On the Turán density of $\{1, 3\}$ -Hypergraphs

Shuliang Bai

Center of Mathematical Sciences and Applications Harvard University Cambridge, U.S.A Linyuan Lu*

Department of Mathematics University of South Carolina South Carolina, U.S.A

sbai525@cmsa.fas.harvard.edu

lu@math.sc.edu

Submitted: Aug 8, 2018; Accepted: Feb 4, 2019; Published: Mar 8, 2019 © The authors.

Abstract

In this paper, we consider the Turán problems on $\{1,3\}$ -hypergraphs. We prove that a $\{1,3\}$ -hypergraph is degenerate if and only if it's $H_5^{\{1,3\}}$ -colorable, where $H_5^{\{1,3\}}$ is a hypergraph with vertex set V = [5] and edge set $E = \{\{2\}, \{3\}, \{1,2,4\}, \{1,3,5\}, \{1,4,5\}\}$. Using this result, we further prove that for any finite set R of distinct positive integers, except the case $R = \{1,2\}$, there always exist non-trivial degenerate R-graphs. We also compute the Turán densities of some small $\{1,3\}$ hypergraphs.

Mathematics Subject Classifications: 5D05, 05C65, 05D40

1 Background

Turán theory is an important and active area in the extremal combinatorics. In 1941, Turán [10] determined the graph with maximum number of edges among all simple graphs on n vertices that doesn't contain the complete graph K_{ℓ} as a sub-graph. The Turán density $\pi(H)$ of a graph H is the least number α so that any large graph with edge density $(\alpha + \epsilon)$ will always contain a sub-graph isomorphic to H, for any $\epsilon > 0$. Erdős-Simonovits-Stone theorem [1, 2] determined the Turán densities of all non-bipartite graphs. (The Turán density of any bipartite graph is always 0. Those are called the *degenerate* graphs.)

Turán problems on uniform hypergraphs have been actively studied for many decades. However, on non-uniform hypergraphs, these problems are rarely considered. Johnston and Lu [4] established the framework of the Turán theory for non-uniform hypergraphs. A hypergraph H = (V, E) consists of a vertex set V and an edge set $E \subseteq 2^V$. Here the edges of E could have different cardinalities. The set of all the cardinalities of edges in

^{*}This author was supported in part by NSF grant DMS 1600811.

H is denoted by R(H), the set of edge types. In this paper, we will fix a finite set *R* of positive integers and consider all simple hypergraphs *H* with $R(H) \subseteq R$, which are called *R*-hypergraphs (or *R*-graphs, for short). We say a hypergraph is simple if there is at most one edge connecting any collection of vertices. A general hypergraph allows every edge to be a multi-set of vertices.

For example, $\{2\}$ -graphs are just graphs and $\{r\}$ -graphs are just r-uniform hypergraphs. An R-graph H on n vertices is denoted as H_n^R . We denote H^r as the rth level hypergraph of H which consists of all edges of cardinality r of H. We denote K_n^R as the complete hypergraph on n vertices with edge set $\bigcup_{i \in R} {[n] \choose i}$. We say H' is a sub-graph of H, denoted by $H' \subseteq H$, if there exists a 1-1 map $f : V(H') \to V(H)$ so that $f(e) \in E(H)$ for any $e \in E(H')$. A necessary condition for $H' \subseteq H$ is $R(H') \subseteq R(H)$. A chain C^R is a special R-graph containing exactly one edge of each size such that any pair of these edges are comparable under inclusion relation.

To measure the edge density of a non-uniform hypergraph, we use the Lubell function, which is the expected number of edges in the hypergraph hit by a random full chain [4]. For a non-uniform hypergraph G on n vertices, the Lubell function of G is defined by

$$h_n(G) := \sum_{e \in E(G)} \frac{1}{\binom{n}{|e|}} = \sum_{r \in R(G)} \frac{|E(G^r)|}{\binom{n}{r}}.$$

Given a family of hypergraphs \mathcal{H} with common set of edge types R, we say G is \mathcal{H} -free if G doesn't contain any member of \mathcal{H} as a sub-graph. Let $\pi_n(\mathcal{H})$ be the maximum edge density of any \mathcal{H} -free R-graph on n vertices. The Turán density of \mathcal{H} is defined to be:

$$\pi(\mathcal{H}) = \lim_{n \to \infty} \pi_n(\mathcal{H})$$

= $\lim_{n \to \infty} \max \left\{ h_n(G) : |v(G)| = n, G \subseteq K_n^R, \text{ and } G \text{ is } \mathcal{H}\text{-free} \right\}.$

A hypergraph $G := G_n^R$ is *extremal* with respect to the family \mathcal{H} if G is \mathcal{H} -free and $h_n(G)$ is maximized.

Lu and Johnston [4] proved that this limit always exists by a simple average argument of Katona-Nemetz-Simonovits theorem [6]. They completely classified the Turán densities of $\{1, 2\}$ -graphs.

Theorem 1 (Lu and Johnston [4]). For any hypergraph H with $R(H) = \{1, 2\}$, we have

$$\pi(H) = \begin{cases} 2 - \frac{1}{\mathcal{X}(H^2) - 1} & \text{if } H^2 \text{ is not bipartite;} \\ \frac{5}{4} & \text{if } H^2 \text{ is bipartite and } \min\{k : \overline{P}_{2k} \subseteq H\} = 1; \\ \frac{9}{8} & \text{if } H^2 \text{ is bipartite and } \min\{k : \overline{P}_{2k} \subseteq H\} \ge 2; \\ 1 & \text{if } H^2 \text{ is bipartite and } \overline{P}_{2k} \nsubseteq H \text{ for any } k \ge 1. \end{cases}$$

where $H^2 \in H$ is the graph with all edges of cardinality 2. \overline{P}_{2k} is a closed path of length 2k, and $\mathcal{X}(H^2)$ is the chromatic number of H^2 .

It is trivial that $\pi(H) \leq |R(H)|$ and it is easy to see that $\pi(H) \geq |R(H)| - 1$, since we can take an (|R(H)| - 1)-complete hypergraph $K_n^{|R(H)|-1}$ without the appearance of H. We are interested in these R-graphs with the smallest Turán density.

Definition 1 (Degenerate hypergraphs). A hypergraph H is called *degenerate* if $\pi(H) = |R(H)| - 1$.

What do the degenerate R-graphs look like? For the special case $R = \{r\}$, Erdős [3] showed that an r-uniform hypergraph H is degenerate if and only if it is r-partite, that is, a sub-graph of a blow-up of a single edge of cardinality r. As a natural extension of a single edge, the chain C^R for any set R is degenerate. Thus every sub-graph of a blow-up of a chain is also degenerate. We say a degenerate R-graph is *trivial* if it is a sub-graph of a blow-up of the chain C^R . For $R = \{1, 2\}$, by Theorem 1 all degenerate $\{1, 2\}$ -graphs are trivial. However, a nontrivial degenerate $\{2, 3\}$ -graph is found in [4]. It indicates that this question is more intrigue for other R-graphs.

In this paper, we will give a necessary and sufficient condition for the degenerate $\{1,3\}$ -graphs. Given two graphs G and H, we say G is H-colorable if and only if there exists a hypergraph homomorphism f from G to H. (see Definition 3). And we have

Theorem 2. A $\{1,3\}$ -hypergraph is degenerate if and only if it's $H_5^{\{1,3\}}$ -colorable, where $H_5^{\{1,3\}}$ is a hypergraph with vertex set V = [5] and edge set

$$E = \{\{2\}, \{3\}, \{1, 2, 4\}, \{1, 3, 5\}, \{1, 4, 5\}\}.$$

Using this non-trivial degenerate $\{1, 3\}$ -graph, we prove the following result.

Theorem 3. Let R be a set of distinct positive integers with $|R| \ge 2$ and $R \ne \{1,2\}$. Then a non-trivial degenerate R-graph always exists.

We then continue to study the non-degenerate $\{1,3\}$ -graphs. Let $K_3^{\bullet\bullet}$ be a $\{1,3\}$ -graph with edges $\{\{1\}, \{2\}, \{1,2,3\}\}$, we have

Theorem 4. For any $K_3^{\bullet\bullet}$ -colorable $\{1,3\}$ -graph H, we have

- 1. if $K_3^{\bullet \bullet} \not\subseteq H$, H must be $H_5^{\{1,3\}}$ -colorable, then $\pi(H) = 1$;
- 2. if $K_3^{\bullet \bullet} \subseteq H$, then $\pi(H) = \pi(K_3^{\bullet \bullet}) = 1 + \frac{\sqrt{3}}{18}$.

A result following Theorem 4 indicates a break for the Turán density of $\{1, 3\}$ -graphs:

Corollary 5. Let α be a real value in $[1, \frac{4}{9} + \frac{\sqrt{3}}{3})$. For any $\{1, 3\}$ -graph H with $\pi(H) \leq \alpha$, it must be the case that $\pi(H) = 1$.

We also obtain the Turán densities of some 3-partite $\{1,3\}$ -graphs, the results are shown in Section 4.

The paper is organized as follows. In section 2 we introduce some notations and lemmas for non-uniform hypergraphs. In section 3 we will prove the Theorem 2, Theorem 4 and Corollary 5. In section 4, we determine Turán densities of some 3-partite $\{1,3\}$ -graphs. In section 5, we prove Theorem 3.

2 Notation and lemmas

In this section, we introduce some notations and lemmas for R-graphs and then for the $\{1,3\}$ -graphs. We call an edge of cardinality i as an i-edge, for each $i \in R$. For convenience, we call a vertex that forms a 1-edge as "black vertex", otherwise, "white vertex". We use notations of form H_n^{\bullet} to represent a hypergraph on n vertices that contains only one "black vertex", similarly, $H_n^{\bullet\bullet}$ represents a hypergraph on n vertices that contains two "black vertices", and so on. To simplify our notations for $\{1,3\}$ -graphs, we use form of abc to denote the edge $\{a, b, c\}$.

For a fixed set $R = \{k_1, k_2, \ldots, k_r\}$, with $(k_1 < k_2 < \ldots < k_r)$, R-flag is an R-graph containing exactly one edge of each size. The *chain* C^R is the special R-flag with the edge set $E(C^R) = \{[k_1], [k_2], \ldots, [k_r]\}$, where $[k_i]$ is the set of all positive integers from 1 to k_i for each $i \in [r]$. For example, the chain $C^{\{1,3\}} = \{1, 123\}$. For any R-flag L, we have $\pi(L) = |R| - 1$ (see [4]). Thus the chain $C^{\{1,3\}}$ is a degenerate $\{1,3\}$ -graph.

The following definitions and lemmas on non-uniform hypergraphs are generalized from uniform hypergraphs.

Definition 2 (Blow-up hypergraphs). [4] For any hypergraph H on n vertices and positive integers s_1, s_2, \ldots, s_n , the blow-up of H is a new hypergraph (V, E), denoted by $H_n(s_1, s_2, \ldots, s_n)$, satisfying

- $V := \bigsqcup_{i=1}^{n} V_i$, where $|V_i| = s_i$,
- $E := \bigcup_{F \in E(H)} \prod_{i \in F} V_i$.

When $s_1 = s_2 = \ldots = s_n = s$, we simply write it as H(s).

The blow-up operation does not change the Turán density.

Theorem 6 (Blow-up Families). [4] Let \mathcal{H} be a finite family of hypergraphs and let $s \ge 2$. Then $\pi(\mathcal{H}(s)) = \pi(\mathcal{H})$.

A direct corollary of Theorem 6 is the following result.

Theorem 7 (Squeeze Theorem). [4] Let H be any hypergraph. If there exists a hypergraph H' and an integer $s \ge 2$ such that $H' \subseteq H \subseteq H'(s)$, then $\pi(H) = \pi(H')$.

It is easy to generalize the concepts of homomorphisms and H-coloring to general R-graphs.

Definition 3. Given two *R*-graphs *G* and *H*, a hypergraph homomorphism is a vertex map $f: V(G) \to V(H)$ such that, if $\{v_1, \ldots, v_r\} \in E(G)$ then $\{f(v_1), \ldots, f(v_r)\} \in E(H)$, for all $r \in R$.

Definition 4. A hypergraph G is called *H*-colorable if and only if there exists a homomorphism from G to H.

Note that, if there exists a homomorphism from G to H, then G is isomorphic to a sub-graph of a blow-up of H. Thus we have:

Lemma 8. If G is H-colorable, then $\pi(G) \leq \pi(H)$.

The electronic journal of combinatorics $\mathbf{26(1)}$ (2019), #P1.34

2.1 *R*-graphs with loops, blow-up, and Lagrangian

A loop edge is a multiset of vertices. Sometimes we need to enlarge the concept of R-graphs to R-graphs with loops. For example, consider a $\{1,3\}$ -graph H_1 with the edge set $\{x, xyy, yyy\}$. Here xyy is a loop edge with vertex x occurring once and vertex y twice. In general, a loop edge $e = x_1^{m_1} \cdots x_l^{m_l}$ consists of m_1 copies of vertex x_1 , m_2 copies of vertex x_2 , and so on. For a loop edge $e = x_1^{m_1} \cdots x_l^{m_l}$, the cardinality of e is $|e| = \sum_i m_i$. We also define a multinomial coefficient c_e to be

$$c_e := \binom{|e|}{m_1, m_2, \dots, m_l} = \frac{|e|!}{m_1! m_2! \cdots m_l!}$$

Definition 5. The polynomial form of an R-graph H with loops on n vertices, denoted by $\lambda(H, \vec{x})$ with $\vec{x} = (x_1, x_2, \dots, x_n)$ is defined as

$$\lambda(H, \vec{x}) := \sum_{e \in E(H)} c_e \prod_{i \in e} x_i$$

The Lagrangian of H, denoted by $\lambda(H)$, is the maximum value of the polynomial $\lambda(H, \vec{x})$ over the simplex $S_n = \{(x_1, x_2, \dots, x_n) \in [0, 1]^n : \sum_{i=1}^n x_i = 1\}.$

For any *R*-graph *H* (with possible loops), one can construct the family of *H*-colorable *R*-graph by blowing up *H* in a certain way. The Lagrangian of *H* is the maximum edge density of the *H*-colorable *R*-graphs that one can get in this way. This definition of Lagrangian is the same as the one in [5]; but differs from the classical Lagrangian for *r*-uniform hypergraphs such as in [8] by a constant multiplicative factor. This is not essential. This is a special case of more general Lagrangian of non-uniform hypergraphs introduced by Peng-Wu-Yao [9].

Construction A: Consider a $\{1,3\}$ -graph (with loops) H_A on two vertices $\{x,y\}$ with edges $\{x, xyy, yyy\}$. The polynomial form of H_A is

$$\lambda(H_A, \vec{x}) = x_1 + 3x_1x_2^2 + x_2^3.$$

It can be shown that $\lambda(H, \vec{x})$ reaches the maximum $1 + \frac{\sqrt{3}}{18}$ over the simplex $S_2 = \{(x_1, x_2) \in [0, 1]^2, x_1 + x_2 = 1\}$ at $x_1 = \frac{1}{2} - \frac{\sqrt{3}}{6}$. Thus, we have

$$\lambda(H_A) = 1 + \frac{\sqrt{3}}{18} \approx 1.096225.$$

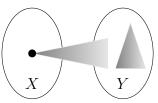
A $\{1,3\}$ -graph G_A on n vertices is generated by blowing-up H_A as follows: set a vertex partition $V(G_A) = X \cup Y$ with $|X| \approx (\frac{1}{2} - \frac{\sqrt{3}}{6})n$ such that all 1-edges are in X (drawn by a black point), and all 3-edges are either formed by three vertices in Y or by one vertex in X plus two vertices in Y. In another words,

$$E(G_A) = \begin{pmatrix} X \\ 1 \end{pmatrix} \cup \begin{pmatrix} X \\ 1 \end{pmatrix} \times \begin{pmatrix} Y \\ 2 \end{pmatrix} \cup \begin{pmatrix} Y \\ 3 \end{pmatrix}.$$

We have

$$h_n(G_A) = \frac{|X|}{n} + \frac{|X|\binom{|Y|}{2} + \binom{|Y|}{3}}{\binom{n}{3}}$$
$$= \lambda(H_A, \vec{x}) + o_n(1).$$
$$= \lambda(H_A) + o_n(1).$$

Here $\vec{x} = \left(\frac{|X|}{n}, \frac{|Y|}{n}\right) = \left(\frac{1}{2} - \frac{\sqrt{3}}{6}, \frac{1}{2} + \frac{\sqrt{3}}{6}\right).$



 G_A : max $h_n(G_A) = 1 + \frac{\sqrt{3}}{18} + o_n(1)$, reached at $|X| = (\frac{1}{2} - \frac{\sqrt{3}}{6})n$.

Construction B: Let H_B be a general $\{1, 3\}$ -graph on three vertices $\{a, b, c\}$ with the edge set $\{a, b, abc\}$. We have

$$\lambda(H_B, \vec{x}) = x_1 + x_2 + 6x_1x_2x_3.$$

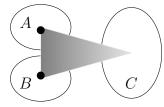
It is easy to check

$$\lambda(H_B) = \frac{4}{9} + \frac{\sqrt{3}}{3} \approx 1.021794714,$$

which is reached at $x_1 = x_2 = \frac{1+\sqrt{3}}{6}$, and $x_3 = \frac{2-\sqrt{3}}{3}$. A $\{1,3\}$ -graph G_B on n vertices is generated by blowing-up H_B as follows: set a vertex partition $V(G_B) = A \cup B \cup C$. All 1-edges are in A and B(drawn by black points), all 3-edges are formed by exactly one vertex in each partition. We have

$$E(G_B) = \begin{pmatrix} A \\ 1 \end{pmatrix} \cup \begin{pmatrix} B \\ 1 \end{pmatrix} \cup \begin{pmatrix} A \\ 1 \end{pmatrix} \times \begin{pmatrix} B \\ 1 \end{pmatrix} \times \begin{pmatrix} C \\ 1 \end{pmatrix}.$$

Note that G_B is H_B -colorable. Thus $h_n(G_B) = \lambda(H_B) + o_n(1)$.



 $G_B: \max h_n(G_B) = \frac{4}{9} + \frac{\sqrt{3}}{3} + o_n(1), \text{ reached at } |A| = |B| = \left(\frac{1+\sqrt{3}}{6}\right)n.$

2.2 Product of two *R*-graphs

Let's define the product of *R*-graphs (with loops):

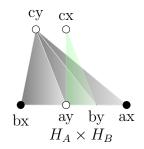
Definition 6. For any two general R-graphs H_1 and H_2 with vertices set V_1 and V_2 respectively, we define the product of H_1 and H_2 , which is denoted by $H_1 \times H_2 = (V, E)$, where

$$V = V_1 \times V_2, \ E = \bigcup_{r \in R} E(H_1^r) \times E(H_2^r),$$

the $E(H_i^r)$ denotes the set of all edges of cardinality r in H_i for i = 1, 2. Here $E(H_1^r) \times E(H_2^r)$ consists of all products of $e \times_{\sigma} f$, where $\sigma = (\sigma(1), \ldots, \sigma(r))$ takes over all permutations of [r]. For example, given $e = \{v_1, \ldots, v_r\} \in E(H_1), f = \{u_1, \ldots, u_r\} \in E(H_2),$ then $e \times_{\sigma} f = \{(v_1, u_{\sigma(1)}), (v_2, u_{\sigma(2)}), \ldots, (v_r, u_{\sigma(r)})\}$ is an edge in $E(H_1^r) \times E(H_2^r)$.

Example 1. The product of two $\{1,3\}$ -graphs H_A and H_B is given below. Let ax stand for (a, x), similar for other labels, then the vertex set is $V(H_A \times H_B) = \{ax, ay, bx, by, cx, cy\}$ and the edge set is

$$E(H_A \times H_B) = \{\{ax\}, \{bx\}, \{cy, bx, ay\}, \{cy, ay, by\}, \{cy, by, ax\}, \{cx, ay, by\}\}.$$



Lemma 9. For any two R-graphs H_1 and H_2 , if hypergraph H is H_1 and H_2 -colorable, then it's $(H_1 \times H_2)$ -colorable.

Proof. By definition, there exist two graph homomorphisms $f_1 : V(H) \mapsto V(H_1)$ and $f_2 : V(H) \mapsto V(H_2)$. Note that H could be an R-graph. Then for any $r \in R$, if edge $e = \{v_1, \ldots, v_r\} \in E(H)$, we have

$$f_1(e) = \{f_1(v_1), \dots, f_1(v_r)\} \in E(H_1)$$

and

$$f_2(e) = \{f_2(v_1), \dots, f_2(v_r)\} \in E(H_2).$$

Define a map $f := f_1 \times f_2$ from V(H) to $V(H_1) \times V(H_2)$, such that $f(v) = (f_1(v), f_2(v))$. Then we have

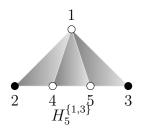
$$f(e) = \{(f_1(v_1), f_2(v_1)), \dots, (f_1(v_r), f_2(v_r))\} \in f_1(e) \times f_2(e) \subseteq E(H_1 \times H_2).$$

Thus the map f takes edges in H to edges in $H_1 \times H_2$, it is a graph homomorphism. Therefore, H is $(H_1 \times H_2)$ -colorable.

3 Proof of Theorem **2** and Theorem **4**

3.1 Proof of Theorem 2

For $\{1,3\}$ -graph H, we have $1 \leq \pi(H) \leq 2$. Observe that the product of two general R-graphs could be an R-graph. This is very useful in determining the Turán density. A degenerate R-graph H must be G-colorable for any R-graph G with $\lambda(G) > 1$. By Lemma 9, it must be colorable by the product of these R-graphs. In this section, we will characterize the degenerate $\{1,3\}$ -graph. Let's consider $H_5^{\{1,3\}}$, the 4-vertex $\{1,3\}$ -graph with edge set $\{2,3,124,135,145\}$.



We first prove the following lemma.

Lemma 10. Any degenerate $\{1,3\}$ -graph is $H_5^{\{1,3\}}$ -colorable.

Proof. Observe that a degenerate $\{1,3\}$ -graph H must be contained in G_A and G_B . Equivalently, H is both H_A and H_B -colorable, then it must be colorable by the product $H_A \times H_B$. We define a map $f : V(H_A \times H_B) \to [5]$ such that: f(cx) = f(cy) = 1, f(bx) = 2, f(ax) = 3, f(ay) = 4, f(by) = 5. Obviously, f is a graph homomorphism from $H_A \times H_B$ to $H_5^{\{1,3\}}$. The result follows. \Box

Let $K_3^{\bullet \bullet}$ be a $\{1, 3\}$ -graph on 3 vertices with edges $\{1, 2, 123\}$, and G_4^{\bullet} be a $\{1, 3\}$ -graph on 4 vertices with edges $\{1, 123, 134, 234\}$.

Remark 11. $K_3^{\bullet\bullet}$ is not contained in G_A whose edge density reaches $1 + \frac{\sqrt{3}}{18}$, and G_4^{\bullet} is not contained in G_B whose edge density reaches $\frac{4}{9} + \frac{\sqrt{3}}{3}$. Thus both $K_3^{\bullet\bullet}$ and G_4^{\bullet} are non-degenerate $\{1,3\}$ -graphs.

Lemma 12. $\pi(\{K_3^{\bullet\bullet}, G_4^{\bullet}\}) = 1.$

Proof. For any positive integer n, let G be a $\{K_3^{\bullet\bullet}, G_4^{\bullet}\}$ -free $\{1, 3\}$ -graph on n vertices. Denote S as the set of all 1-edges of G, i.e. $S = \{v \in V(G) : \{v\} \in E(G)\}$, and let |S| = xn for some $x \in (0, 1)$. Let \overline{S} be the complement of S, i.e. $\overline{S} = V(G) \setminus S$, then $|\overline{S}| = (1 - x)n$.

Denote $E(G^3)$ as the set of all 3-edges of G. To forbidden $K_3^{\bullet\bullet}$, there is at most one black vertex in any 3-edges of G, thus we have

$$E(G^3) \subseteq \binom{S}{1} \times \binom{\overline{S}}{2} \cup \binom{\overline{S}}{3}.$$

We consider the 3-edges of G in edge set $\binom{S}{1} \times \binom{\overline{S}}{2}$. Define y as the average edge density of such 3-edges in G. Thus

$$y = \frac{|E(G^3) \cap (S \times {S \choose 2})|}{|S| \times {|\overline{S}| \choose 2}}.$$

Note that there exists one vertex $s_0 \in S$ such that $|C(s_0)| \ge y \times {|\overline{S}| \choose 2}$, where $C(s_0)$ is the set of 3-edges that contain the black vertex s_0 . For any vertex $u \in \overline{S}$, define

$$W_u := \{ v \in \overline{S} | s_0 u v \in E(G) \}$$

We then have

$$\sum_{u \in \overline{S}} |W_u| \leq |\overline{S}| \times (|\overline{S}| - 1)$$

and

$$|C(s_0)| = \frac{1}{2} \sum_{u \in \overline{S}} |W_u|,$$

which implies

$$\sum_{u\in\overline{S}}|W_u| \ge 2y \times \binom{|S|}{2}.$$

To forbidden G_4^{\bullet} , if $s_0uv, s_0uk \in E(G)$, then $uvk \notin E(G)$. Since for each $u \in \overline{S}$, there are $\binom{|W_u|}{2}$ pair of vertices each can form a 3-edge with u, we need to remove these edges in $\binom{\overline{S}}{3}$. Let N be the number of 3-edges in $\binom{\overline{S}}{3}$ but not in G, by Cauchy-Schwarz inequality, we have

$$N \ge \frac{1}{3} \sum_{u \in \overline{S}} \binom{|W_u|}{2}$$
$$\ge \frac{1}{6} \frac{1}{|\overline{S}|} (\sum_{u \in \overline{S}} |W_u|)^2 - \frac{1}{6} \sum_{u \in \overline{S}} |W_u|$$
$$\ge \frac{1}{6} y^2 |\overline{S}|^3 - \frac{1}{6} |\overline{S}| \times (|\overline{S}| - 1).$$
(1)

Thus we have

$$h_n(G) \leq x + y \times 3x \times (1 - x)^2 + (1 - x)^3 - y^2(1 - x)^3 + o_n(1)$$

When $x \leq \frac{2}{5}$, the above expression reaches the maximum value when $y = \frac{3}{2} \frac{x}{1-x} \leq 1$. When $x \geq \frac{2}{5}$, the above expression reaches the maximum value when y = 1. Thus we obtain

$$h_n(G) \leqslant \begin{cases} x + (1-x)^3 + \frac{9}{4}x^2(1-x) & \text{for } x \leqslant \frac{2}{5}; \\ x + 3x(1-x)^2 & \text{for } x \geqslant \frac{2}{5}. \end{cases}$$

When $x \leq \frac{2}{5}$, by solving $f(x) = x + (1-x)^3 + \frac{9}{4}x^2(1-x) \leq 1$, we get $x \leq \frac{8}{13}$. This always holds since $x \leq \frac{2}{5} \leq \frac{8}{13}$. When $x \geq \frac{2}{5}$, $g(x) = x + 3x(1-x)^2 \leq 1$ is equivalent to $3x(1-x) \leq 1$ which is always true. Thus in both cases, we have $h_n(G) \leq 1 + o_n(1)$, implies that $\pi(\{K_3^{\bullet\bullet}, G_4^{\bullet}\}) = \lim_{n \to \infty} h_n(G) = 1$. The proof is complete. \Box

Proof of Theorem 2. Note that $H_5^{\{1,3\}}$ is $K_3^{\bullet\bullet}$ and G_4^{\bullet} -colorable respectively, we have

$$\pi(H_5^{\{1,3\}}) \leqslant \pi(\{K_3^{\bullet\bullet}, G_4^{\bullet}\}).$$

By Lemma 10 and Lemma 12, the result follows.

3.2 Proof of Theorem 4

In this subsection, we will consider the non-degenerate $\{1,3\}$ -graphs. In particularly, we consider the non-degenerate 3-partite $\{1,3\}$ -graphs. A hypergraph is called 3-*partite* if its vertex set V can be partitioned into 3 different classes V_1, V_2, V_3 such that every edge intersects each class in exactly one vertex. A 3-partite $\{1,3\}$ -graph is $K_3^{\bullet\bullet\bullet}$ -colorable, where $K_3^{\bullet\bullet\bullet}$ is a $\{1,3\}$ -graph on 3 vertices with edge set $\{1,2,3,123\}$.

So far we know that the chain $C^{\{1,3\}} = \{1, 123\}$ is 3-partite and it is degenerate, while a slightly larger 3-partite $\{1,3\}$ -graph $K_3^{\bullet\bullet} = \{1,2,123\}$ is not degenerate. We have $\pi(K_3^{\bullet\bullet}) \ge 1 + \frac{\sqrt{3}}{18}$ since it's not contained in the G_A . Now we are ready to prove Theorem 4 and Corollary 5.

Proof of Theorem 4. For Item 1: For graph H in the assumption, there exists a vertex partition $V(H) = V_1 \cup V_2 \cup V_3$ so that H is 3-partite and the level-graph H^1 only appears in at most two vertex partitions (say V_2 and V_3). Since H does not contain $K_3^{\bullet\bullet}$ as subgraph, then each edge of the level-graph H^3 can only intersect one vertex in V_1 , plus one white (black) vertex in V_2 and one black (white) vertex in V_3 , or intersect one vertex in V_1 plus two white vertices in V_2 and V_3 . Let f be a map such that f(v) = 1 if $v \in V_1$, f(v) = 2 if v is a black vertex in V_2 , f(v) = 5 if v is a white vertex in V_2 , and f(v) = 3if v is a black vertex in V_3 , f(v) = 4 if v is a white vertex in V_3 . One can check that fis a hypergraph homomorphism from H to $H_5^{\{1,3\}}$. Thus H is $H_5^{\{1,3\}}$ -colorable, we have $\pi(H) = 1$.

For Item 2: Since $K_3^{\bullet\bullet} \subseteq H \subseteq K_3^{\bullet\bullet}(s)$ for $s \ge 2$, by Theorem 7, we have $\pi(H) = \pi(K_3^{\bullet\bullet})$. For any $K_3^{\bullet\bullet}$ -free $\{1,3\}$ -graph G on n vertices, let X be the set of all 1-edges in G, and $Y \subseteq V(G)$ be the complement of X. On one hand, since G is $K_3^{\bullet\bullet}$ -free, there is no 3-edge of form $\binom{X}{3}$ or form $\binom{X}{2} \times \binom{Y}{1}$. Thus G is H_A -colorable. Therefore $\lim_{n\to\infty} h_n(G) \le \lambda(H_A) = 1 + \frac{\sqrt{3}}{18}$. On the other hand, the construction G_A is $K_3^{\bullet\bullet}$ -free. We have $\pi(K_3^{\bullet\bullet}) \ge \lambda(H_A) = 1 + \frac{\sqrt{3}}{18}$. Thus, $\pi(H) = \pi(K_3^{\bullet\bullet}) = 1 + \frac{\sqrt{3}}{18}$.

Proof of Corollary 5: Let H be any $\{1,3\}$ -graph with $\pi(H) < \lambda(H_B) = \frac{4}{9} + \frac{\sqrt{3}}{3}$. Then H must be H_B -colorable, hence $K_3^{\bullet\bullet}$ -colorable. By Item 2 of Theorem 4, $\pi(H)$ is either 1 or $1 + \frac{\sqrt{3}}{18}$, thus we must have $\pi(H) = 1$.

10

4 The 3-partite $\{1,3\}$ -graphs

In previous section, all $\{1,3\}$ -graphs we studied are 3-partite. In this section, we continue to study the Turán densities of 3-partite $\{1,3\}$ -graphs.

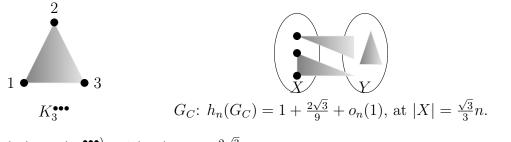
Lemma 13. Let *H* be a 3-partite $\{1,3\}$ -graph such that $K_3^{\bullet\bullet\bullet} \subseteq H$, where $K_3^{\bullet\bullet\bullet} = \{1,2,3,123\}$. Then $\pi(H) = 1 + \frac{2\sqrt{3}}{9}$.

Proof. Since any 3-partite $\{1,3\}$ -graph is $K_3^{\bullet\bullet\bullet}$ -colorable, then $\pi(H) = \pi(K_3^{\bullet\bullet\bullet})$. We will prove $\pi(K_3^{\bullet\bullet\bullet}) = 1 + \frac{2\sqrt{3}}{9}$.

On one hand, consider an extremal $K_3^{\bullet\bullet\bullet}$ -free $\{1,3\}$ -graph G_n . Let X be the set of vertices of 1-edges in G_n . Projecting all the vertices in X into a single vertex x and all the vertices not in X into a single vertex y, we get an $\{1,3\}$ -graph (with loops) H_C : where $E(H_C) = \{x, xxy, xyy, yyy\}$. This projection is a hypergraph homomorphism from G_n to H_C since G_n is $K_3^{\bullet\bullet\bullet}$ -free. Thus G_n is H_C -colorable. In particular, we have

$$\pi(K_3^{\bullet\bullet\bullet}) = \lim_{n \to \infty} h_n(G_n) \leqslant \lambda(H_C) = 1 + \frac{2\sqrt{3}}{9}.$$

On the other hand, any blow-up of H_C does not contain the sub-graph $K_3^{\bullet\bullet\bullet}$. The following blow-up graph G_C has the maximal edge density $1 + \frac{2\sqrt{3}}{9}$:

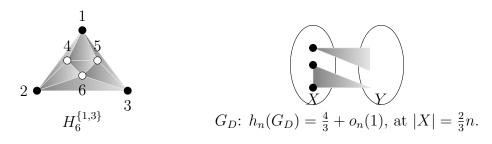


Hence, $\pi(H) = \pi(K_3^{\bullet \bullet \bullet}) = \lambda(H_C) = 1 + \frac{2\sqrt{3}}{9}.$

Let us restrict H to be 3-partite but containing no $K_3^{\bullet\bullet\bullet}$ as sub-graph. One can check such H must be $H_6^{\{1,3\}}$ -colorable, where

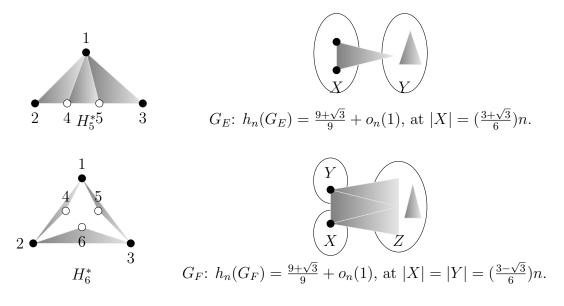
$$H_6^{\{1,3\}} = \{1, 2, 3, 124, 145, 135, 236, 246, 356, 456\}.$$

 $H_6^{\{1,3\}}$ is not contained in G_D with maximal edge density $\frac{4}{3}$.



THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.34

So far we couldn't determine the upper bound of $\pi(H_6^{\{1,3\}})$. We leave this open. Let's turn our attention to the sub-graphs of $H_6^{\{1,3\}}$ and we aim to determine their Turán densities. We first consider two sub-graphs of $H_6^{\{1,3\}}$: $H_5^* = \{1, 2, 3, 124, 145, 135\}$ and $H_6^* = \{1, 2, 3, 124, 135, 236\}$. For both of them, the Turán density is greater than $1 + \frac{\sqrt{3}}{9}$, since they are not contained in G_E and G_F respectively($\lim_{n\to\infty} h_n(G_E) = \lim_{n\to\infty} h_n(G_F)$).



To calculate the upper bounds of $\pi(H_5^*)$, we need the following lemma.

Lemma 14. Let $H_4^{\bullet \bullet} = \{1, 2, 123, 124, 134\}$, then $\pi(\{K_3^{\bullet \bullet \bullet}, H_4^{\bullet \bullet}\}) = 1 + \frac{\sqrt{3}}{9}$.

Proof. To see the lower bound, observe that both $H_4^{\bullet\bullet}$ and $K_3^{\bullet\bullet\bullet}$ are not contained in G_E . To see the upper bound, let G represent a $\{K_3^{\bullet\bullet\bullet}, H_4^{\bullet\bullet}\}$ -free graph on n vertices, let $X \subseteq V(G)$ be the set of all 1-edges of G, |X| = xn for some real $x \in (0, 1)$, and let $Y = V(G) \setminus X$, then |Y| = (1 - x)n. To forbidden $K_3^{\bullet\bullet\bullet}$, there is no 3-edge of form $\binom{X}{3}$. Let y be the density of 3-edges in G among all edges of form $\binom{X}{2} \times \binom{Y}{1}$. For any pair of vertices (i, j) in X, denote d_{ij} as the number of vertices $k \in Y$ so that $\{ijk\} \in E(G)$. Then

$$y = \frac{\sum_{(i,j) \in \binom{X}{2}} d_{ij}}{\binom{|X|}{2} \times \binom{|Y|}{1}}.$$

To forbidden $H_4^{\bullet\bullet}$, for each pair of vertices $(i, j) \in \binom{X}{2}$, if ijk and ijl are in E(G), neither kli nor klj can be contained in E(G). Thus for every pair of $\{i, j\}$, the number of 3-edges not shown in G is at least $2\binom{d_{ij}}{2}$. Let M be the total number of 3-edges of form $\binom{X}{1} \times \binom{Y}{2}$ not shown in G, then by Cauchy-Schwarz inequality, we have

$$M \ge \frac{\sum_{i,j \in \binom{X}{2}} 2\binom{d_{ij}}{2}}{|X|}$$

$$\geq \frac{\left(\sum_{i,j\in X} d_{ij}\right)^2}{\binom{xn}{2}(xn)} - \frac{\sum_{i,j\in X} d_{ij}}{xn} \\ \geq \frac{1}{2}y^2 x(1-x)^2 n^3 - \frac{1}{2}yx(1-x)n^2$$

Thus

$$h_n(G) \leq x + (1-x)^3 + 3x^2(1-x)y + 3x(1-x)^2 - 3x(1-x)^2y^2 + o_n(1).$$

A simple calculation can show that $h_n(G)$ achieves maximum value at y = 1, which implies that for any positive integer n, any extremal $\{K_3^{\bullet\bullet\bullet}, H_4^{\bullet\bullet}\}$ -free $\{1, 3\}$ -graph is H_E -colorable where $E(H_E) = \{x, xxy, yyy\}$. Therefore, $\pi(\{K_3^{\bullet\bullet\bullet}, H_4^{\bullet\bullet}\}) = \lim_{n\to\infty} h_n(G_n) \leq \lambda(H_E) =$ $1 + \frac{\sqrt{3}}{9}$. The result follows. \Box

Lemma 15. $\pi(H_5^*) = 1 + \frac{\sqrt{3}}{9}$.

Proof. On one hand, H_5^* is not contained in G_E , then $\pi(H_5^*) \ge 1 + \frac{\sqrt{3}}{9}$. On the other hand, H_5^* is $K_3^{\bullet\bullet\bullet}$ and $H_4^{\bullet\bullet}$ -colorable, thus $\pi(H_5^*) \le \pi(\{K_3^{\bullet\bullet\bullet}, H_4^{\bullet\bullet}\}) \le 1 + \frac{\sqrt{3}}{9}$. The result follows.

Corollary 16. The proper sub-graphs of H_5^* can be classified to two different sets: either the sub-graph contains $K_3^{\bullet\bullet}$ and is $K_3^{\bullet\bullet}$ -colorable, in this case the Turán density is $1 + \frac{\sqrt{3}}{18}$; or the sub-graph does not contain $K_3^{\bullet\bullet}$, then it is $H_5^{\{1,3\}}$ -colorable, in this case the Turán density is 1.

To calculate the upper bounds of $\pi(H_6^*)$, we need the following lemma.

Lemma 17. Let $H_4^{\bullet\bullet\bullet} = \{1, 2, 3, 124, 134, 234\}$, then $\pi(\{K_3^{\bullet\bullet\bullet}, H_4^{\bullet\bullet\bullet}\}) = 1 + \frac{\sqrt{3}}{9}$.

Proof. To see the lower bound, observe that both $K_3^{\bullet\bullet\bullet}$ and $H_4^{\bullet\bullet\bullet}$ are not contained in G_F . To see the upper bound, let G represent a $\{K_3^{\bullet\bullet\bullet}, H_4^{\bullet\bullet\bullet}\}$ -free graph on n vertices, let $X \subseteq V(G)$ be the set of all 1-edges of G, |X| = xn for some real $x \in (0,1)$, let $Y = V(G) \setminus X$, then |Y| = (1 - x)n. To forbidden $K_3^{\bullet\bullet\bullet}$, there is no 3-edge of form $\binom{X}{3}$.

Let y be the density of 3-edges in G among all edges of form $\binom{X}{2} \times \binom{Y}{1}$. For each $i \in Y$, let $D_i = \{\{j, k\} \in \binom{X}{2} | ijk \in E(G)\}$, denote $d_i = |D_i|$. Then

$$y = \frac{\sum_{i \in Y} d_i}{\binom{|X|}{2} \times \binom{|Y|}{1}}.$$

Suppose $y > \frac{1}{2}$, then there exists $i \in Y$, such that $d_i > \frac{1}{2} \binom{|X|}{2}$. By the fact that the Turán density of a triangle-free graph is $\frac{1}{2}$, there must exist a triple $\{j, k, l\} \in \binom{X}{3}$ such that $\{ijk, ijl, ikl\} \subseteq E(G)$, which is a copy of $H_4^{\bullet\bullet\bullet}$, a contradiction. Thus we have $y \leq \frac{1}{2}$. Note that the existence of 3-edge of form $\binom{Y}{3}$ or $\binom{X}{1} \times \binom{Y}{2}$ does not result in an occurrence of $H_4^{\bullet\bullet\bullet}$ or $K_3^{\bullet\bullet\bullet}$ in G. Thus we can take all such edges. then

$$h_n(G) \leq x + (1-x)^3 + \frac{3}{2}x^2(1-x) + 3x(1-x)^2 + o_n(1),$$

which achieves the maximum $1 + \frac{\sqrt{3}}{9}$ at $x = 1 - \frac{\sqrt{3}}{3}$.

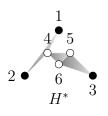
Hence, we have $\pi(\{K_3^{\bullet\bullet\bullet}, H_4^{\bullet\bullet\bullet}\}) = \lim_{n \to \infty} h_n(G_n) \leq 1 + \frac{\sqrt{3}}{9}$. The result follows. \Box

Lemma 18. $\pi(H_6^*) = 1 + \frac{\sqrt{3}}{9}$.

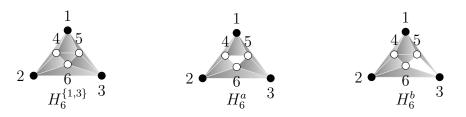
Proof. On one hand, H_6^* is not contained in G_F , then $\pi(H_6^*) \ge 1 + \frac{\sqrt{3}}{9}$. On the other hand, H_6^* is $K_3^{\bullet\bullet\bullet}$ and $H_4^{\bullet\bullet\bullet\bullet}$ -colorable, thus $\pi(H_6^*) \le \pi(\{K_3^{\bullet\bullet\bullet\bullet}, H_4^{\bullet\bullet\bullet}\}) \le 1 + \frac{\sqrt{3}}{9}$. The result follows.

Since we are considering all sub-graphs of $H_6^{\{1,3\}}$, we start this by looking at the larger sub-graphs then the smaller sub-graphs. Using above two lemmas, we are able to determine the Turán density for a list of sub-graphs of $H_6^{\{1,3\}}$. Now we let H be a sub-graph of $H_6^{\{1,3\}}$, we have:

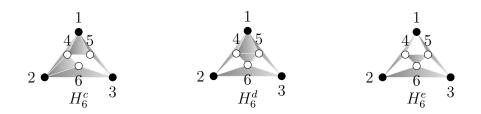
- 1. If H is $K_3^{\bullet\bullet}$ -colorable, thus $\pi(H) = 1$ or $\pi(H) = 1 + \frac{\sqrt{3}}{18}$.
- 2. If H is not above case, then H must contain all 1-edges: 1, 2, 3, and none of them is isolated. Then we have several different cases:
 - (a) Suppose H is obtained from $H_6^{\{1,3\}}$ by removing one 3-edge consisting of two black vertices and one white vertex (say 236 or equivalence), then one can check H is H_5^* -colorable. Note that $H_5^* \subseteq H$, by Lemmas 15, we have $\pi(H) = 1 + \frac{\sqrt{3}}{9}$. Similarly, for any sub-graph H' of H, if H' contains H_5^* or a H_5^* -colorable graph as sub-graph, then $\pi(H') = 1 + \frac{\sqrt{3}}{9}$. If H' is not above case, by trial and error, there is only one situation: H' contains the following sub-graph H^* (or its equivalence) which is not contained in G_E . Thus $\pi(H') = 1 + \frac{\sqrt{3}}{9}$:



- (b) Let H be sub-graph of $H_6^{\{1,3\}}$ by removing edges 145, 246, 456 and 356, the resulting graph is H_6^* . By Lemma 18, $\pi(H) = \pi(H_6^*) = 1 + \frac{\sqrt{3}}{9}$.
- 3. The following graphs $H_6^{\{1,3\}}$, H_6^a , H_6^b , H_6^c , H_6^d and H_6^e are unsolved. We conjecture that the extremal configuration of $H_6^{\{1,3\}}$ and H_6^b is Construction G_D : thus we conjecture $\pi(H_6^{\{1,3\}}) = \pi(H_6^b) = \frac{4}{3}$.



The electronic journal of combinatorics 26(1) (2019), #P1.34



5 Non-trivial degenerate *R*-graphs

Recall that a degenerate R-graph H is trivial if it is contained in a blow-up of the chain C^R , otherwise, we say H is non-trivial. In this section, we will show that except the case $R = \{1, 2\}$, there always exist non-trivial degenerate R-graphs for any finite set R of at least two distinct positive integers. We will use the *suspension* operations on hypergraphs.

Definition 7. [4] The suspension of a hypergraph H, denoted by S(H), is the hypergraph with $V = V(H) \cup \{v\}$ where $\{v\}$ is a new vertex not in V(H), and the edge set E = $\{e \cup \{v\} : e \in E(H)\}$. We write $S^t(H)$ to denote the hypergraph obtained by iterating the suspension operation t-times, i.e. $S^2(H) = S(S(H))$ and $S^3(H) = S(S(S(H)))$, etc.

The relationship between $\pi(H)$ and $\pi(S(H))$ was investigated in [4].

Proposition 1. [4] For any family of hypergraphs \mathcal{H} we have that $\pi(S(\mathcal{H})) \leq \pi(\mathcal{H})$.

Given a general set R and positive integer t, we denote (R + t) as the set obtained from R by adding t to each element of R. Note that if the R-graph H is not contained in a blow-up of chain C^R , then $S^t(H)$ is not contained in a blow-up of the chain $C^{(R+t)}$. Thus we have the following fact:

Corollary 19. Let H be a non-trivial degenerate R-graph, let t be any positive integer. Then the t-times suspension $S^t(H)$ is a non-trivial degenerate (R + t)-graph.

Lemma 20. Given a positive integer $t \ge 2$, and a $\{1,t\}$ -graph H, let T(H) be the $\{1,t+1\}$ -graph obtained from H by adding a new vertex $v \notin V(H)$ such that $V = V(H) \cup \{v\}$, $T(H)^1 = H^1$ and $T(H)^{1+t} = \{e \cup \{v\} : e \in E(H^t)\}$. Then we have $\pi(T(H)) \le \pi(H)$.

Proof. Let n be a positive integer and G = (V, E) be an extremal T(H)-free $\{1, t + 1\}$ graph on n vertices. We have $\pi_n(T(H)) = h_n(G)$. Denote E_i as the set of *i*-edges of G,
for i = 1, t + 1. For any vertex $v \in V(G)$, denote G_v as the hypergraph obtained from
G with the vertex set $V(G_v) = V \setminus \{v\}$ and the edge sets $E(G_v) = E_{v,1} \cup E_{v,t}$, where $E_{v,1} = \{u \in V(G_v) : u \in E_1\}$ and $E_{v,t} = \{\{u_1, \ldots, u_t\} : \{v, u_1, \ldots, u_t\} \in E_{t+1}\}$. Observe
that G_v is an H-free $\{1, t\}$ -graph on n - 1 vertices. Thus $h_{n-1}(G_v) \leq \pi_{n-1}(H)$.

Since

$$|E_1| = \frac{1}{n-1} \sum_{v \in V(G)} |E_{v,1}|$$
 and $|E_{t+1}| = \frac{1}{(t+1)} \sum_{v \in V(G)} |E_{v,t}|,$

The electronic journal of combinatorics 26(1) (2019), #P1.34

then

$$h_{n}(G) = \frac{|E_{1}|}{\binom{n}{1}} + \frac{|E_{1+t}|}{\binom{n}{1+t}}$$

$$= \sum_{v \in V(G)} \frac{|E_{v,1}|}{(n-1)\binom{n}{1}} + \sum_{v \in V(G)} \frac{|E_{v,t}|}{(t+1)\binom{n}{1+t}}$$

$$= \frac{1}{n} \sum_{v \in V(G)} \left(\frac{|E_{v,1}|}{\binom{n-1}{1}} + \frac{|E_{v,t}|}{\binom{n-1}{t}} \right)$$

$$= \frac{1}{n} \sum_{v \in V(G)} h_{n-1}(G_{v})$$

$$\leqslant \pi_{n-1}(H).$$

Thus $\pi(T(H)) = \lim_{n \to \infty} \pi_n(T(H)) = \lim_{n \to \infty} h_n(G) \leq \pi(H).$

Lemma 21. Let R be a set of two distinct positive integers, $R \neq \{1, 2\}$. Then there exist non-trivial degenerate R-graphs.

Proof. By Corollary 19, for every positive integer k, one can take the suspension of $H_5^{\{1,3\}}$ k-times, the resulting graph $S^k(H_5^{\{1,3\}})$ is a non-trivial degenerate $\{1 + k, 3 + k\}$ -graph. Thus there are non-trivial degenerate hypergraphs of edge types: $\{1,3\}, \{2,4\}, \{3,5\}, \ldots, \{k, k+2\}, \ldots$

In [4], the authors found a non-trivial degenerate $\{2,3\}$ -graph: $H_4^{\{2,3\}} = \{12, 13, 234\}$. Similarly, by Corollary 19, there are non-trivial degenerate hypergraphs of edge types: $\{2,3\}, \{3,4\}, \{4,5\}, \ldots, \{k,k+1\}, \ldots$

Using Lemma 20 on $H_5^{\{1,3\}}$, there are non-trivial degenerate hypergraphs of edge types: {1,4}, {1,5},..., {1,t},..., for integer $t \ge 4$. For each of these non-trivial degenerate {1,t}-graphs, applying Corollary 19, there are non-trivial degenerate hypergraphs of edge types: {2, 1 + t}, {3, 2 + t}, ..., {k, k - 1 + t},

To summarize, for each integer $k \ge 2$ and each integer $t \ge 3$, we have non-trivial degenerate hypergraphs of edge types $\{1, t\}, \{k, k+1\}, \{k, k+2\}, \{k, k+t\}$, which cover all sets of two distinct positive integers, except $\{1, 2\}$.

Lemma 22. Let R be a set of distinct positive integers with $|R| \ge 2$ and $1 \notin R$. If there exist non-trivial degenerate R-graphs, then there exist non-trivial degenerate $\{1\} \cup R$ -graphs.

Proof. For each R stated in the lemma, let H be the non-trivial degenerate R-graph. Let H' be the disjoint union of H with a single 1-edge $v \notin H$. Clearly, H' is not contained in a blow-up of chain $C^{\{1\}\cup R}$. We will prove that H' is also degenerate.

Let n be a positive integer and G = (V, E) be an extremal H'-free $\{1\} \cup R$ -graph on n vertices. We have $\pi_n(H') = h_n(G)$. Denote E_i as the set of *i*-edges of G, for each $i \in \{1\} \cup R$. For any 1-edge $v \in E_1$, consider the sub-graph G_v of G by removing all 1-edges (keep the vertices of these 1-edges in G_v). Then the vertex set $V(G_v) = V$, set of *i*-edges $E_i(G_v) = E_i(G)$ for each $i \in R$. Then we have

$$|E_i(G)| = \frac{1}{|E_1|} \sum_{v \in E_1} |E_i(G_v)|, \ \forall i \in R.$$

Observe that G_v is an *H*-free *R*-graph on *n* vertices, so $\pi_n(H) \ge h_n(G_v)$. Then we have

$$h_n(G) = \sum_{i \in \{1\} \cup R} \frac{|E_i|}{\binom{n}{i}}$$

= $\frac{|E_1|}{\binom{n}{1}} + \sum_{i \in R} \sum_{v \in E_1} \frac{|E_i(G_v)|}{|E_1|\binom{n}{i}}$
 $\leq 1 + \frac{1}{|E_1|} \sum_{v \in E_1} h_n(G_v)$
 $\leq 1 + \pi_n(H).$

Thus $\pi(H') = \lim_{n \to \infty} \pi_n(H') = \lim_{n \to \infty} h_n(G) \leq 1 + \pi(H) = |R|$, then $\pi(H') = |R|$. Therefore, H' is a non-trivial degenerate $\{1\} \cup R$ -graph.

Proof of Theorem 3. Using the non-trivial degenerate R-graph for R stated in Lemma 21, then apply Lemma 22, we obtain non-trivial degenerate R-graphs for |R| = 3 and $1 \in R$. Apply Corollary 19, we then obtain all other non-trivial degenerate R-graphs for |R| = 3. Repeatedly apply Lemma 22 and Corollary 19, we can obtain all R-graphs for $|R| \ge 4$, the result follows.

We conjecture that for any set R, there exists an R-graph H^R such that if G^R is R-degenerate if and only if G^R is H^R -colorable. This conjecture is true for the case $R = \{r\}$ with $r \ge 2$ and $R = \{1, 2\}$ and is confirmed for $R = \{1, 3\}$ in this paper.

References

- P. Erdős and M. Simonovits. A limit theorem in graph theory, Studia Sci. Math. Hungar., 1 (1966), 51-57.
- [2] P. Erdős and A. H. Stone. On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
- [3] P. Erdős, On some extremal problems in graph theory, Israel J. Math., 3 (1965), 113-116.
- [4] T. Johnston and L. Lu. Turán problems on non-uniform hypergraphs, *Electronic Journal of Combinatorics*, 21(4) #P4.22 (2014).
- [5] T. Johnston and L. Lu. Strong jumps and Lagrangians of non-uniform hypergraphs, available at arXiv:1403.1220.

- [6] G. Katona, T. Nemetz and M. Simonovits. On a problem of Turán in the theory of graphs, *Mat. Lapok* 15 (1964), 228-238.
- [7] D. Mubayi and Y. Zhao. Non-uniform Turán-type problems, J. Comb. Th. A, 111 (2004), 106-110.
- [8] Y. Peng, H. Peng, Q. Tang and C. Zhao. An extension of the Motzkin-Straus theorem to non-uniform hypergraphs and its applications, *Discrete Applied Mathematics*, 200 (2016), 170-175.
- [9] Yuejian Peng, Biao Wu, Yuping Yao. A Note on Generalized Lagrangians of Nonuniform Hypergraphs, *Order* 34 (2017), 9-21.
- [10] P. Turán. On an extremal problem in graph theory, *Mat. Fiz. Lapok* 48 (1941), 436-452.