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Abstract

For a prime number p and a sequence of integers a0, . . . , ak ∈ {0, 1, . . . , p}, let
s(a0, . . . , ak) be the minimum number of (k + 1)-tuples (x0, . . . , xk) ∈ A0× · · · ×Ak
with x0 = x1+ · · ·+xk, over subsets A0, . . . , Ak ⊆ Zp of sizes a0, . . . , ak respectively.
We observe that an elegant argument of Samotij and Sudakov can be extended to
show that there exists an extremal configuration with all sets Ai being intervals
of appropriate length. The same conclusion also holds for the related problem,
posed by Bajnok, when a0 = · · · = ak =: a and A0 = · · · = Ak, provided k is not
equal 1 modulo p. Finally, by applying basic Fourier analysis, we show for Bajnok’s
problem that if p > 13 and a ∈ {3, . . . , p − 3} are fixed while k ≡ 1 (mod p) tends
to infinity, then the extremal configuration alternates between at least two affine
non-equivalent sets.

Mathematics Subject Classifications: 11B30, 05D99

1 Introduction

Let Γ be a given finite Abelian group, with the group operation written additively.
For A0, . . . , Ak ⊆ Γ , let s(A0, . . . , Ak) be the number of (k + 1)-tuples (x0, . . . , xk) ∈

A0 × · · · ×Ak with x0 = x1 + · · ·+ xk. If A0 = · · · = Ak := A, then we use the shorthand
sk(A) := S(A0, . . . , Ak). For example, s2(A) is the number of Schur triples in A, that is,
ordered triples (x0, x1, x2) ∈ A3 with x0 = x1 + x2.

For integers n > m > 0, let [m,n] := {m,m + 1, . . . , n} and [n] := [0, n − 1] =
{0, . . . , n−1}. For a sequence a0, . . . , ak ∈ [ |Γ |+1 ] = {0, 1, . . . , |Γ |}, let s(a0, . . . , ak;Γ ) be
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the minimum of s(A0, . . . , Ak) over subsets A0, . . . , Ak ⊆ Γ of sizes a0, . . . , ak respectively.
Additionally, for a ∈ [0, p], let sk(a;Γ ) be the minimum of sk(A) over all a-sets A ⊆ Γ .

The question of finding the maximal size of a sum-free subset of Γ (i.e. the maximum
a such that s2(a;Γ ) = 0) originated in a paper of Erdős [2] in 1965 and took 40 years
before it was resolved in full generality by Green and Ruzsa [3]. Huczynska, Mullen and
Yucas [4], and later Samotij and Sudakov [7], introduced the problem of finding s2(a;Γ ).
This function has a resemblance to some classical questions in extremal combinatorics,
where one has to minimise the number of forbidden configurations, see [7, Section 1] for
more details.

Huczynska, Mullen and Yucas [4] were able to solve the s2-problem for Γ = Zp, where
p is prime and Zp is the cyclic group of order p. Samotij and Sudakov [7] solved the
s2-problem for various groups, including a different proof of the Zp case. Bajnok [1,
Problem G.48] suggested the more general problem of considering sk(a;Γ ). Since even
the s2-case is still wide open in full generality, Bajnok [1, Problem G.49] proposed, as a
possible first step, to consider sk(a;Zp), where p is prime and k > 3.

This paper concentrates on the latter question of Bajnok. Therefore, let p be a fixed
prime and let, by default, the underlying group be Zp, which we identify with the additive
group of residues modulo p (also using the multiplicative structure on it when this is
useful). In particular, we write s(a0, . . . , ak) := s(a0, . . . , ak;Zp) and sk(a) := sk(a;Zp).
Since the case p = 2 is trivial, let us assume that p > 3. By an m-term arithmetic
progression (or m-AP for short) we mean a set of the form {x, x + d, . . . , x + (m− 1)d}
for some x, d ∈ Zp with d 6= 0. We call d the difference. For I ⊆ Zp and x, y ∈ Zp, write
x · I + y := {x · z + y | z ∈ I}.

As we already mentioned, the case k = 2 has been completely resolved: Huczynska,
Mullen and Yucas determined s2(a), and Samotij and Sudakov [7] showed that, when
s2(a) > 0, then the a-sets that achieve the minimum are exactly those of the form ξ · I
with ξ ∈ Zp \ {0}, where I consists of the residues modulo p of a integers closest to
p−1
2
∈ Z. Each such set is an arithmetic progression; its difference can be any non-zero

value but the initial element has to be carefully chosen.
Here we propose a generalisation of Bajnok’s question, namely to investigate the func-

tion s(a0, . . . , ak). First, by adopting the elegant argument of Samotij and Sudakov [7],
we show that at least one extremal configuration consists of k+ 1 arithmetic progressions
with the same difference. Note that since

s(A0, . . . , Ak) = s(ξ · A0 + η0, . . . , ξ · Ak + ηk), for ξ 6= 0 and η0 = η1 + · · ·+ ηk, (1)

finding such arithmetic progressions reduces to finding progressions with difference 1 (and
starting element 0 for some k of the sets).

Theorem 1. For arbitrary k > 1 and a0, . . . , ak ∈ [0, p], there is t ∈ Zp such that

s(a0, . . . , ak) = s([a0] + t, [a1], . . . , [ak]).

In particular, if a0 = · · · = ak =: a, then one extremal configuration consists of
A1 = · · · = Ak = [a] and A0 = [t, t + a − 1] for some t ∈ Zp. Given this, one can write
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down some formulas for s(a0, . . . , ak) in terms of a0, . . . , ak involving summation (based
on (3) or a version of (13)) but there does not seem to be a closed form in general.

If k 6≡ 1 (mod p), then by taking ξ := 1, η1 := · · · := ηk := −t(k − 1)−1, and
η0 := −kt(k − 1)−1 in (1), we can get another extremal configuration where all sets are
the same: A0 + η0 = · · · = Ak + ηk. Thus Theorem 1 directly implies the following
corollary.

Corollary 2. For every k > 2 with k 6≡ 1 (mod p) and a ∈ [0, p], there is t ∈ Zp such
that sk(a) = sk([t, t+ a− 1]).

Unfortunately, if k > 3, then there may be sets A different from APs that attain
equality in Corollary 2 with sk(|A|) > 0 (which is in contrast to the case k = 2). For
example, our (non-exhaustive) search showed that this happens already for p = 17, when

s3(14) = 2255 = s3([−1, 12]) = s3([6, 18] ∪ {3}).

Also, already the case k = 2 of the more general Theorem 1 exhibits extra solutions. Of
course, by analysing the proof of Theorem 1 or Corollary 2 one can write a necessary and
sufficient condition for the cases of equality. We do this in Section 2; in some cases this
condition can be simplified.

However, by using basic Fourier analysis on Zp, we can describe the extremal sets for
Corollary 2 when k 6≡ 1 (mod p) is sufficiently large.

Theorem 3. Let a prime p > 7 and an integer a ∈ [3, p − 3] be fixed, and let k 6≡ 1
(mod p) be sufficiently large. Then there exists t ∈ Zp for which the only sk(a)-extremal
sets are ξ · [t, t+ a− 1] for all non-zero ξ ∈ Zp.

Problem 4. Find a ‘good’ description of all extremal families for Corollary 2 (or perhaps
Theorem 1) for k > 3.

While Corollary 2 provides an example of an sk(a)-extremal set for k 6≡ 1 (mod p),
the case k ≡ 1 (mod p) of the sk(a)-problem turns out to be somewhat special. Here,
translating a set A has no effect on the quantity sk(A). More generally, let A be the group
of all invertible affine transformations of Zp, that is, it consists of maps x 7→ ξ · x + η,
x ∈ Zp, for ξ, η ∈ Zp with ξ 6= 0. Then

sk(α(A)) = sk(A), for every k ≡ 1 (mod p) and α ∈ A. (2)

Let us call two subsets A,B ⊆ Zp (affine) equivalent if there is α ∈ A with α(A) = B.
By (2), we need to consider sets only up to this equivalence. Trivially, any two subsets of
Zp of size a are equivalent if a 6 2 or a > p− 2.

Again using Fourier analysis on Zp, we show the following result.

Theorem 5. Let a prime p > 7 and an integer a ∈ [3, p − 3] be fixed, and let k ≡ 1
(mod p) be sufficiently large. Then the following statements hold for the sk(a)-problem.

1. If a and k are both even, then [a] is the unique (up to affine equivalence) extremal
set.
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2. If at least one of a and k is odd, define I ′ := [a− 1]∪ {a} = {0, . . . , a− 2, a}. Then

(a) sk(a) < sk([a]) for all large k;

(b) I ′ is the unique extremal set for infinitely many k;

(c) sk(a) < sk(I
′) for infinitely many k, provided there are at least three non-

equivalent a-subsets of Zp.

It is not hard to see that there are at least three non-equivalent a-subsets of Zp if
and only if p > 13 and a ∈ [3, p − 3], or p > 11 and a ∈ [4, p − 4]. Thus Theorem 5
characterises pairs (p, a) for which there exists an a-subset A which is sk(a)-extremal for
all large k ≡ 1 (mod p).

Corollary 6. Let p be a prime and a ∈ [0, p]. There is an a-subset A ⊆ Zp with sk(A) =
sk(a) for all large k ≡ 1 (mod p) if and only if a 6 2, or a > p − 2, or p ∈ {7, 11} and
a = 3.

As is often the case in mathematics, a new result leads to further open problems.

Problem 7. Given a ∈ [3, p− 3], find a ‘good’ description of all a-subsets of Zp that are
sk(a)-extremal for at least one (resp. infinitely many) values of k ≡ 1 (mod p).

Problem 8. Is it true that for every a ∈ [3, p − 3] there is k0 such that for all k > k0
with k ≡ 1 (mod p), any two sk(a)-extremal sets are affine equivalent?

2 Proof of Theorem 1

Here we prove Theorem 1 by adopting the proof of Samotij and Sudakov [7].
Let A1, . . . , Ak be subsets of Zp. Define σ(x;A1, . . . , Ak) as the number of k-tuples

(x1, . . . , xk) ∈ A1 × · · · × Ak with x = x1 + · · ·+ xk. Also, for an integer r > 0, let

Nr(A1, . . . , Ak) := {x ∈ Zp | σ(x;A1, . . . , Ak) > r},
nr(A1, . . . , Ak) := |Nr(A1, . . . , Ak)|.

These notions are related to our problem because of the following easy identity:

s(A0, . . . , Ak) =
∞∑
r=1

|A0 ∩Nr(A1, . . . , Ak)|. (3)

Let an interval mean an arithmetic progression with difference 1, i.e. a subset I of Zp
of form {x, x + 1, . . . , x + y}. Its centre is x + y/2 ∈ Zp; it is unique if I is proper (that
is, 0 < |I| < p). Note the following easy properties of the sets Nr:

1. These sets are nested:

N0(A1, . . . , Ak) = Zp ⊇ N1(A1, . . . , Ak) ⊇ N2(A1, . . . , Ak) ⊇ . . . (4)
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2. If each Ai is an interval with centre ci, then Nr(A1, . . . , Ak) is an interval with centre
c1 + · · ·+ ck.

We will also need the following result of Pollard [6, Theorem 1].

Theorem 9. Let p be a prime, k > 1, and A1, . . . , Ak be subsets of Zp of sizes a1, . . . , ak.
Then for every integer r > 1, we have

r∑
i=1

ni(A1, . . . , Ak) >
r∑
i=1

ni([a1], . . . , [ak]).

Proof of Theorem 1. Let A0, . . . , Ak be some extremal sets for the s(a0, . . . , ak)-problem.
We can assume that 0 < a0 < p, because s(A0, . . . , Ak) is 0 if a0 = 0 and

∏k
i=1 ai if a0 = p,

regardless of the choice of the sets Ai.
Since n0([a1], . . . , [ak]) = p > p − a0 while nr([a1], . . . , [ak]) = 0 < p − a0 when, for

example, r >
∏k−1

i=1 ai, there is a (unique) integer r0 > 0 such that

nr([a1], . . . , [ak]) > p− a0, all r ∈ [0, r0], (5)

nr([a1], . . . , [ak]) 6 p− a0, all integers r > r0 + 1. (6)

The nested intervals N1([a1], . . . , [ak]) ⊇ N2([a1], . . . , [ak]) ⊇ . . . have the same centre
c := ((a1 − 1) + · · ·+ (ak − 1))/2. Thus there is a translation I := [a0] + t of [a0], with t
independent of r, which has as small as possible intersection with each Nr-interval above
given their sizes, that is,

|I ∩Nr([a1], . . . , [ak])| = max{ 0, nr([a1], . . . , [ak]) + a0 − p }, for all r ∈ N. (7)

This and Pollard’s theorem give the following chain of inequalities:

s(A0, . . . , Ak)
(3)
=

∞∑
i=1

|A0 ∩Ni(A1, . . . , Ak)|

>
r0∑
i=1

|A0 ∩Ni(A1, . . . , Ak)|

>
r0∑
i=1

(ni(A1, . . . , Ak) + a0 − p)

Thm 9

>
r0∑
i=1

(ni([a1], . . . , [ak]) + a0 − p)

(5)−(6)
=

∞∑
i=1

max{ 0, ni([a1], . . . , [ak]) + a0 − p }

(7)
=

∞∑
i=1

|I ∩Ni([a1], . . . , [ak])|

(3)
= s(I, [a1], . . . , [ak]),

giving the required.
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Let us write a necessary and sufficient condition for equality in Theorem 1 in the
case a0, . . . , ak ∈ [1, p − 1]. Let r0 > 0 be defined by (5)–(6). Then, by (4), a sequence
A0, . . . , Ak ⊆ Zp of sets of sizes respectively a0, . . . , ak is extremal if and only if

A0 ∩Nr0+1(A1, . . . , Ak) = ∅, (8)

A0 ∪Nr0(A1, . . . , Ak) = Zp, (9)
r0∑
i=1

ni(A1, . . . , Ak) =

r0∑
i=1

ni([a1], . . . , [ak]). (10)

Let us now concentrate on the case k = 2, trying to simplify the above condition.
We can assume that no ai is equal to 0 or p (otherwise the choice of the other two sets
has no effect on s(A0, A1, A2) and every triple of sets of sizes a0, a1 and a2 is extremal).
Also, as in [7], let us exclude the case s(a0, a1, a2) = 0, as then there are in general many
extremal configurations. Note that s(a0, a1, a2) = 0 if and only if r0 = 0; also, by the
Cauchy-Davenport theorem (the special case k = 2 and r = 1 of Theorem 9), this is
equivalent to a1 + a2 − 1 6 p − a0. Assume by symmetry that a1 6 a2. Note that (5)
implies that r0 6 a1.

The condition in (10) states that we have equality in Pollard’s theorem. A result of
Nazarewicz, O’Brien, O’Neill and Staples [5, Theorem 3] characterises when this happens
(for k = 2), which in our notation is the following.

Theorem 10. For k = 2 and 1 6 r0 6 a1 6 a2 < p, we have equality in (10) if and only
if at least one of the following conditions holds:

1. r0 = a1,

2. a1 + a2 > p+ r0,

3. a1 = a2 = r0 + 1 and A2 = g − A1 for some g ∈ Zp,

4. A1 and A2 are arithmetic progressions with the same difference.

Let us try to write more explicitly each of these four cases, when combined with (8)
and (9).

First, consider the case r0 = a1. We have Na1([a1], [a2]) = [a1 − 1, a2 − 1] and thus
na1([a1], [a2]) = a2 − a1 + 1 > p − a0, that is, a2 − a1 > p − a0. The condition (8)
holds automatically since Ni(A1, A2) = ∅ whenever i > |A1|. The other condition (9)
may be satisfied even when none of the sets Ai is an arithmetic progression (for example,
take p = 13, A1 = {0, 1, 3}, A2 = {0, 2, 3, 5, 6, 7, 9, 10} and let A0 be the complement
of N3(A1, A2) = {3, 6, 10}). We do not see any better characterisation here, apart from
stating that (9) holds.

Next, suppose that a1 + a2 > p + r0. Then, for any two sets A1 and A2 of sizes a1
and a2, we have Nr0(A1, A2) = Zp; thus (9) holds automatically. Similarly to the previous
case, there does not seem to be a nice characterisation of (8). For example, (8) may hold
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even when none of the sets Ai is an AP: e.g. let p = 11, A1 = A2 = {0, 1, 2, 3, 4, 5, 7}, and
let A0 = {0, 2, 10} be the complement of N4(A1, A2) = {1, 3, 4, 5, 6, 7, 8, 9} (here r0 = 3).

Next, suppose that we are in the third case. The primality of p implies that g ∈ Zp
satisfying A2 = g−A1 is unique and thus Nr0+1(A1, A2) = {g}. Therefore (8) is equivalent
to A0 63 g. Also, note that if I1 and I2 are intervals of size r0 + 1, then nr0(I1, I2) = 3.
By the definition of r0, we have p − 2 6 a0 6 p − 1. Thus we can choose any integer
r0 ∈ [1, p − 2] and (r0 + 1)-sets A2 = g − A1, and then let A0 be obtained from Zp by
removing g and at most one further element of Nr0(A1, A2). Here, A0 is always an AP
(as a subset of Zp of size a0 > p− 2) but A1 and A2 need not be.

Finally, let us show that if A1 and A2 are arithmetic progressions with the same
difference d and we are not in Case 1 nor 2 of Theorem 10, then A0 is also an arithmetic
progression whose difference is d. By (1), it is enough to prove this when A1 = [a1] and
A2 = [a2] (and d = 1). Since a1 + a2 6 p− 1 + r0 and r0 + 1 6 a1 6 a2, we have that

Nr0(A1, A2) = [r0 − 1, a1 + a2 − r0 − 1]

Nr0+1(A1, A2) = [r0, a1 + a2 − r0 − 2]

have sizes respectively a1 + a2 − 2r0 + 1 < p and a1 + a2 − 2r0 − 1 > 0. We see that
Nr0+1(A1, A2) is obtained from the proper interval Nr0(A1, A2) by removing its two end-
points. Thus A0, which is sandwiched between the complements of these two intervals
by (8)–(9), must be an interval too. (And, conversely, every such triple of intervals is
extremal.)

3 The proof of Theorems 3 and 5

Let us recall the basic definitions and facts of Fourier analysis on Zp. For a more detailed
treatment of this case, see e.g. [8, Chapter 2]. Write ω := e2πi/p for the pth root of
unity. Given a function f : Zp → C, we define its Fourier transform to be the function

f
∧

: Zp → C given by

f
∧

(γ) :=

p−1∑
x=0

f(x)ω−xγ, for γ ∈ Zp.

Parseval’s identity states that

p−1∑
x=0

f(x) g(x) =
1

p

p−1∑
γ=0

f
∧

(γ) g
∧
(γ). (11)

The convolution of two functions f, g : Zp → C is given by

(f ∗ g)(x) :=

p−1∑
y=0

f(y) g(x− y).

It is not hard to show that the Fourier transform of a convolution equals the product of
Fourier transforms, i.e.

f1 ∗ . . . ∗ fk
∧

= f1
∧
· . . . · fk

∧
. (12)
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We write f ∗k for the convolution of f with itself k times. (So, for example, f ∗2 = f ∗ f .)
Denote by 1A the indicator function of A ⊆ Zp which assumes value 1 on A and 0 on

Zp \ A. We will call 1
∧

A(0) = |A| the trivial Fourier coefficient of A. Since the Fourier
transform behaves very nicely with respect to convolution, it is not surprising that our
parameter of interest, sk(A), can be written as a simple function of the Fourier coefficients
of 1A. Indeed, let A ⊆ Zp and x ∈ Zp. Then the number of tuples (a1, . . . , ak) ∈ Ak such
that a1 + . . . + ak = x (which is σ(x;A, . . . , A) in the notation of Section 2) is precisely
1
∗k
A (x). The function sk(A) counts such a tuple if and only if its sum x also lies in A.

Thus,

sk(A) =

p−1∑
x=0

1
∗k
A (x)1A(x)

(11)
=

1

p

p−1∑
γ=0

1
∗k
A

∧

(γ)1A
∧

(γ)
(12)
=

1

p

p−1∑
γ=0

(
1A

∧
(γ)
)k
1A

∧
(γ). (13)

Since every set A ⊆ Zp of size a has the same trivial Fourier coefficient (namely 1A
∧

(0) = a),
let us re-write (13) as

psk(A)− ak+1 =

p−1∑
γ=1

(1A
∧

(γ))k 1A
∧

(γ) =: F (A). (14)

Thus we need to minimise F (A) (which is a real number for any A) over a-subsets A ⊆ Zp.
To do this when k is sufficiently large, we will consider the largest in absolute value non-

trivial Fourier coefficient 1A
∧

(γ) of an a-subset A. Indeed, the term (1A
∧

(γ))k1A
∧

(γ) will
dominate F (A), so if it has strictly negative real part, then F (A) < F (B) for all a-
subsets B ⊆ Zp with maxδ 6=0 |1B

∧
(δ)| < |1A

∧
(γ)|.

Given a ∈ [p− 1], let

I := [a] = {0, . . . , a− 1} and I ′ := [a− 1] ∪ {a} = {a, . . . , a− 2, a}.

In order to prove Theorems 3 and 5, we will make some preliminary observations about
these special sets. The set of a-subsets which are affine equivalent to I is precisely the set
of a-APs.

Next we will show that

F (I) = 2

(p−1)/2∑
γ=1

(−1)γ(a−1)(k−1)
∣∣∣1I∧(γ)

∣∣∣k+1

if k ≡ 1 (mod p). (15)

Note that (−1)γ(a−1)(k−1) equals (−1)γ if both a, k are even and 1 otherwise. To see (15),
let γ ∈ {1, . . . , p−1

2
} and write 1I

∧
(γ) = reθi for some r > 0 and 0 6 θ < 2π. Then θ is the

midpoint of 0,−2πγ/p, . . . ,−2(a − 1)γπ/p, i.e. θ = −π(a − 1)γ/p. Choose s ∈ N such
that k = sp+ 1. Then

(1I
∧

(γ))k1I
∧

(γ) =
(
re−πi(a−1)γ/p

)k
reπi(a−1)γ/p = rk+1e−πi(a−1)γs, (16)
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and e−πi(a−1)s equals 1 if (a− 1)s is even, and −1 if (a− 1)s is odd. Note that, since p is
an odd prime, (a − 1)s is odd if and only if a and k are both even. So (16) is real, and

the fact that 1I
∧

(p− γ) = 1I

∧
(γ) implies that the corresponding term for p− γ is the same

as for γ. This gives (15). A very similar calculation to (16) shows that

F (I + t) =

p−1∑
γ=1

e−πi(2t+a−1)(k−1)γ/p|1I+t
∧

(γ)|k+1 for all k > 3. (17)

Given r > 0 and 0 6 θ < 2π, we write arg(reθi) := θ.

Proposition 11. Suppose that p > 7 is prime and a ∈ [3, p − 3]. Then arg
(
1I′

∧
(1)
)

is

not an integer multiple of π/p.

Proof. Since 1A
∧

(γ) = −1Zp\A
∧

(γ) for all A ⊆ Zp and non-zero γ ∈ Zp, we may assume
without loss of generality that a 6 p− a. Since p is odd, we have a 6 (p− 1)/2.

Suppose first that a is odd. Let m := (a − 1)/2. Then m ∈ [1, p−3
4

]. Observe
that translating any A ⊆ Zp changes the arguments of its Fourier coefficients by an
integer multiple of 2π/p. So, for convenience of angle calculations, here we may redefine
I := [−m,m] and I ′ := {−m− 1} ∪ [−m + 1,m]. Also let I− := [−m + 1,m− 1], which
is non-empty. The argument of 1I−

∧
(1) is 0. Further, 1I′

∧
(1) = 1I−

∧
(1) + ωm+1 + ω−m.

Since ωm+1, ω−m lie on the unit circle, the argument of ωm+1 + ω−m is either π/p or
π+π/p. But the bounds on m imply that it has positive real part, so arg(ωm+1 +ω−m) =
π/p. By looking at the non-degenerate parallelogram in the complex plane with vertices
0,1I−
∧

(1), ωm+1 +ω−m,1I′
∧

(1), we see that the argument of 1I′
∧

(1) lies strictly between that
of 1I−
∧

(1) and ωm+1 + ω−m, i.e. strictly between 0 and π/p, giving the required.

0

ωm+1

ω−m

I

ωm+1 + ω−m

1I−

∧
(1)

1I′

∧
(1)

Suppose now that a is even and let m := (a − 2)/2 ∈ [1, p−5
4

]. Again without loss of
generality we may redefine I := [−m,m+ 1] and I ′ := {−m− 1} ∪ [−m+ 1,m+ 1]. Let
also I− := [−m + 1,m], which is non-empty. The argument of 1I−

∧
(1) is −π/p. Further,

1I′

∧
(1) = 1I−

∧
(1) +ωm+1 +ω−(m+1). The argument of ωm+1 +ω−(m+1) is 0, so as before the

argument of 1I′
∧

(1) is strictly between −π/p and 0, as required.
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We say that an a-subset A is a punctured interval if A = I ′ + t or A = −I ′ + t for
some t ∈ Zp. That is, A can be obtained from an interval of length a + 1 by removing a
penultimate point.

Lemma 12. Let p > 7 be prime and let a ∈ {3, . . . , p− 3}. Then the sets I, I ′ ⊆ Zp are
not affine equivalent. Thus no punctured interval is affine equivalent to an interval.

Proof. Suppose on the contrary that there is α ∈ A with α(I ′) = I. Let a reflection mean
an affine map Rc with c ∈ Zp that maps x to −x + c. Clearly, I = [a] is invariant under
the reflection R := Ra−1. Thus I ′ is invariant under the map R′ := α−1 ◦ R ◦ α. As is
easy to see, R′ is also some reflection and thus preserves the cyclic distances in Zp. So R′

has to fix a, the unique element of I ′ with both distance-1 neighbours lying outside of I ′.
Furthermore, R′ has to fix a− 2, the unique element of I ′ at distance 2 from a. However,
no reflection can fix two distinct elements of Zp, a contradiction.

We remark that the previous lemma can also be deduced from Proposition 11. Indeed,
for any A ⊆ Zp, the multiset of Fourier coefficients of A is the same as that of x · A for
x ∈ Zp \ {0}, and translating a subset changes the argument of Fourier coefficients by
an integer multiple of 2π/p. Thus for every subset which is affine equivalent to I, the
argument of each of its Fourier coefficients is an integer multiple of π/p.

Let

ρ(A) := max
γ∈Zp\{0}

|1
∧

A(γ)| and R(a) :=

{
ρ(A) : A ∈

(
Zp

a

)}
= {m1(a) > m2(a) > . . .}.

Given j > 1, we say that A attains mj(a), and specifically that A attains mj(a) at γ if

mj(a) = ρ(A) = |1A
∧

(γ)|. Notice that, since 1A
∧

(−γ) = 1A

∧
(γ), the set A attains mj(a) at

γ if and only if A attains mj(a) at −γ (and γ,−γ 6= 0 are distinct values).
As we show in the next lemma, the a-subsets which attain m1(a) are precisely the

affine images of I (i.e. arithmetic progressions), and the a-subsets which attain m2(a) are
the affine images of the punctured interval I ′.

Lemma 13. Let p > 7 be prime and let a ∈ [3, p− 3]. Then |R(a)| > 2 and

(i) A ∈
(
Zp

a

)
attains m1(a) if and only if A is affine equivalent to I, and every interval

attains m1(a) at 1 and −1 only;

(ii) B ∈
(
Zp

a

)
attains m2(a) if and only if B is affine equivalent to I ′, and every punctured

interval attains m2(a) at 1 and −1 only.

Proof. Given D ∈
(
Zp

a

)
, we claim that there is some Dpri ∈

(
Zp

a

)
with the following

properties:

• Dpri is affine equivalent to D;

• ρ(D) = |1Dpri

∧
(1)|; and
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• −π/p < arg
(
1Dpri

∧
(1)
)
6 π/p.

Call such a Dpri a primary image of D. Indeed, suppose that ρ(D) = |1D
∧

(γ)| for some

non-zero γ ∈ Zp, and let 1D
∧

(γ) = r′eθ
′i for some r′ > 0 and 0 6 θ′ < 2π. (Note that we

have r′ > 0 since p is prime.) Choose ` ∈ {0, . . . , p − 1} and −π/p < φ 6 π/p such that
θ′ = 2π`/p+ φ. Let Dpri := γ ·D + `. Then

|1Dpri

∧
(1)| =

∣∣∣∣∣∑
x∈D

ω−γx−`

∣∣∣∣∣ = |ω−`1D
∧

(γ)| = |1D
∧

(γ)| = ρ(D),

and
arg
(
1Dpri

∧
(1)
)

= arg(eθ
′iω−`) = 2π`/p+ φ− 2π`/p = φ,

as required.
Let D ⊆ Zp have size a and write 1D

∧
(1) = reθi. Assume by the above that −π/p <

θ 6 π/p. For all j ∈ Zp, let

h(j) := <(ω−je−θi) = cos

(
2πj

p
+ θ

)
,

where <(z) denotes the real part of z ∈ C. Given any a-subset E of Zp, we have

HD(E) :=
∑
j∈E

h(j) = <

(
e−θi

∑
j∈E

ω−j

)
= <

(
e−θi1E
∧

(1)
)
6 |1E
∧

(1)|. (18)

Then
HD(D) =

∑
j∈D

h(j) = <(e−θi1D
∧

(1)) = r = |1D
∧

(1)|. (19)

Note that HD(E) is the (signed) length of the orthogonal projection of 1E
∧

(1) ∈ C
on the 1-dimensional line {xeiθ | x ∈ R}. As stated in (18) and (19), HD(E) 6 |1E

∧
(1)|

and this is equality for E = D. (Both of these facts are geometrically obvious.) If
|1D
∧

(1)| = m1(a) is maximum, then no HD(E) for an a-set E can exceed m1(a) = HD(D).
Informally speaking, the main idea of the proof is that if we fix the direction eiθ, then the
projection length is maximised if we take a distinct elements j ∈ Zp with the a largest
values of h(j), that is, if we take some interval (with the runner-up being a punctured
interval).

Let us provide a formal statement and proof of this now.

Claim 14. Let Ia be the set of length-a intervals in Zp.

(i) Let M1(D) ⊆
(
Zp

a

)
consist of a-sets E ⊆ Zp such that HD(E) > HD(C) for all

C ∈
(
Zp

a

)
. Then M1(D) ⊆ Ia.

(ii) Let M2(D) ⊆
(
Zp

a

)
be the set of E /∈ Ia for which HD(E) > HD(C) for all C ∈(

Zp

a

)
\ Ia. Then every E ∈M2(A) is a punctured interval.
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Proof. Suppose that 0 < θ < π/p. Then h(0) > h(1) > h(−1) > h(2) > h(−2) >
. . . > h(p−1

2
) > h(−p−1

2
). In other words, h(j`) > h(jk) if and only if ` < k, where

jm := (−1)m−1dm/2e. Letting Ja−1 := {j0, . . . , ja−2}, we see that

HD(Ja−1∪{ja−1}) > HD(Ja−1∪{ja}) > HD(Ja−1∪{ja+1}), HD(Ja−2∪{ja−1, ja}) > HD(J)

for all other a-subsets J . But Ja−1 ∪ {ja−1} and Ja−1 ∪ {ja} are both intervals, and
Ja−1∪{ja+1} and Ja−2∪{ja−1, ja} are both punctured intervals. So in this case M1(D) :=
{Ja−1 ∪ {ja−1}} and M2(D) ⊆ {Ja−1 ∪ {ja+1}, Ja−2 ∪ {ja−1, ja}}, as required.

The case when −π/p < θ < 0 is almost identical except now j` := (−1)`d`/2e for all
0 6 ` 6 p − 1. If θ = 0 then h(0) > h(1) = h(−1) > h(2) = h(−2) > . . . > h(p−1

2
) =

h(−p−1
2

). If θ = −π/p then h(0) = h(−1) > h(1) = h(−2) > . . . = h(−p−1
2

) > h(p−1
2

).

We can now prove part (i) of the lemma. Suppose A ∈
(
Zp

a

)
attains m1(a) at γ ∈ Zp \{0}.

Then the primary image D of A satisfies |1D
∧

(1)| = m1(a) = |1A
∧

(γ)|. So, for any E ∈
M1(D),

|1A
∧

(γ)| = |1D
∧

(1)| (19)= HD(D) 6 HD(E)
(18)

6 |1E
∧

(1)|,

with equality in the first inequality if and only if D ∈ M1(D). Thus, by Claim 14(i), D
is an interval, and so A is affine equivalent to an interval, as required. Further, if A is an
interval then D is an interval if and only if γ = ±1. This completes the proof of (i).

For (ii), note that m2(a) exists since by Lemma 12, there is a subset (namely I ′) which
is not affine equivalent to I. By (i), it does not attain m1(a), so ρ(I ′) 6 m2(a). Suppose
now that B is an a-subset of Zp which attains m2(a) at γ ∈ Zp \ {0}. Let D be the
primary image of B. Then D is not an interval. This together with Claim 14(i) implies
that HD(D) < HD(E) for any E ∈M1(D). Thus, for any C ∈M2(D), we have

m2(a) = |1B
∧

(γ)| = |1D
∧

(1)| = HD(D) 6 HD(C) 6 |1C
∧

(1)|.

with equality in the first inequality if and only if D ∈ M2(D). Since C is a punctured
interval, it is not affine equivalent to an interval. So the first part of the lemma implies
that |1C
∧

(1)| 6 m2(a). Thus we have equality everywhere and so D ∈ M2(D). Therefore
B is the affine image of a punctured interval, as required. Further, if B is a punctured
interval, then D is a punctured interval if and only if γ = ±1. This completes the proof
of (ii).

We will now prove Theorem 3.

Proof of Theorem 3. Recall that p > 7, a ∈ [3, p− 3] and k > k0(a, p) is sufficiently large

with k 6≡ 1 (mod p). Let I = [a]. Given t ∈ Zp, write ρt := (1I+t
∧

(1))k1I+t
∧

(1) as rte
θti,

where θt ∈ [0, 2π) and rt > 0. Then (17) says that θt equals −π(2t + a − 1)(k − 1)/p
modulo 2π. Increasing t by 1 rotates ρt by −2π(k − 1)/p. Using the fact that k − 1 is
invertible modulo p, we have the following. If (a − 1)(k − 1) is even, then the set of θt
for t ∈ Zp is precisely 0, 2π/p, . . . , (2p − 2)π/p, so there is a unique t (resp. a unique t′)
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in Zp for which θt = π + π/p (resp. θt′ = π − π/p). Furthermore, t′ = −(a − 1) − t and
I + t′ = −(I + t); thus I + t and I + t′ have the same set of dilations. If (a − 1)(k − 1)
is odd, then the set of θt for t ∈ Zp is precisely π/p, 3π/p, . . . , (2p − 1)π/p, so there is a
unique t ∈ Zp for which θt = π. We call t (and t′, if it exists) optimal.

Let t be optimal. To prove the theorem, we will show that F (ξ · (I + t)) < F (A) (and
so sk(ξ · (I + t)) < sk(A)) for any a-subset A ⊆ Zp which is not a dilation of I + t.

We will first show that F (I+t) < F (A) for any a-subset A which is not affine equivalent
to an interval. By Lemma 13(i), we have that |1I+t

∧
(±1)| = m1(a) and ρ(A) 6 m2(a).

Let m′2(a) be the maximum of 1J
∧

(γ) over all length-a intervals J and γ ∈ [2, p − 2].
Lemma 13(i) implies that m′2(a) < m1(a). Thus∣∣F (I + t)− 2(m1(a))k+1 cos(θt)− F (A)

∣∣ 6 (p− 1)(m2(a))k+1 + (p− 3) (m′2(a))
k+1

. (20)

Now cos(θt) 6 cos(π − π/p) < −0.9 since p > 7. This together with the fact that
k > k0(a, p) and Lemma 13 imply that the absolute value of 2(m1(a))k+1 cos(θt) < 0 is
greater than the right-hand size of (20). Thus F (I + t) < F (A), as required.

The remaining case is when A = ζ · (I + v) for some non-optimal v ∈ Zp and non-zero
ζ ∈ Zp. Since sk(A) = sk(I + v), we may assume that ζ = 1. Note that cos(θt) 6
cos(π − π/p) < cos(π − 2π/p) 6 cos(θv). Thus

F (I + t)− F (I + v) 6 2(m1(a))k+1(cos(θt)− cos(θv)) + (2p− 4)(m′2(a))k+1

6 2(m1(a))k+1(cos(π − π/p)− cos(π − 2π/p)) + (2p− 4)(m′2(a))k+1

< 0

where the last inequality uses the fact that k is sufficiently large. Thus F (I+t) < F (I+v),
as required.

Finally, using similar techniques, we prove Theorem 5.

Proof of Theorem 5. Recall that p > 7, a ∈ [3, p− 3] and k > k0(a, p) is sufficiently large
with k ≡ 1 (mod p). Let I := [a] and I ′ = [a− 1] ∪ {a}.

Suppose first that a and k are both even. Let A ⊆ Zp be an arbitrary a-set not affine
equivalent to the interval I. By Lemma 13, I attains m1(a) (exactly at x = ±1), while
ρ(A) < m1(a). Also, m′2(a) < m1(a), where m′2(a) := maxγ∈[2,p−2] |1I

∧
(γ)|. Thus

F (I)− F (A)
(14),(15)

6 2

p−1
2∑

γ=1

(−1)γ
∣∣∣1I∧(γ)

∣∣∣k+1

+

p−1∑
γ=1

∣∣∣1A∧(γ)
∣∣∣k+1

6 −2(m1(a))k+1 + (2p− 4)(max{m2(a),m′2(a)})k+1 < 0,

where the last inequality uses the fact that k is sufficiently large. So sk(a) = sk(I). Using
Lemma 13, the same argument shows that, for all B ∈

(
Zp

a

)
, we have sk(B) = sk(a) if and

only if B is an affine image of I. This completes the proof of Part 1 of the theorem.
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Suppose now that at least one of a, k is odd. Let A be an a-set not equivalent to I.
Again by Lemma 13, we have

F (I)− F (A) >
p−1∑
γ=1

∣∣∣1I∧(γ)
∣∣∣k+1

−
p−1∑
γ=1

∣∣∣1A∧(γ)
∣∣∣k+1

> 2(m1(a))k+1 − (p− 1)(m2(a))k+1 > 0.

So the interval I and its affine images have in fact the largest number of additive (k+ 1)-
tuples among all a-subsets of Zp. In particular, sk(a) < sk(I).

Suppose that there is some A ∈
(
Zp

a

)
which is not affine equivalent to I or I ′. (If there

is no such A, then the unique extremal sets are affine images of I ′ for all k > k0(a, p),
giving the required.) Write ρ := reθi = 1I′

∧
(1). Then by Lemma 13(ii), we have r = m2(a),

and ρ(A) 6 m3(a). Given k > 2, let s ∈ N be such that k = sp+ 1. Then∣∣∣F (I ′)− 2m2(a)k+1 cos(spθ)− F (A)
∣∣∣ 6 (p− 1)m3(a)k+1 + (p− 3) (m′2(a))

k+1
. (21)

Proposition 11 implies that there is an even integer ` ∈ N for which c := pθ − `π ∈
(−π, π) \ {0}. Let ε := 1

3
min{|c|, π − |c|} > 0. Given an integer t, say that s ∈ N is

t-good if sc ∈ ((t− 1
2
)π + ε, (t + 1

2
)π − ε). This real interval has length π − 2ε > |c| > 0,

so must contain at least one integer multiple of c. In other words, for all t ∈ Z \ {0}
with the same sign as c, there exists a t-good integer s > 0. As spθ ≡ sc (mod 2π),
the sign of cos(spθ) is (−1)t. Moreover, Lemma 13 implies that m2(a) > m3(a),m′2(a).
Thus, when k = sp+1 > k0(a, p), the absolute value of 2m2(a)k+1 cos(spθ) is greater than
the right-hand side of (21). Thus, for large |t|, we have F (A) > F (I ′) if t is even and
F (A) < F (I ′) if t is odd, implying the theorem by (14).
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Corrigendum added March 12 2019

After the publication of this paper, we learned that Theorem 1 follows from a result
of Lev in [1] (Theorem 1) on solutions to the linear equation x1 + · · ·+ xk = 0 in Zp.

References

[1] V. F. Lev, Linear equations over Z/pZ and moments of exponential sums, Duke
Math. J. 107 (2) (2001), 239–263.

the electronic journal of combinatorics 26(1) (2019), #P1.30 16


	Introduction
	Proof of Theorem 1
	The proof of Theorems 3 and 5

