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Abstract

We show that the n’th diagonal sum of Barry’s modified Pascal triangle can be
described as the continuant of the run lengths of the binary representation of n. In
other words, Stern’s diatomic sequence appears in these diagonal sums. We also
obtain an explicit description for the row sums.

Mathematics Subject Classifications: Primary: 05A10; Secondary: 05A19,
11A55, 11A63

1 Introduction

In 2006 in the On-Line Encyclopedia of Integer Sequences (OEIS) [9], sequence A119326,
Paul Barry introduced a modified Pascal triangle, defined for integers k and n such that
0 6 k 6 n, as follows:

T (n, k) =
∑

06j6n−k
2|j

(
k

j

)(
n− k

j

)
.

The first few rows of this triangle are as follows:

∗The author acknowledges support by project F5502-N26 (FWF), which is a part of the Special Re-
search Program “Quasi Monte Carlo Methods: Theory and Applications”. Moreover, we thank the Erwin
Schrödinger Institute for Mathematics and Physics for providing the opportunity to carry out research
work during his visit for the programme “Tractability of High Dimensional Problems and Discrepancy”
†The author is supported by a grant from NSERC
Key words and phrases. modified Pascal triangle, continued fraction, continuant, Stern’s diatomic

sequence

the electronic journal of combinatorics 26(1) (2019), #P1.31 1



1

1 1

1 1 1

1 1 1 1

1 1 2 1 1

1 1 4 4 1 1

1 1 7 10 7 1 1

1 1 11 19 19 11 1 1

1 1 16 31 38 31 16 1 1

1 1 22 46 66 66 46 22 1 1

1 1 29 64 106 126 106 64 29 1 1

Similarly, one can consider T (n, k) mod 2, whose terms are given by sequence A114213:

1

1 1

1 1 1

1 1 1 1

1 1 0 1 1

1 1 0 0 1 1

1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 1 1 1

Sequences A114212 and A114214, respectively, are the row sums and diagonal sums of
this latter triangle. We denote them by r(n) and d(n), respectively:

r(n) =
n∑
k=0

(T (n, k) mod 2)

d(n) =

bn/2c∑
k=0

(T (n− k, k) mod 2) .

In May 2016, the first author observed, empirically, a connection between d(n) and
the binary representation of n. In this note we prove this connection, and also prove a
formula for r(n). The connection involves Stern’s “diatomic sequence” s(n), defined by
s(0) = 0, s(1) = 1, s(2n) = s(n), and s(2n + 1) = s(n) + s(n + 1); see [10].
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2 The diagonal sums

Let the binary representation of n be denoted by
∑j

i=0 εi(n)2i. We show that the diagonal
sum d(n) can be expressed in terms of this representation. Given a string s of 0’s and
1’s, we consider its run lengths: the lengths of maximal blocks of consecutive identical
elements. For example, if s = 111000011111, then the run lengths of s are (3, 4, 5).

If m is a sequence of positive integers, we may associate an integer with it via the
continued fraction expansion: if m = (m0, . . . ,mk), we say that the continuant of m is
the numerator of the continued fraction [m0;m1, . . . ,mk] (see [4, Ch. 34, §4]).

Theorem 1. Let n > 0 be an integer and let m be the sequence of run lengths of the
binary representation of n. Then d(n) equals the continuant of m.

We will use Lucas’ famous congruence for binomial coefficients [8, p. 230]: if p is a
prime number and n = (nν · · ·n0)p and k = (kν · · · k0)p, then(

n

k

)
≡
(
nν
kν

)
· · ·
(
n0

k0

)
(mod p).

This implies that
(
n
k

)
is not divisible by p if and only if ki 6 ni for all i.

We prove the following statement, which reduces the problem to divisibility by 2 of
binomial coefficients. We will derive Theorem 1 from it in a moment.

Proposition 2. Let n and k be nonnegative integers such that k 6 n. If 2 | n + k, then
T (n, k) ≡

(
n
k

)
(mod 2). Otherwise, T (n, k) ≡

(
n−1
k

)
(mod 2).

Proof. We prove the first statement. By replacing n with n + k we get the equivalent
assertion that if 2 | n or 2 | k, then∑

06j6n
2|j

(
n

j

)(
k

j

)
≡
(
n + k

k

)
(mod 2). (1)

By Lucas’ congruence the left-hand side is congruent to

n∑
j=0

(
n

j

)(
k

j

)
≡

n∑
j=0

(
n ∧ k

j

)
≡ 2s2(n∧k) (mod 2),

where n ∧ k is the integer whose binary digits satisfy εi(n ∧ k) = min(εi(n), εi(k)). This
expression is odd if and only if s2(n ∧ k) = 0, which is the case if and only if the binary
representations of n and k are disjoint. To handle the right-hand side of Eq. (1), we note
that

(
n+k
k

)
is odd if n ∧ k = 1. On the other hand, if the binary representations of n and

k are not disjoint, then the condition εi(k) 6 εi(n+ k) is violated for i = min{j : εj(n) =
1, εj(k) = 1}; therefore

(
n+k
k

)
is even. This proves the first assertion.

For the second assertion, we use Lucas’ congruence again: for 2 | j and 2 | m we have(
m
j

)
≡
(
m+1
j

)
(mod 2). Since 2 - n − k, we obtain

(
n−k
j

)
≡
(
n−1−k

j

)
(mod 2). Moreover,

by 2 - n− k the ranges of summation in T (n, k) and T (n− 1, k) are the same.
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From this proposition we obtain in particular the identity

d(2n) = d(2n + 1). (2)

Carlitz [3] proved that Stern’s diatomic sequence s(n) satisfies

s(n + 1) =
∑bn/2c

k=0

((
n−k
k

)
mod 2

)
. By Proposition 2 and Eq. (2) we therefore have

d(2n) = d(2n + 1) = s(2n + 1). (3)

Of course, by the recurrence for s this can be written as

d(n) = s(bn/2c) + s(bn/2c+ 1).

It is well-known [6, 7] that if m = (m0, . . . ,mk) is the sequence of run-lengths of the
binary representation of n and n is odd, then s(n) is the continuant of m. Therefore d(n)
is the continuant of m. In order to complete the proof of the conjecture, we have to show
that the same is true for even n. By Eq. (3) it is sufficient to prove the following lemma.

Lemma 3. If n is even, then the continuant of the sequence of run-lengths of the binary
representation of n is equal to the continuant corresponding to n + 1.

Proof. Let n = 1m00m1 · · · 1mk−10mk . We distinguish between two cases. If mk = 1,
then n + 1 = (1m00m1 · · · 0mk−21mk−1+1) and the statement follows from the identity
[m0;m1, . . . ,mk−1, 1] = [m0;m1, . . . ,mk−1 + 1].
If mk > 2, then n + 1 = (1m00m1 · · · 0mk−21mk−10mk−11) and the statement follows from
[m0;m1, . . . ,mk] = [m0;m1, . . . ,mk−1,mk − 1, 1].

Remark. The sequence (d(n))n>0 is a 2-regular sequence [1], as it satisfies the equalities

d(2n + 1) = d(2n)

d(4n + 2) = 3d(2n)− d(4n)

d(8n) = −d(2n) + 2d(4n)

d(8n + 4) = 4d(2n)− d(4n).

3 The row sums

In order to state our result, we define the sum-of-digits function s2 in base 2: this function
returns the number of 1s in the binary expansion of a nonnegative integer n. By Lucas’
congruence, it follows that the number of odd binomial coefficients

(
n
k

)
equals 2s2(n) [5].

We will prove an analogous result for r(n).

Theorem 4.

r(n) =

{
2s2(n), if n odd;

2s2(n) + 2s2(n−2), if n even.
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Again, this expression can be written in a unified way:

r(n) = 2s2(bn/2c) + 2s2(b(n−1)/2c).

A similar characterization was stated, without proof or attribution, in the notes to
A114212 of the OEIS.

Proof. From Proposition 2 we get, for integers n > k > 0, that

T (2n, 2k) ≡ T (2n + 1, 2k) ≡ T (2n + 1, 2k + 1) ≡
(
n

k

)
(mod 2);

T (2n, 2k + 1) ≡
(
n− 1

k

)
(mod 2).

Then

r(2m) =
2m∑
k=0

(T (2m, k) mod 2)

=
m∑
k=0

(T (2m, 2k) mod 2) +
m−1∑
k=0

(T (2m, 2k + 1) mod 2)

=
m∑
k=0

((
m

k

)
mod 2

)
+

m−1∑
k=0

((
m− 1

k

)
mod 2

)
= 2s2(m) + 2s2(m−1)

= 2s2(2m) + 2s2(2m−2).

Similarly,

r(2m + 1) =
2m+1∑
k=0

(T (2m + 1, k) mod 2)

=
m∑
k=0

(T (2m + 1, 2k) mod 2) +
m∑
k=0

(T (2m + 1, 2k + 1) mod 2)

=
m∑
k=0

((
m

k

)
mod 2

)
+

m∑
k=0

((
m

k

)
mod 2

)
= 2s2(m) + 2s2(m)

= 2s2(2m+1).
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