log 8n+1 − s2

4
− t2

4
+ i

s3

4
√
n

+ i
t3

4
√
n
− s2

4n
− t2

4n

+
7s4

32n
+

7t4

32n
+
s2t2

48n
+O

( |s|5 + |t|5
n3/2

)
.

(11)

As a next step we want to use the expansion ex = 1 + x + x2/2 +O(x3) for x = o(1) on
the part involving exponents in s and t of order 3 and higher. Therefore we need to split
the contour γ1 into 3 parts. (Remark. At this point the argument in [8] is incomplete,
but can be repaired in the same way.)

For their definition we need to choose a sequence An such that An = o(n−1/3) and
An = ω(n−1/2). Thus, we choose An = n−1/2+ν for 0 < ν < 1/6. Then we define a part
γ1,1 which connects the points 1±iδAn inside the disc of radius δAn around 1 and passes 1
on the left hand side, a part γ1,2 which connects 1+ iδAn and 1+ iδ by a straight line, and
a symmetric part γ1,3 that connects 1− iδAn and 1− iδ by a straight line, see Figure 1.
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√
1 + δ2

γ2

δ

1

γ1,1

γ1,2

γ1,3

1 + iδAn

1− iδAn

Figure 1: The path of integration used in Lemma 15. The contour consists of two main
parts γ1 and γ2, where γ1 is split into 3 smaller parts γ1,1, γ1,2, and γ1,3. The asymptotic
main contribution arises at γ1,1. The constant δ is defined in Lemma 14 and An = n−1/2+ν

with 0 < ν < 1/6.

Due to (11) we get the bound

< (−(n+ 1)gn(s, t)) 6 log(8n+1)− s2

3
− t2

3
,

for large enough n. Hence, the integral along γ1,2 (and also γ1,3) is negligible as∫
δnν6|s|,|t|6δ

√
n

e−(n+1)gn(s,t) ds dt = o
(

8ne−
n2ν

3

)
.

The lower bound is computed as An
√
n = nν , where the choice of An is crucial.

What remains is to treat the integral along γ1,1. On this part we may use the expansion
of ex to obtain

e−(n+1) gn(s,t) = 8n+1e−
s2

4
− t

2

4

(
1− s2 + t2

4n
+ i

s3 + t3

4
√
n

+
7(s4 + t4)

32n
+
s2t2

48n

−s
6 + t6

32n
− s3t3

16n
+O

( |s|5 + |s|7 + |t|5 + |t|7
n3/2

))
for |s| 6 nν and |t| 6 δnν . This leads to

1

(2πi)2

∫∫
|s|,|t|6δnν ,=(s),=(t)>0

Pn(s, t)e−(n+1) gn(s,t)
ds dt

st

=
8n

(2πi)2

∫∫
|s|,|t|6δnν ,=(s),=(t)>0

e−
s2

4
− t

2

4

(
1 +

is3 + it3

4
√
n

+
7s4 + 7t4

32n
+
s2t2

48n

−s
6 + t6

32n
− s3t3

16n

)
ds dt

st
+O

(
8n

n3/2

)
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=
8n

(2πi)2

∫∫
−∞<s,t<∞,=(s),=(t)>0

e−
s2

4
− t

2

4

(
1 +

is3 + it3

4
√
n

+
7s4 + 7t4

32n
+
s2t2

48n

−s
6 + t6

32n
− s3t3

16n

)
ds dt

st
+O

(
8n

n3/2

)
.

Finally by writing this as a sum of products of integrals and applying Lemma 15 term by
term this expression equals

= 8n
(

1

4
− 1

2
√
πn

+
1

4πn
+O(n−3/2)

)
.

Summing up we arrive at the asymptotics

1

8n
[xnyn−1zn−1]F (x, y, z) =

1

4
− 1

2
√
πn

+
1

4πn
+O(n−3/2).

By extending the above argument, which is only a computational issue, we obtain more
terms in the asymptotic expansion, which yields the statement of Proposition 12. For
details see the accompanying Maple worksheet [18].

5 Conclusion

It is an elementary problem to study the behaviour of the digital expansion of an integer
under addition of a constant. More specifically, we wish to understand the sum of digits
in base 2 of n and n+ t, which amounts to study the number of carries occurring in the
addition of the binary expansions of n and t. The question arises how often a certain
number of carries is attained when adding n to a given integer t. At first, this has
the appearance of an easy task. However, we soon meet the difficulty that carries may
propagate through several blocks of 1s; it is not clear how to capture all of the appearing
patterns simultaneously. Both Conjecture 1 and Conjecture 2 concern this question,
and neither of them could be solved for the past seven years since their introduction.
Only partial results have been obtained so far, including an almost-all result for Cusick’s
conjecture proved by Drmota, Kauers, and the first author. The current paper adds to
our knowledge on the Tu–Deng conjecture by proving an analogous result: Conjecture 1
holds almost surely in a precise sense.

Our method certainly can be applied to related questions. While analoga of (5) and (6)
fail for the sum-of-digits function in base 3, they seem to hold for the Hamming weight of
the ternary expansion of n (the number of nonzero digits of n in base 3). We are confident
that our method yields almost-all results for these questions.

A different kind of extension of the considered problems concerns the sum of digits of
n, n+ t and n+2t: do we have |{n ∈ {0, . . . , 2k−1} : s(n) 6 s(n+ t), s(n) 6 s(n+2t)}| >
2k−2? Is the same true for ⊕k instead of +? Again, we expect that nontrivial results can
be obtained using our method.
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Meanwhile, the full statement of Conjecture 1 remains an open problem. One possible
approach to proving it is to assume a hypothetical counterexample to the conjecture, and
from it construct a large set of counterexamples, which would contradict the asymptotical
statement of our main theorem. However, it is a nontrivial task to compare the values Pt,k
for different t, in particular to construct (many) integers t′ and k′ satisfying Pt′,k′ > Pt,k.
It follows that this approach cannot yet be used to prove the conjecture.

In a similar vein, we may consider the following approach to proving Conjecture 2:
we have numerically ct′ 6 ct, where t′ is obtained by appending 01 · · · 1 to the binary
expansion and the number of 1s is large enough. If this can be proved, we may iterate the
procedure of appending 01 · · · 1, obtaining t(k); moreover, by asymptotic considerations
one can certainly prove that ct(k) > 1/2 for k large enough. By monotonicity, we obtain
ct > 1/2. Again, the problem to overcome is the comparison of values of ct for different t,
which seems to be difficult.
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