
Classifying rotationally-closed languages

having greedy universal cycles

Joseph DiMuro
Department of Mathematics and Computer Science

Biola University
La Mirada, CA, U.S.A.

joseph.dimuro@biola.edu

Submitted: Jun 14, 2018; Accepted: Feb 4, 2019; Published: Mar 8, 2019

c©The author. Released under the CC BY-ND license (International 4.0).

Abstract

Let T(n, k) be the set of strings of length n over the alphabet Σ = {1, 2, . . . , k}.
A universal cycle for T(n, k) can be constructed using a greedy algorithm: start with
the string kn, and continually append the least symbol possible without repeating
a substring of length n. This construction also creates universal cycles for some
subsets S ⊆ T(n, k); we will classify all such subsets that are closed under rotations.

Mathematics Subject Classifications: 05A05

1 Introduction

Let T(n, k) be the set of strings of length n over the alphabet Σ = {1, 2, . . . , k}. Given a
subset S ⊆ T(n, k), we will be interested in finding a “universal cycle” for S: that is, a
string of length |S| where each element of S occurs exactly once in that string when it is
viewed as a cycle.

For example, we could consider the subset S1 ⊆ T(3, 5) consisting of ascending strings
and their rotations. That is,

S1 = {123, 124, 125, 134, 135, 145, 231, 234, 235, 241, 245, 251, 312, 341, 342,

345, 351, 352, 412, 413, 423, 451, 452, 453, 512, 513, 514, 523, 524, 534}

Below is a universal cycle for S1. To make it easier to locate certain strings in the
cycle, the string 534 is repeated at both the start and the end of the cycle. (The 534 is
put in parentheses at the start as a reminder that the 534 is repeated.)

(534)123124134234512513514523524534

the electronic journal of combinatorics 26(1) (2019), #P1.35 1

This universal cycle was constructed using a greedy algorithm: after choosing 534 as
the starting string, each subsequent digit was chosen by looking for the smallest digit
that could be chosen without duplicating any length-3 substrings (except for 534 itself,
to conclude the cycle).

As another example, consider the subset S2 ⊆ T(2, 9) consisting of all two-digit strings
where both the string and its reverse yield composite numbers in base 10. For example,
43 6∈ S2 because 43 is prime; 34 6∈ S2 because 34 is the reverse of a prime number.

S2 = {12, 15, 18, 21, 22, 24, 25, 26, 27, 28, 33, 36, 39, 42, 44, 45,

46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68,

69, 72, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 93, 94, 96, 99}

If we try to construct a universal cycle for S2 using a greedy algorithm starting from
99, here’s what we get:

(99)33621224251526394454648182728496556685758699

Unfortunately, this cycle isn’t quite universal: 77, 78, 87, and 88 are missing. This raises
the question: can we find necessary and sufficient conditions on S ⊆ T(n, k) so that a
universal cycle for S can be generated from a greedy algorithm? In this paper, we will
find such conditions, under the assumption that S is closed under rotations.

2 Results

Some notational conventions: when we are working with a particular set T(n, k), we will
use α and β (possibly with subscripts) to represent strings in T(n, k). Other Greek letters
(like γ) will represent strings in T(m, k) for some m 6 n. (This includes the possibility of
γ being an empty string.) Latin letters (a, b, etc.) will represent individual elements of
{1, . . . , k}. We will sometimes use exponential notation to write strings with repetitions
in a shorter form. A couple of examples: 253 represents the string 222223, and 4(21)3

represents the string 4212121.
Given a set S ⊆ T(n, k) (where S 6= ∅), let α ∈ S. Define the string Greedyα(S) as

follows: let β0 = α, and having defined β0 through βj = aγ, let βj+1 = γaj+1, where aj+1

is the least element of {1, . . . , k} such that γaj+1 ∈ S and γaj+1 6= βi for all 1 6 i 6 j.
The process halts when we reach an βm where either βm = α, or it is impossible to define
βm+1. (The latter occurs when, given βm = aγ, we have γb ∈ {βi}mi=1 for all b ∈ {1, . . . , k}
such that γb ∈ S.) Let m be the largest positive integer for which βm exists. We then
define Greedyα(S) to be:

Greedyα(S) = a1a2 · · · am.

In the case where the process ends because βm = α, the string Greedyα(S) may be viewed
as a cycle; each of the strings from β1 to βm = α appears exactly once in that cycle.

Let G(n, k) be the collection of subsets S ⊆ T(n, k) such that, for some α ∈ S,
Greedyα(S) is a universal cycle for S. That is, the length-n suffix of Greedyα(S) is α, and

the electronic journal of combinatorics 26(1) (2019), #P1.35 2

for all β ∈ S, β is a substring of Greedyα(S) (treated as a cycle). The goal is to find a
characterization of the sets in G(n, k) that are closed under rotations.

Given S ⊆ T(n, k), and given α, β ∈ S, we will say that β is “increasable in S to
α” if we can transform β into α by continually increasing individual symbols, and if the
resulting string after each such increase is in S. (By convention, we will say that α ∈ S is
increasable in S to α.) For example, for our “no primes” set S2 ⊆ T(2, 9), 57 is increasable
in S2 to 99:

57→ 58→ 68→ 69→ 99

Given this definition, our ultimate result is the following:

Theorem 1. Let S ⊆ T(n, k) be closed under rotations, and let α, β ∈ S. Then β is
a substring of Greedyα(S) (treated as a cycle) if and only if β is increasable in S to a
rotation of α.

Thus, if S ⊆ T(n, k) is closed under rotations, then S ∈ G(n, k) if and only if there
exists an α ∈ S such that every β ∈ S is increasable in S to α.

This theorem explains the absence of 77, 78, 87, and 88 in the string Greedy99(S2):
none of those four strings are increasable in S2 to 99, since none of 79, 89, 97, or 98 is in
S. Note that this theorem is a generalization of Theorem 3, from [2].

The proof of this result will rely on an analysis of a combinatorial game, which we’ll
call the Warden’s Game. The rules for this game will be given in Section 2, and the proof
of Theorem 1 will follow in Section 3. In Section 4, we will look at several interesting
families of sets S ⊆ T(n, k) where a universal cycle can be generated with the greedy
algorithm. Lastly, a possible avenue for future work will be detailed in Section 5.

3 The Warden’s Game

Consider the following fanciful scenario: there’s a certain prison warden who loves playing
games. He sometimes makes an offer to let his prisoners out of prison, if they can beat
him at a particular game. The game works as follows:

The warden shows the prisoner a row of n k-sided dice on a table. On each die, the
faces are numbered from 1 to k. (It’s possible to have k = 2 here; the “dice” would then
be coins with a 1 on one side and a 2 on the other.) A certain string α ∈ T(n, k) is chosen:
the prisoner will earn his freedom if, after any move, the dice on the table are showing
the string α. (If the dice are showing α at the start of the game, the prisoner does not
immediately win; the prisoner only wins when the dice show α after a move.) This game
will be played at a rate of one move per day. So, the prisoner wants to reach α as quickly
as possible; the warden wants to delay this as long as possible (indefinitely, if he can).

Each day, the rightmost die in the row will be moved to the far left, and possibly
rotated to show a different number. The warden always has priority; he may transfer the
rightmost die to the far left, and lower the number on that die. If he doesn’t want to
do that (or he can’t, because he can’t lower the number any further), then the warden
passes; then the prisoner must transfer the rightmost die to the far left, and optionally
increase the number on that die.

the electronic journal of combinatorics 26(1) (2019), #P1.35 3

As an example: let n = 3 and k = 6, so that the game is being played with three
6-sided dice. Let’s say the current position is 513; the leftmost die shows 5, the middle
die shows 1, and the rightmost die shows 3. The warden may transfer the rightmost die
to the far left, lowering its value to 1 or 2 (thus producing the position 151 or 251). Or
the warden may pass, in which case the prisoner must transfer the rightmost die and
optionally increase its value (producing one of the positions 351, 451, 551, or 651). Let’s
say the warden chooses to move to the position 251. Then on the next move, the warden
can’t lower the value showing on the rightmost die. So the warden must pass, and the
prisoner can move to 125, 225, 325, 425, 525, or 625. And so on.

Note: in the case where k = 2, the rules can be stated even more simply. If the
rightmost coin is showing a 2, the warden transfers that coin, and optionally flips it to 1.
If the rightmost coin is showing a 1, the prisoner transfers that coin, and optionally flips
it to 2.

We can generalize this game still further, by limiting the legal positions in the game.
We can choose any subset S ⊆ T(n, k), closed under rotations, to be the set of legal
positions. (We’ll assume that the goal state α is in S.) Then each move of the game,
whether made by the prisoner or the warden, must be to a position in S. We require
that S be closed under rotations so that there is a legal move from every legal position; if
the warden ever passes, the prisoner always has the option to transfer the rightmost die
without changing its value.

In [3], Weiss analyzed the Warden’s Game (though not under that name) in the case
where k = 2, S = T(n, 2), and α is the string 2n. Weiss proved that the game tree for
the game is summarized by the lexicographically minimal de Bruijn sequence for T(n, 2);
if both players play optimally, the game will proceed backwards through the de Bruijn
sequence, one move at a time. For example, if n = 4, the lexicographically minimal de
Bruijn sequence is the following:

(2222)1111211221212222

For this game, consider the position 2212. If we move one step backwards in the
de Bruijn sequence from 2212, we get 1221; thus, the optimal move from 2212 must be
for the warden to flip the rightmost coin before moving it, producing the position 1221.
Similarly, the next optimal move is for the prisoner to move from 1221 to 1122, and so
on, until the goal position 2222 is finally reached.

As we will prove in Section 3, the same holds true for any values of n and k, any
subset S ⊆ T(n, k) of legal positions (closed under rotations), and any goal state α ∈ S.
The greedy algorithm always generates the full game tree for the Warden’s Game. As
an example, let’s once again consider the subset S2 ⊆ T(2, 9) consisting of those strings
where both the string itself and its reverse are 2-digit composite numbers. Here, once
again, is the (not quite universal) cycle generated by the greedy algorithm, starting from
α = 99.

(99)33621224251526394454648182728496556685758699

For example, consider the position 82. The preceding substring of length 2 is 18; thus,
the optimal move must be for the warden to move the rightmost die and reduce its value

the electronic journal of combinatorics 26(1) (2019), #P1.35 4

from 2 to 1. The next optimal move must be to 81; both the prisoner and the warden
refuse to change the value on the rightmost die. The next optimal move is to 48, which
means the warden passes, and the prisoner increases the value on the rightmost die from
1 to 4. And so on.

Remember, four positions from S2 do not appear in this cycle: 77, 78, 87, and 88.
Why don’t they appear? Because they are losing positions for the prisoner! From any
of those positions, the warden has a simple way to keep the game going indefinitely: he
refuses to ever decrease the value on a die, and passes every time. The prisoner will never
be able to increase a die to a 9, because 79, 89, 97, and 98 are all illegal positions. So the
prisoner will never be able to reach the goal state, 99.

Our goal for the next section is to prove that this sort of thing happens regardless of
the choices of S and α. We will show that the prisoner can win from a given position
β ∈ S if and only if he can win from β with the warden always passing: this happens
when β is increasable in S to a rotation of α. We will also show that the greedy algorithm
generates the game tree for this game; thus, the greedy algorithm generates a universal
cycle if and only if every β ∈ S is increasable in S to a rotation of α.

4 Proof of Theorem 1

Assume we are given values of n and k, a set S ⊆ T(n, k) of legal positions (closed under
rotations), and a goal state α ∈ S. Define the “remoteness function” r on S as follows:
given β ∈ S, the remoteness of β, r(β), is the number of moves the game will last starting
from β if both players play optimally. If the warden can keep the game going forever,
then r(β) =∞. This definition of remoteness is similar to the concept of remoteness used
in [1].

Note: we can consider α to either be an end position (of remoteness 0) or a start
position (of nonzero remoteness). We will always use the notation r(α) for the number of
moves the game will last starting from α; thus, r(α) > 0.

Lemma 2. Let β1, β2 ∈ S be such that β1 = γa and β2 = a′γ for a′ > a. (Thus, if the
current position is β1 and the warden passes, then the prisoner may move to β2.) Then,
starting from β1, the prisoner has a strategy which can force the position to eventually
reach β2.

Proof. This can be proven by induction on the sum of the symbols in β1. Starting from
β1 = b1b2 · · · bn−1a, if the warden passes, then the prisoner may move immediately to
β2. Otherwise, the warden must move to β3 = a′′b1b2 · · · bn−1 for some a′′ < a. But the
sum of the symbols of β3 is less than the sum of the symbols of β1. So by the inductive
hypothesis, the prisoner has a strategy to eventually force the position to bn−1a

′′b1 · · · bn−2,
then to bn−2bn−1a

′′b1 · · · bn−3, and so on to b1b2 · · · bn−1a′′. We still have a smaller sum
than the sum of the symbols in β1, so the prisoner can eventually force the position to
β2 = a′b1b2 · · · bn−1, since a′ > a′′.

Lemma 3. Given β ∈ S, the prisoner can win from β if and only if β is increasable in
S to a rotation of α.

the electronic journal of combinatorics 26(1) (2019), #P1.35 5

Proof. If β is not increasable in S to a rotation of α, then the warden can keep the game
going indefinitely, simply by passing on every turn. Since the prisoner can only increase
values, if the warden always passes, the prisoner will only be able to reach positions γ
where β is increasable in S to a rotation of γ. Since α is not such a position, the prisoner
can never win.

Now assume that β is increasable in S to a rotation of α. Then, if the warden chooses
to pass on every move, then there is a sequence of moves β = β0, β1, β2, . . . , βm = α that
the prisoner may make to win. By Lemma 2, if the game starts from β = β0, then prisoner
can eventually force the position to be β1, then β2, and so on until finally reaching α and
winning.

Note: while this shows that the prisoner can win eventually from any position β that
is increasable in S to α, the recursive strategy described above will probably not be the
prisoner’s optimal strategy.

Lemma 4. Given any positive integer m, if there are no positions of remoteness m, then
there are no positions of remoteness m + 1. (Thus, by induction, there are no positions
of remoteness m′ for any integer m′ > m.)

Proof. If there were a position of remoteness m + 1, then with optimal play, the first
move from such a position would be to a position of remoteness m. . . and no such position
exists. So there are no positions of remoteness m+ 1.

Lemma 5. Given positions γa1, γa2 ∈ S, if a1 < a2, then r(γa1) 6 r(γa2).

The point here is that, the greater the rightmost symbol in the string, the better off
the warden is. From γa1, the warden may move to any aγ ∈ S such that a < a1, or the
warden may give the prisoner the choice to move to any aγ ∈ S where a > a1. From γa2,
the warden still may move to any aγ ∈ S such that a < a1, or the warden can ensure
that the next move is to aγ ∈ S for some a > a1. . . but in the latter case, the warden may
choose a specific aγ ∈ S such that a1 6 a < a2, if he so desires. This extra option can
only help the warden, never hurt him. So we must have r(γa1) 6 r(γa2).

Note: we will later see that if r(γa1) and r(γa2) are both finite, then r(γa1) < r(γa2).

Lemma 6. For any nonnegative integer m, there is at most one position of remoteness m.

This is a significant result; combined with Lemma 4, the conclusion is that the “game
tree” is really a chain, not a tree. There is one position of remoteness 0 (namely, α), one
position of remoteness 1, one position of remoteness 2, and so on until all the winning
positions for the prisoner have been exhausted. And given any position β that is winning
for the prisoner, if a game starting from β is played optimally, the game will pass through
all positions of remoteness less than r(β) until finally reaching α.

Proof. We will prove this by contradiction. Let m be the smallest integer where there are
multiple positions of remoteness m. There is only one position of remoteness 0 (namely,
α), so m > 1. Let aγ be the one position of remoteness m − 1; this position must be

the electronic journal of combinatorics 26(1) (2019), #P1.35 6

reachable in one move from all positions of remoteness m, so all such positions must have
the form γb, for some b ∈ {1, 2, · · · k}.

Let b1 < b2 < · · · < bl be the elements of {1, 2, · · · , k} such that γbi ∈ S for each i.
By Lemma 5, r(γb1) 6 r(γb2) 6 · · · 6 r(γbl). If j is the smallest natural number such
that r(γbj) = m, then because there is just one position of each remoteness less than m,
we must have

r(γb1) < r(γb2) < · · · < r(γbj−1) < r(γbj) = r(γbj+1).

For each natural number i 6 j, let ai ∈ {1, 2, · · · , k} be such that aiγ is the next
position reached from γbi if both sides play optimally. (The ai’s for 1 6 i 6 j are all
distinct.) We can now show that it is impossible to have r(γbj) = r(γbj+1) = m:

Consider the two sets {ai}ji=1 and {bi}ji=1. If these two sets are identical, then consider
what happens if the warden passes from the position γbj+1. The prisoner is then forced
to move to cγ for some c > bj+1. This c will not be an element of {ai}ji=1, and hence cγ
will not have remoteness at most m − 1. So by passing, the warden can force the next
move to be to a position of remoteness at least m; γbj+1 can’t have remoteness m.

On the other hand, assume {ai}ji=1 and {bi}ji=1 are not identical. That means there
is some bi < bj+1 that is not in {ai}ji=1. If the warden moves from γbj+1 to biγ, then the
warden has not moved to a position of remoteness at most m− 1. So again, the warden
was able to force the next move to be to a position of remoteness at least m; γbj+1 can’t
have remoteness m.

This completes the contradiction; it is impossible to have two positions of the same
finite remoteness.

Lemma 7. If α ∈ S is the goal state, then the position in S of highest finite remoteness
is α.

The reason: since α is (trivially) increasable in S to a rotation of α, r(α) is finite. Say
r(α) = m > 0 (we are treating α as a start position, not an end position). If there were
any position β such that r(β) = m + 1, then with optimal play, the next move from β
would be to a position of remoteness m: namely, α. But that means, with optimal play,
β is just one move from the goal state; so r(β) = 1, not m+ 1. Thus, α has the maximal
finite remoteness of any string in S.

This also means that the positions in S that are winning for the prisoner form a cycle.
The only question remaining is why this is the same cycle that we would get from the
greedy algorithm.

Theorem 8. The greedy algorithm generates the game “tree” for the warden’s game.

Proof. Let {βm} ⊆ S be the sequence of strings generated by the greedy algorithm,
starting from α. We have β0 = α, and for each m > 0, if βm = aγ, then βm+1 = γb, where
b is the least element of {1, · · · , k} such that γb ∈ S and γb does not appear in the set
{βi}mi=1. (If γb ∈ {βi}mi=1 for all b ∈ {1, · · · , k}, then there is no βm+1; βm is the last string
in the sequence.) Obviously, β0 = α is the one position of remoteness 0. We must show
that r(βm) = m for all m > 0; we will prove this by induction.

the electronic journal of combinatorics 26(1) (2019), #P1.35 7

Assume we have r(βi) = i whenever 0 < i 6 m. Let βm = aγ. Assume there is a
position of remoteness m + 1; it must be of the form γb ∈ S (so that there is a move
available to aγ), where γb is not in {βi}mi=1 (since all strings in that set have remoteness
m or less). Let b1 < b2 < · · · < bj be the elements of {1, · · · k} such that γbi ∈ S, but γbi
is not in {βi}mi=1. (Thus, βm+1 = γb1.) By Lemma 5, r(γb1) 6 r(γb2) 6 · · · 6 r(γbj); by
Lemma 6, all of those inequalities are strict except for where we have multiple positions of
infinite remoteness. We have r(γb1) > m, so the only i where we can have r(γbi) = m+ 1
is i = 1. Thus, we must have r(βm+1) = r(γb1) = m+ 1.

Now assume that m is the largest finite remoteness of any position in S; that is,
r(α) = m. The above inductive argument shows that βm = α. And the way we defined
Greedyα(S), the process halts if we ever have βm = α. So we do have r(βm) = m for all
m > 0; the length-n substrings of Greedyα(S) are exactly the winning positions for the
prisoner, in order of remoteness.

We thus have proven Theorem 1; the length-n substrings of Greedyα(S) are exactly the
winning positions for the prisoner, which are exactly the strings in S which are increasable
in S to a rotation of α.

As a final note for this section, here’s a comment on the optimal strategy for the
warden:

Corollary 9. Given any position γb ∈ S, if a is the greatest number less than b such
that aγ ∈ S, then the optimal move for the warden from γb is either to move to aγ, or
to pass. (So, when the warden does decrease a number, he should always do so by the
smallest amount possible.)

Proof. Assume not. Assume there is a position γb ∈ S, where a is the greatest number
less than b where aγ ∈ S, but the warden’s optimal move is to cγ, where c < a. Let
r(γb) = m; then the remoteness of cγ is m− 1 (where, if cγ = α, we are treating α as an
end position).

Since S is closed under rotations and aγ ∈ S, we have γa ∈ S. From Lemmas 5 and 6,
since a < b, we have r(γa) < r(γb). So r(γa) < m. But from the position γa, the warden
can move to cγ, a position of remoteness m− 1. So r(γa) > m, contradiction.

There seems to be no similar statements we can make about the optimal strategy for
the prisoner; depending on the situation, the prisoner may want to increase the value
on a die by the least amount possible, the greatest amount possible, or some amount
in between. For example, all such possiblities occur in our “no primes” example, S2 ⊆
T(2, 9). There seems to be no way for the prisoner to determine anything about his
optimal next move from β, other than to generate the entire string Greedyα(S) until β is
reached.

5 Interesting examples

In [2], there are a number of examples of interesting sets S ⊆ T(n, k) where the greedy
algorithm produces a universal cycle for S. Here are some new such sets derived from

the electronic journal of combinatorics 26(1) (2019), #P1.35 8

Theorem 1.

5.1 Strings increasable to a rotation of α

Choose any α ∈ T(n, k), and let S ⊆ T(n, k) be the strings that are increasable in T(n, k)
to a rotation of α. Obviously, S is then closed under rotations.

Given any β ∈ S, β is increasable in T(n, k) to a rotation of α. So there are strings
β0, β1, . . . , βm ∈ T(n, k) such that β0 = β, βm is a rotation of α, and each βi can be
changed to βi+1 by increasing one symbol. Then each βi is increasable in T(n, k) to a
rotation of α, so each βi ∈ S. But that means β is actually increasable in S to a rotation
of α. Since this is true for all β ∈ S, the greedy algorithm starting from α generates a
universal cycle of S.

For example, let n = 3, k = 4, and α = 143. Here’s a universal cycle for the strings in
T(3, 4) increasable to a rotation of 143:

(143)1112113122123132133141142143

Note: we get the same collection of strings if α is either 314 or 431. But the resulting
universal cycle would be different in either such case. Here’s the universal cycle for
α = 314:

(314)1112113114212213214312313314

And here’s the universal cycle for α = 431:

(431)1121131221231321331411421431

5.2 Unions

Let S1,S2 ∈ G(n, k), where S1 and S2 are both closed under rotations. Assume all strings
in S1 and S2 are increasable (in their respective sets) to rotations of a single string α.
Then all strings in S1 ∪ S2 are increasable in S1 ∪ S2 to a rotation of α, so the greedy
algorithm starting from α generates a universal cycle of S1 ∪ S2.

This raises the question of whether the same can be said of intersections. However,
this turns out to be false: even if the greedy algorithm generates universal cycles for S1

and S2, the same may not be true of S1 ∩ S2. One simple example will demonstrate why.
Let S1,S2 ⊆ T(2, 3) be as follows:

S1 = {11, 13, 31, 33}

S2 = {11, 12, 21, 23, 32, 33}

The greedy algorithm (starting from 33) generates universal cycles for both S1 and S2,
but does not do so for S1 ∩ S2 = {11, 33}. The problem is that there may be an element
β ∈ S1 ∩ S2 which is increasable to a rotation of α in both S1 and in S2, but the paths
from β to α may be different in each set. (Here, β = 11; we have 11 → 13 → 33 in S1,
and 11→ 12→ 32→ 33 in S2.)

the electronic journal of combinatorics 26(1) (2019), #P1.35 9

5.3 Rotations of increasing strings

Assume that n 6 k. Let S be the set containing all strictly increasing strings in T(n, k)
and their rotations. For example, in T(3, 5), S contains the following strings and their
rotations:

{123, 124, 125, 134, 135, 145, 234, 235, 245, 345}

By definition, S is closed under rotations. Let α be the lexicographically maximal,
strictly increasing string in T(n, k):

α = (k − n+ 1)(k − n+ 2) · · · (k − 1)k.

Any string β ∈ S is increasable in S to a rotation of α; the greatest symbol in β can be
increased to k, then the next-greatest symbol can be increased to k − 1, and so on. So a
universal cycle for S can be generated with the greedy algorithm.

5.4 Maximum cyclic increment or cyclic decrement

Choose integers I > 0 and D > 0. Let S ⊆ T(n, k) be the set of strings with no cyclic
increment of size greater than I and no cyclic decrement of size greater than D. For
example, if we take T(3, 4), I = 2, and D = 1, then S consists of the following strings
and their rotations:

{111, 112, 122, 132, 222, 223, 233, 243, 333, 334, 344, 444}

By definition, S is closed under rotations. Let α = kn; α contains no cyclic increments
or decrements, so α ∈ S.

To show that the greedy algorithm works here: choose any β ∈ S such that β 6= kn.
Assume β = γ1aγ2, where a is the least symbol in β. Let β′ = γ1(a + 1)γ2. This change
from β to β′ will either decrease the size of cyclic increments/decrements, or will produce
a new cyclic increment or decrement of size 1 (which is legal). So β′ ∈ S. Thus, for any
β ∈ S, it’s possible to increase a symbol of β by 1 to produce another string in S. This
process can be continued until α is reached. So any β ∈ S is increasable in S to α, and
the greedy algorithm (starting from α) produces a universal cycle.

5.5 Minimum span, maximum span

Choose integers m and M such that 0 6 m < M < k. Let S ⊆ T(n, k) be the set of
strings β whose span is at least m and at most M . (The “span” of a string β is the
difference between the least and greatest symbols in β.) For example, if we take T(3, 4),
m = 1, and M = 2, then S consists of the following strings and their permutations:

{112, 113, 122, 123, 133, 223, 224, 233, 234, 244, 334, 344}

Clearly, S is closed under rotations. Any β ∈ S can be increased in S to a rotation
of α = (k − m)kn−1, as follows: if the span of β is greater than m, increase the least

the electronic journal of combinatorics 26(1) (2019), #P1.35 10

symbol of β by 1. If the span of β equals m, increase the greatest symbol of β by 1, unless
the greatest symbol is k. Repeat this process until a string β containing the symbol k is
reached. At that point, the least symbol in β will be k−m; leave that one symbol alone,
and increase all the other symbols of β to k.

Thus, the greedy algorithm generates a universal cycle for S.

5.6 Avoiding a substring

Choose a string γ ∈ T(m, k) for some m > 1, and let S ⊆ T(n, k) be the set of strings
that do not contain γ as a cyclic substring. It was proven in [2] that if γ does not contain
k, then S can be generated by the greedy algorithm. If γ does contain k, then we can
still make a weaker statement: let i, j ∈ {1, . . . , k} be two symbols such that i < j. If γ
contains i but not j, then S can be generated by the greedy algorithm.

As an example, let S ⊆ T(3, 3) be the set of strings not containing 13 as a cyclic
substring. (In this case, i = 1 and j = 2.) Then S consists of the rotations of the
following strings:

{111, 112, 122, 123, 222, 223, 233, 333}

The reason why the greedy algorithm works: kn ∈ S, since the forbidden substring
γ includes a symbol a < k. Given any β ∈ S, we can increase β in S to kn, as follows:
replace any occurrences of a in β with b, then increase all symbols in β to k. So all strings
in S are increasable in S to kn.

It would seem to be a difficult question to completely categorize the forbidden sub-
strings γ for which S can be generated by the greedy algorithm. I have not found any
examples of a forbidden substring γ containing a symbol a 6 k − 2 where the greedy
algorithm fails. And I would conjecture that there are none:

Conjecture 10. Let γ ∈ T(m, k) be a string containing a symbol a 6 k − 2. Let
S ⊆ T(n, k) (for some n > m) be the set of strings not containing γ as a cyclic substring.
Then the greedy algorithm starting from kn generates a universal cycle for S.

Now, if all symbols in γ are either k or k − 1, then the greedy algorithm may fail.
Let S ⊆ T(n, 9) (for some n > 4) be the set of strings not containing a particular γ as a
cyclic substring. I leave it as an exercise to the interested reader to show that the greedy
algorithm (starting from α = 9n) succeeds if γ is in the following set. . .

{8899, 8989}

. . . but the greedy algorithm fails if γ is in the following set.

{89, 889, 899, 8889, 8999}

Note: for some strings γ, the outcome depends on the value of n. One example is
γ = 8998; the greedy algorithm will fail if and only if n is a multiple of 3. (All strings in
S will be increasable in S to 9n, except for β = (889)n/3 and its rotations.)

the electronic journal of combinatorics 26(1) (2019), #P1.35 11

6 Conclusion and future work: necklaces

At this point, we have classified the subsets S ⊆ T(n, k), closed under rotations, where
the greedy algorithm produces a universal cycle for S. But there’s one major problem
with generating universal cycles with the greedy algorithm: we must store the entire cycle
(which could be exponential in length) in order to generate the cycle. Fortunately, when
S = T(n, k), there is a faster method:

Given α ∈ T(n, k), α is a “necklace” if, out of all rotations of α, α itself is the
lexicographically earliest such rotation. If we take all such necklaces in lexicographic
order, and append their aperiodic prefixes, we obtain a de Bruijn cycle for T(n, k) (the
same cycle produced by the greedy algorithm). For example, here’s the resulting universal
cycle for T(3, 3) (with spaces added between the prefixes):

(333)1 112 113 122 123 132 133 2 223 233 3

In [2], this is called the FKM algorithm. It is proved in [2] that this algorithm produces
a universal cycle for S ⊆ T(n, k) (the same universal cycle produced by the greedy
algorithm) if

1. S is closed under rotations, and

2. every necklace in S remains a necklace in S if the suffix of length i (whenever
1 6 i 6 n) is replaced with ki. (When this second condition holds true, S is referred
to as a “k-suffix language”.)

However, this is not an “if and only if” situation. The following example of a set S ⊆
T(4, 3) is given in [2]:

S = {1112, 1121, 1122, 1211, 1212, 1221, 1222, 1322, 2111,

2112, 2121, 2122, 2132, 2211, 2212, 2213, 2221, 3221}
Not all necklaces in S remain in S when a suffix is replaced with all 3’s. However, the
FKM algorithm works here. The necklaces in S, in lexicographic order, are 1112, 1122,
1212, 1222, and 1322. Reduce 1212 to its aperiodic prefix 12, then concatenate all the
strings, and you obtain a universal cycle:

(1322)1112 1122 12 1222 1322

So it is natural to ask whether there is a necessary and sufficient condition on S ⊆ T(n, k)
so that the FKM algorithm generates a universal cycle for S. I have a possible candidate
for just such a condition:

Let’s generalize the concept of a k-suffix language as follows. Given a string α ∈
T(n, k), call a set S ⊆ T(n, k) an “α-suffix language” if, for any β ∈ S, each symbol in β
is at most the corresponding symbol in α, and we obtain another element of S if we replace
any suffix of β with an equal-length suffix of α. That is, if β = b1 · · · bn and α = a1 · · · an,
then for all m such that 1 6 m 6 n, we have bm 6 am and b1 · · · bm−1am · · · an ∈ S. With
this definition in place, I would conjecture the following:

the electronic journal of combinatorics 26(1) (2019), #P1.35 12

Conjecture 11. Let S ⊆ T(n, k) be a set that is closed under rotations. Then the FKM
algorithm generates a universal cycle for S if and only if the set of necklaces in S is an
α-suffix language, where α is the lexicographically maximal necklace in S.

The reason for this conjecture: assume that S ⊆ T(n, k) is closed under rotations, and
assume the set of necklaces in S is an α-suffix language, where α is the lexicographically
maximal necklace in S. Under these circumstances, it appears that the prisoner has a
strategy such that, if the current position is a necklace β ∈ S, the prisoner can ensure
that the next necklace position reached is lexicographically earlier than β. Thus, in the
universal cycle generated by the greedy algorithm, the necklaces appear in lexicographic
order. Perhaps then, the FKM algorithm generates the same cycle as the greedy algorithm.

References

[1] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for Your Mathematical Plays,
Vol. 2. A K Peters, Ltd., Natick, MA, 2003.

[2] J. Sawada, A. Williams, and D. Wong, Generalizing the Classic Greedy and Necklace
Constructions of de Bruijn Sequences and Universal Cycles, The Electronic Journal
of Combinatorics 23(1) #P1.24(2016).

[3] G. Weiss, A Combinatorial Game Approach to State Nullification by Hybrid Feed-
back, in 46th IEEE Conference on Decision and Control, (2007).

the electronic journal of combinatorics 26(1) (2019), #P1.35 13

	Introduction
	Results
	The Warden's Game
	Proof of Theorem 1
	Interesting examples
	Strings increasable to a rotation of
	Unions
	Rotations of increasing strings
	Maximum cyclic increment or cyclic decrement
	Minimum span, maximum span
	Avoiding a substring

	Conclusion and future work: necklaces

