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Abstract

The chromatic number of a latin square L, denoted χ(L), is the minimum num-
ber of partial transversals needed to cover all of its cells. It has been conjectured
that every latin square satisfies χ(L) 6 |L| + 2. If true, this would resolve a long-
standing conjecture—commonly attributed to Brualdi—that every latin square has
a partial transversal of size |L| − 1. Restricting our attention to Cayley tables of
finite groups, we prove two results. First, we resolve the chromatic number question
for Cayley tables of finite Abelian groups: the Cayley table of an Abelian group
G has chromatic number |G| or |G| + 2, with the latter case occurring if and only
if G has nontrivial cyclic Sylow 2-subgroups. Second, we give an upper bound for
the chromatic number of Cayley tables of arbitrary finite groups. For |G| > 3, this
improves the best-known general upper bound from 2|G| to 3

2 |G|, while yielding an
even stronger result in infinitely many cases.
Mathematics Subject Classifications: 05B15, 05C15, 05E30

1 Introduction and preliminaries

Let n be a positive integer, let [n] := {0, 1, 2, . . . , n − 1}, and let L be a latin square
of order n, which we define as an n × n array in which each row and each column is a
permutation of some set of n symbols indexed by [n]. We define a partial transversal of
L as a collection of cells which intersects each row, each column, and each symbol class at
most once. A transversal of L is a partial transversal of size n and a near transversal
is a partial transversal of size n − 1. It is well known that L possesses an orthogonal
mate if and only if it can be partitioned into transversals. But when L does not have an
orthogonal mate, can we still efficiently partition its cells into partial transversals?
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L =
0 1 2
1 2 0
2 0 1

Γ(L) =

Figure 1: A latin square L and its associated latin square graph Γ(L).

This question can be restated in terms of graph coloring. Associated with every latin
square L is a strongly regular graph Γ(L) defined on vertex set {(r, c, Lr,c) : r, c ∈ [n]}
with (r1, c1, s1) ∼ (r2, c2, s2) if and only if one of r1 = r2, c1 = c2, or s1 = s2 holds (e.g.
see Figure 1). It is straightforward to check that partial transversals of L correspond to
independent sets in Γ(L). Thus, the graph chromatic number χ(Γ(L)) is the minimum
number of partial transversals needed to cover all of the cells in L.

We refer to a partition of a latin square L into k partial transversals as a (proper) k-
coloring of L. The chromatic number of L, denoted χ(L), is the minimum k for which
L has a k-coloring. As a partial transversal has size at most n, χ(L) > n. On the other
hand, we may bound χ(L) from above by applying Brooks’ theorem to the graph Γ(L).

Proposition 1. Let L be a latin square of order n > 3. Then

n 6 χ(L) 6 3n− 3,

with equality holding for the lower bound if and only if L possesses an orthogonal mate.

It is widely believed that the upper bound in Proposition 1 is far from tight. Indeed,
a recent conjecture due to Cavenagh [2] proposes that the chromatic number of a latin
square can differ from its order by at most 2.

Conjecture 2. Let L be a latin square of order n. Then

χ(L) 6

n+ 1 if n is odd,
n+ 2 if n is even.

Latin squares for which this conjecture is tight have been given by Euler [5] in the even
case and by Wanless and Webb [16] in the odd case. If true, Conjecture 2 is likely difficult
to prove, as it implies a pair of long-standing conjectures concerning the existence of large
partial transversals in latin squares. These conjectures are attributed to Brualdi [3, 14]
and Ryser [13], respectively.

Conjecture 3. Let L be a latin square of order n. Then (1) L possesses a near transversal
and (2) if n is odd then L possesses a transversal.

To see that Conjecture 2 implies Conjecture 3.1, suppose there exists a latin square
L in which every partial transversal has size at most n − 2. Any set of n + 2 partial
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transversals in L could cover at most (n + 2)(n − 2) = n2 − 4 of L’s n2 cells. Thus,
L has no proper (n + 2)-coloring. A similar argument shows that Conjecture 2 implies
Conjecture 3.2.

There is a growing body of evidence for Conjecture 2. As noted in [1], the conjecture
has been verified for n 6 8. It is also known to hold in an asymptotic sense. Using the
canonical representation of latin squares as 3-uniform hypergraphs, the following is an
immediate corollary of a powerful theorem due to Pippenger and Spencer [12].

Theorem 4. As n→∞, every latin square L of order n satisfies χ(L) = n+ o(n).

Furthermore, there are several families for which Conjecture 2 is known to hold. Cave-
nagh and Kuhl [2] showed that Conjecture 2 holds for circulant latin squares (i.e. Cayley
tables of cyclic groups) when n 6≡ 6 (mod 12). This result was confirmed and extended
in [1], where Conjecture 2 was established for circulant latin squares of every order. The
present paper continues the work towards resolving Conjecture 2 in the special case where
L is the Cayley table of a finite group. Parts of this work have already appeared in the
M.Sc. thesis of the second author [8], which was supervised by the first author.

Observe that the chromatic number of Γ := Γ(L) is not affected by relabelling the
rows, columns, or symbol classes of L, nor is it affected by applying a fixed permutation
to each of the triples (r, c, s) ∈ V (Γ). Thus, χ(L) is a main class invariant, and it makes
sense in this context to speak of the Cayley table of a group G, which we denote by L(G).
In a slight abuse of notation, we write χ(G) for the chromatic number of L(G) and Γ(G)
for the latin square graph Γ(L(G)).

Given a group G, let Syl2(G) denote the isomorphism class of its Sylow 2-subgroups.
The groups for which χ(G) = n were recently characterized by Bray, Evans, and Wilcox [7,
17], resolving a 50 year old conjecture due to Hall and Paige [9].

Theorem 5. Let G be a group of order n. Then the following are equivalent:

1. χ(G) = n,

2. χ(G) 6 n+ 1,

3. L(G) has a transversal,

4. Syl2(G) is either trivial or non-cyclic.

In light of this, verifying that Conjecture 2 is true for finite group Cayley tables
amounts to showing that every group with nontrivial, cyclic Sylow 2-subgroups has an
(n+2)-coloring. In Section 2 we give such a construction under the additional assumption
that G is Abelian, yielding our first main result.

Theorem 6. Let G be an Abelian group of order n. Then

χ(G) =

n if Syl2(G) is either trivial or non-cyclic,
n+ 2 otherwise.

(1)
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In Section 3 we turn to the case of general (i.e. not necessarily Abelian) groups. We
begin by showing that χ(G) is submultiplicative, thereby generalizing a classical result
due to Hall and Paige. This allows us to establish an upper bound for χ(G) which depends
only upon the largest power of 2 dividing |G|: every group G of order n = 2lm > 3 satisfies

χ(G) 6 n+ 2m. (2)

Previously, the best-known general upper bound for χ(G) was due to Wanless; it follows
directly from his work in [15] that every finite group satisfies χ(G) 6 2n. This bound is
improved upon by (2) except when n ≡ 2 (mod 4). Dealing directly with this final case,
we obtain our second main result.

Theorem 7. Let G be a group of order n > 3. Then

χ(G) 6 3
2n.

The condition n > 3 is necessary because Γ(Z2) ∼= K4. It is worth noting that, by
Theorem 4, the bound in Theorem 7 is not asymptotically tight. Indeed, it is likely far
from tight even for relatively small fixed values of n; if Conjecture 2 is true, then (1) holds
for every finite group.

2 The chromatic number of Abelian groups

Let G = Zn1 × Zn2 × · · · × Znk
be a finite Abelian group of order n. We say that

G = {g0, g1, . . . , gn−1} is ordered lexicographically if gi = (i1, i2, . . . , ik) precedes gj =
(j1, j2, . . . , jk) (i.e. i < j) if and only if there is some l ∈ {1, 2, . . . , k} for which (under
the natural order of Zml

) il ≺ jl and im = jm for every positive integer m < l. In the
statement of the following technical lemma, indices are expressed modulo n.

Lemma 8. Let G = Zn1 × Zn2 × · · · × Znk
= {g0, g1, . . . , gn−1} be a lexicographically

ordered Abelian group of odd order n. If gcd(s + 1, n) = 1 for some positive integer s,
then the map φ : G→ G given by φ(gi) = gi+c + gsi+d is injective for every c, d ∈ [n].

Proof. Suppose G = Zn is cyclic and consider g, h ∈ G such that φ(g) = φ(h). We
may treat g and h as integers in the set [n], in which case the group operation is simply
addition modulo n, and

(s+ 1)g + c+ d ≡ φ(g) ≡ φ(h) ≡ (s+ 1)h+ c+ d (mod n).

We then have (s+ 1)g ≡ (s+ 1)h (mod n). But gcd(s+ 1, n) = 1 tells us that s+ 1 is a
generator of G = Zn, and therefore g ≡ h (mod n), as desired.

Now, we may assume G = Zn1×H, where H = Zn2×· · ·×Znk
is a nontrivial Abelian

group of odd order m := n/n1. If H = {h0, h1, . . . , hm−1} is ordered lexicographically,
then for every i ∈ [n]

gi =
(⌊

i

m

⌋
, hi (mod m)

)
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and, defining the map ψ : H → H by ψ(hi) = hi+c (mod m) + hsi+d (mod m), we have

φ(gi) =
(⌊
i+ c

m

⌋
+
⌊
si+ d

m

⌋
(mod n1) , ψ

(
hi (mod m)

))
.

Consider i, j ∈ [n] such that φ(gi) = φ(gj). In this case we have ψ(hi (mod m)) =
ψ(hj (mod m)). It then follows by induction on |G| that i ≡ j (mod m). Thus, there is
some r ∈ [n1] such that j = i+ rm, and

⌊
i+ c

m

⌋
+
⌊
si+ d

m

⌋
≡
⌊
i+ rm+ c

m

⌋
+
⌊
si+ srm+ d

m

⌋

≡
⌊
i+ c

m

⌋
+ r +

⌊
si+ d

m

⌋
+ sr (mod n1).

We then have (s + 1)r ≡ 0 (mod n1). But r ∈ [n1] and gcd(s + 1, n1) = 1, forcing us to
conclude that r = 0, in which case i = j.

The Möbius ladder of order 2n, denoted Mn, is the cubic graph formed from a cycle
of length 2n by adding n edges, one between each pair of vertices at distance n in the
initial cycle. We refer to this initial cycle as the rim of Mn, and refer to the edges between
opposite vertices in the rim as rungs. A pair {u, v} ⊆ V (Mn) is called near-antipodal if
the shortest path from u to v along the rim of Mn has length n− 1 (see Figure 2). There
is a strong sense in which Möbius ladders are “nearly” bipartite.

Proposition 9. For n > 3, let Mn = (V,E) be the Möbius ladder of order 2n, and
let {u, v} ∈ V be a near-antipodal pair. Then the induced subgraph Mn [V \ {u, v}] is
bipartite.

Proof. Observe that the greedily coloring of Mn [V \ {u, v}] with vertices ordered clock-
wise around the rim of Mn uses exactly 2 colors.

v
u

v

u

Figure 2: Two drawings of the Möbius ladder M18 with a near-antipodal pair of vertices
highlighted.
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Let G = {g0, g1, . . . , gn−1} be a group satisfying χ(G) > n. We construct an (n + 2)-
coloring of Γ = Γ(G) in two steps. First, we show that Γ can be partitioned into n

2 induced
copies of Mn. Second, we find a bipartite induced subgraph Λ ⊆ Γ which contains a near-
antipodal pair from each copy of Mn. By Proposition 9, we then have a partition of Γ
into n

2 + 1 bipartite induced subgraphs. Using a disjoint pair of colors for each of these
subgraphs, we obtain an (n+ 2)-coloring of Γ.

Before formally presenting our construction, we introduce some notation which will
be utilized both here and in Section 3. Letting L = L(G) and fixing an integer d ∈ [n],
we define the dth right diagonal of L as the set

TLd := {Li,i+d : i ∈ [n]},

where indices are expressed modulo n. When it is clear which latin square we are
discussing, we drop the superscript and simply write Td. We also define the maps
R,C : L→ [n] and S : L→ G by

R(Lij) = i, C(Lij) = j, and S(Lij) = gigj. (3)

These maps send a cell of L to its row index, its column index, and its symbol, respectively.
We then extend these functions to sets of cells. For A ⊆ L, let R(A) = {R(a) : a ∈ A}
be the multiset containing the row-index of every cell in A (counted with multiplicity),
and define C(A) and S(A) similarly.
Theorem 10. Let G be an Abelian group of order n. If Syl2(G) is cyclic and nontrivial
then

χ(G) 6 n+ 2.
Proof. Because Syl2(G) is nontrivial, n is even and the constant

q := n/2 (4)

is well-defined. We may assume n > 4, as Γ(Z2) ∼= K4 has chromatic number 4 = 2 + 2.
Moreover, letting t := |Syl2(G)|, there is some integer l > 1 such that t = 2l. By the
fundamental theorem of finite Abelian groups G = Zt × Zm1 × Zm2 × · · · × Zmk

, where
m := ∏k

i=1 mk is odd. LettingH := Zm1×Zm2×· · ·×Zmk
, we orderH = {h0, h1, . . . , hm−1}

lexicographically. We then impose an ordering on G by setting

gi :=
(
i (mod t), hi (mod m)

)
for every i ∈ [n]. (5)

Arrange the rows and columns of L = L(G) according to this ordering and, for every
i ∈ [q], define the set

Di := T2i ∪ T2i+1.

Letting Γ := Γ(G), recall that V = V (Γ) corresponds to the set of cells in L, and that
two cells are adjacent if they lie in the same row, they lie in the same column, or they
contain the same symbol. By definition, two cells in a latin square can satisfy at most
one of these conditions. We therefore have a natural partition of E = E(Γ) into the sets
ER, EC , and ES, corresponding to “row-edges,” “column-edges,” and “symbol-edges,”
respectively.
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Claim 11. The induced subgraph Γi := Γ[Di] is isomorphic to the Möbius ladder Mn for
every i ∈ [q].

Expressing indices modulo n, let Aj := Lj,j+2i and Bj := Lj,j+2i+1 for every j ∈ [n].
It is not hard to see that the only row-edges in Γi are {AjBj : j ∈ [n]} (see Figure 3).
Similarly, the only column-edges in Γi are {Aj+1Bj : j ∈ [n]}. Thus, the vertex sequence

A0, B0, A1, B1, . . . , An−1, Bn−1 (6)

corresponds to a Hamilton cycle in Γi that uses all of the edges in E(Γi)∩ (ER ∪EC). To
prove the claim, it is left to show that E(Γi)∩ES contains exactly n edges, each of which
connects opposite vertices (i.e. vertices at distance n) in the cycle given by (6).

Given an integer z, let z be the corresponding residue modulo t. It follows from (5)
that, for every j ∈ [n],

S(Aj) =
(
2j + 2i, hj + hj+2i (mod m)

)
and S(Bj) =

(
2j + 2i+ 1, hj + hj+2i+1 (mod m)

)
.

(7)
Because t is even, for every j, k ∈ [n] the first coordinates of S(Aj) and S(Bk) have
different values modulo 2. Thus, ES contains no edges of the form AjBk.

Fixing an arbitrary j ∈ [n], we want to find all nonzero x ∈ [n] for which S(Aj) =
S(Aj+x). For all such x, it follows from (7) that 2j+ 2i ≡ 2j+ 2x+ 2i (mod t). Recalling
that t = 2l, we may conclude that x is divisible by 2l−1. On the other hand, (7) also
implies hj+hj+2i = hj+x+hj+x+2i (where indices are here expressed modulo m). Applying
Lemma 8 with c = 0, d = 2i, and s = 1, we have j ≡ j+x (mod m), so that x is divisible
by m. But, as m is odd, the only nonzero integer in [n] which is divisible by both m and
2l−1 is q = m2l−1 = n/2. Thus, for every j ∈ [n], we have S(Aj) = S(Aj+x) if and only if
x = q.

We now see that each Aj is incident to exactly one edge in ES ∩ E(Γi): the edge
connecting it to the opposite vertex in the cycle given by (6). A similar argument shows
that, for every j ∈ [n], the only edge in ES ∩ E(Γi) incident to Bj is BjBj+q. This
establishes the claim.

We complete the proof (of Theorem 10) by finding a pair of independent sets X, Y ⊆ V
such that Γ′i := Γ[Di \ (X ∪Y )] is bipartite for every i ∈ [q]. Given such X and Y , we can
define D′i := Di \ (X ∪ Y ) for every i ∈ [q] and properly (n + 2)-color Γ using a distinct
pair of colors for each of the n

2 + 1 sets D′0, D′1, . . . , D′q−1, X ∪ Y .
Towards a definition of X and Y , let

p :=
⌈
n

4

⌉
and (q0, q1) :=

(q, q + 1) if q ≡ 0 (mod 3),
(q − 1, q) otherwise.

(8)

Keeping in mind that indices are here considered modulo n, for each i ∈ [p] define

xi := Li, 3i, x
′
i := Lq0+i, q1+3i, and X := {xi, x′i : i ∈ [p]}. (9)

Similarly, for every j ∈ [q − p], define

yj := Lj, 3j+2p, y
′
j := Lq0+j, q1+3j+2p, and Y := {yj, y′j : j ∈ [q − p]}. (10)
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0̃00 101 002 110 011 112 020 121 022 100 001 102 010 111 012 120 021 122
101 002 100 0̃11 112 010 121 022 120 001 102 000 111 012 110 021 122 020
002 100 001 112 010 111 0̃22 120 021 102 000 101 012 110 011 122 020 121
110 011 112 020 121 022 100 001 102 0̃10 111 012 120 021 122 000 101 002
011 112 010 121 022 120 001 102 000 111 012 110 0̃21 122 020 101 002 100
112 010 111 022 120 021 102 000 101 012 110 011 122 020 121 002 100 001
020 121 022 100 001 102 010 111 012 120 021 122 000 101 002 110 011 112
121 022 120 001 102 000 111 012 110 021 122 020 101 002 100 011 112 010
022 120 021 102 000 101 012 110 011 122 020 121 002 100 001 112 010 111
100 001 102 010 111 012 120 021 122 000 1̃01 002 110 011 112 020 121 022
001 102 000 111 012 110 021 122 020 101 002 100 011 1̃12 010 121 022 120
102 000 101 012 110 011 122 020 121 002 100 001 112 010 111 022 1̃20 021
010 1̃11 012 120 021 122 000 101 002 110 011 112 020 121 022 100 001 102
111 012 110 021 1̃22 020 101 002 100 011 112 010 121 022 120 001 102 000
012 110 011 122 020 121 002 100 001 112 010 111 022 120 021 102 000 101
120 021 122 000 101 002 110 011 112 020 121 022 100 001 102 010 111 012
021 122 020 101 002 100 011 112 010 121 022 120 001 102 000 111 012 110
122 020 121 002 100 001 112 010 111 022 120 021 102 000 101 012 110 011

Figure 3: A Cayley table of Z2 × Z3 × Z3 with elements of D0, X̃, and Y highlighted.

Figure 3 exhibits D0, X and Y in highlighted fonts for the group Z2 × Z3 × Z3. Observe
that xi ∈ T2i ⊆ Di and x′i ∈ T2i+1 ⊆ Di for each i ∈ [p]. Similarly, yj, y′j ∈ Dp+j for each
j ∈ [q − p].

Recall that the edges on the rim of Γi are exactly E(Γi) ∩ (ER ∪ EC). It follows from
the definition of Di that the shortest path from xi to x′i along the rim of Γi has length
n− 1. Similarly, the shortest path from yj to y′j along the rim of Γp+j has length n− 1.
Thus, (xi, x′i) and (yj, y′j) are near-antipodal pairs for every i, j ∈ [p]. Proposition 9 then
implies that Γ′i is bipartite for every i ∈ [q].

It remains to show that X and Y are independent sets in Γ. We begin by showing that
there are no row-edges and no column-edges between cells in X. Recalling the definitions
in (3) and (9), we see that the multiset of row-indices of cells in X is

R(X) = [p] ∪ {q0 + i : i ∈ [p]}.

But, having assumed n > 4, we have p− 1 < q0 and q0 + p− 1 < n. It follows that R(X)
is simple, that is, it contains no repeated entries. Now, define

X̂ := {xi : i ∈ [p]} and X ′ := {x′i : i ∈ [p]}.

Again looking to (9), we see that

C(X̂) = {3i : i ∈ [p]} and C(X ′) = {q1 + 3i (mod n) : i ∈ [p]}.

Because 3(p−1) < n, both C(X̂) and C(X ′) are simple sets. Thus, C(X) = C(X̂)∪C(X ′)
is simple unless C(X̂) ∩ C(X ′) 6= ∅. Suppose there were some c ∈ C(X̂) ∩ C(X ′). As
c ∈ C(X̂), there is an i0 ∈ [p] such that c = 3i0, which implies c ≡ 0 (mod 3). On the
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other hand, c ∈ C(X ′) implies c ≡ q1 + 3i1 (mod n) for some i1 ∈ [p]. We claim that this
implies c 6≡ 0 (mod 3), which will yield a contradiction.

To prove this claim, first suppose that n is a multiple of 3. In this case q is also
divisible by 3, and (8) tells us that q1 = q + 1 ≡ 1 (mod 3). But then c ≡ q1 + 3i1 ≡
1 (mod 3) as claimed. Now suppose n is not divisible by 3. In this case (8) tells us that
q1 = q 6≡ 0 (mod 3). When q + 3i1 < n this implies c ≡ q + 3i1 6≡ 0 (mod 3), while when
q + 3i1 > n we have

c ≡ q + 3i1 − n ≡ q − n = −q 6≡ 0 (mod 3).

Now, observe thatX and Y have the same “shape” in L in the sense that R(Y ) ⊆ R(X)
and C(Y ) ⊆ {c+ 2p : c ∈ C(X)}. Thus, having shown that R(X) and C(X) are simple,
we may conclude that R(Y ) and C(Y ) are also simple. In other words, there are no
row-edges or column-edges between cells in Y .

We next show that S(X) is a simple set. From here to the end of the proof indices are
expressed modulo m. Recalling (8), observe that q0 + q1 ∈ {n − 1, n + 1}. Combinined
with (5), (9), and the fact that t divides n, this implies the existence of some w ∈ {−1, 1}
such that, for every i ∈ [p],

S(xi) = (4i, hi + h3i) and S(x′i) = (4i+ w, hi+q0 + h3i+q1).

Considering the parity of entries in the first coordinate, we immediately see that S(xi) 6=
S(x′j) for every i, j ∈ [p]. Thus, S(X̂) ∩ S(X ′) = ∅.

To see that S(X̂) is simple, consider xi, xj ∈ X̂ such that S(xi) = S(xj). We then
have hi + h3i = hj + h3j, and applying Lemma 8 with c = d = 0 and s = 3 tells us that
i ≡ j (mod m). We also have

4i ≡ 4j (mod t). (11)
Suppose t 6 4. In this case (11) is trivially satisfied. However, because 0 6 i, j 6 p− 1,

|i− j| < p =
⌈
tm

4

⌉
6
⌈4m

4

⌉
= m.

As distinct numbers are congruent modulo m only if their difference is at least m, we
may conclude that i = j. So, recalling that t = 2l for some integer l > 1, we may
assume t > 8. It then follows from (11) that i − j ≡ 0 (mod 2l−2). Because m is odd,
gcd

(
m, 2l−2

)
= 1 and the Chinese Remainder Theorem tells us that x = 0 is the unique

x ∈ [2l−2m] satisfying x ≡ 0 (mod 2l−2) and x ≡ 0 (mod m). But we have just shown
that |i − j| ≡ 0 (mod m) and |i − j| ≡ 0 (mod 2l−1). Thus, as 0 6 |i − j| < p = 2l−2m,
we have i = j.

A similar argument shows that S(X ′) is simple. Indeed, when S(x′i) = S(x′j), applying
Lemma 8 with c = q0, d = q1, and s = 3 yields i ≡ j (mod m), while 4i + w ≡
4j + w (mod t) implies 4i ≡ 4j (mod t). From here we may proceed exactly as above.

The proof that S(Y ) is simple is nearly identical. By (5) and (10), there is some
w ∈ {−1, 1} such that

S(yi) = (4i+ 2p, hi + h3i+2p) and S(y′i) = (4i+ 2p+ w, hi+q0 + h3i+q1+2p)
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for every i ∈ [q − p]. Considering the parity of entries in the first coordinate, we see
S(Ŷ ) ∩ S(Y ′) = ∅. We then check that S(Ŷ ) and S(Y ′) are both simple by applying
Lemma 8 and noting that for z ∈ Z we have 4i + z ≡ 4j + z (mod t) if and only if
4i ≡ 4j (mod t).

Proof of Theorem 6. By Theorem 5, if Syl2(G) is trivial or non-cyclic, then χ(G) = n.
Otherwise χ(G) > n+ 2, from which Theorem 10 implies χ(G) = n+ 2.

3 A general upper bound

Consider a finite group G and a normal subgroup H / G. In [9], Hall and Paige showed
that a sufficient condition for the existence of a transversal in L(G) is that both L(H)
and L(G/H) possess transversals. This turns out to be a special case of a more general
result concerning colorings of finite group Cayley tables.

Our proof of this fact relies upon a modification the mappingsR, C, and S—introduced
just before Theorem 10—which map sets of cells in a latin square to multisets of rows
indices, column indices, and symbols, respectively. Given a multiset X, let Supp(X) be
the underlying simple set. For every set of cells X ⊆ L(G), we set R′(X) := Supp(R(X)),
C ′(X) := Supp(C(X)), and S ′(X) := Supp(S(X)).

Lemma 12. Let G be a finite group and let H / G be a normal subgroup. Then

χ(G) 6 χ(H)χ(G/H).

Proof. Letting n := |G| and m := |H|, set k := n
m

. We begin by constructing a block
representation

L(G) =


A00 A01 · · · A0,k−1
A10 A11 · · · A1,k−1

... ... . . . ...
Ak−1,0 Ak−1,1 · · · Ak−1,k−1

 (12)

where each block Aij is a latin subsquare satisfying χ(Aij) = χ(H). Let {f0, f1, . . . , fk−1}
be a collection of coset representatives for H in G, so that G/H = {f0H, f1H, . . . , fk−1H}.
We may assume that f0 is the identity element of G. To build the block representation
(12), fix an ordering of H = {h0, h1, . . . , hm−1} and order the rows and columns of L(G)
by

h0, h1, . . . , hm−1, f1h0, . . . , f1hm−1, f2h0, . . . , f2hm−1, . . . , fk−1h0, . . . , fk−1hm−1. (13)

Fixing arbitrary i, j ∈ [k], we define Aij as the unique m×m subsquare of L(G) satisfying

R′(Aij) = {im+ x : x ∈ [m]} and C ′(Aij) = {jm+ x : x ∈ [m]}.

Because H is normal in G there is a permutation π ∈ Sm such that hrfj = fjhπ(r) for
every r ∈ [m]. Thus S ′(Aij) = fifjH, and it follows that Aij is a latin subsquare of L(G).
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1 h h2 s sh sh2 s2 s2h s2h2 s3 s3h s3h2

h h2 1 sh2 s sh s2h s2h2 s2 s3h2 s3 s3h

h2 1 h sh sh2 s s2h2 s2 s2h s3h s3h2 s3

s sh sh2 s2 s2h s2h2 s3 s3h s3h2 1 h h2

sh sh2 s s2h2 s2 s2h s3h s3h2 s3 h2 1 h

sh2 s sh s2h s2h2 s2 s3h2 s3 s3h h h2 1
s2 s2h s2h2 s3 s3h s3h2 1 h h2 s sh sh2

s2h s2h2 s2 s3h2 s3 s3h h h2 1 sh2 s sh
s2h2 s2 s2h s3h s3h2 s3 h2 1 h sh sh2 s

s3 s3h s3h2 1 h h2 s sh sh2 s2 s2h s2h2

s3h s3h2 s3 h2 1 h sh sh2 s s2h2 s2 s2h

s3h2 s3 s3h h h2 1 sh2 s sh s2h s2h2 s2

Figure 4: L(Dic3), divided into blocks as per (12), with a color class from the proof of
Lemma 12 in bold.

To establish χ(Aij) = χ(H), we provide a graph isomorphism between Γ(Aij) and
Γ(H). Indeed, for every vab = (a, b, hahb) ∈ V (Γ(H)), let φ(vab) = (π−1(a), b, fifjhahb) ∈
V (Γ(Aij)). It then follows from the definition of a group that the triples vab = (a, b, hahb)
and vcd = (r, s, hrhs) match in exactly one coordinate if and only if the corresponding
triples φ(vab) and φ(vrs) match in exactly one coordinate.

Let K be the k × k array formed from (12) by identifying blocks with the symbols
therein contained. Having shown above that S ′(Aij) = fifjH, we see that K is a latin
square which is equivalent to the Cayley table L(G/H). Letting y := χ(G/H), we may
select some y-coloring f∞ : K → [y]. Furthermore, letting x := χ(H), we may also select
an x-coloring cij : Aij → [x].

We now use the colorings f∞ and {fij : i, j ∈ [k]} to construct (xy)-coloring of
L, say f : L → [x] × [y]. For each i, j ∈ [k] and for every cell c ∈ Aij ⊆ L, set
f(c) := (f∞(Aij), fij(c)). See Figure 4 for an example of a color class of f when G =
〈h, s |h3 = s4 = 1, s−1hs = h−1〉 is the dicyclic group of order 12 and H = Z3. To see that
f is indeed a proper coloring, consider c, c′ ∈ L such that f(c) = f(c′). Because f∞ is a
proper coloring, c and c′ cannot lie in adjacent blocks of V (Γ(K)). They could lie in the
same block, say Aij, but because fij is also a proper coloring, it is nonetheless impossible
for c and c′ to be adjacent in Γ(L).

Recall from Theorem 5 that, in determining an upper bound for the chromatic number
of all finite groups, we need only consider groups whose Sylow 2-subgroups are nontrivial
and cyclic. The following structural theorem for such groups was observed in [9] as a
direct corollary of a classical result due to Burnside ([10] Theorem 14.3.1).
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Lemma 13. Let G be a finite group and let P be a Sylow 2-subgroup of G. If P is cyclic
and nontrivial then there is a normal subgroup of odd order H /G for which G/H ∼= P .

Combining Lemmas 12 and 13, we obtain an upper bound for χ(G) which depends
only upon the largest power of 2 dividing |G|.

Theorem 14. Let l and m be nonnegative integers such that m is odd, and let t = 2l. If
G is a group of order n = mt, then

χ(G) 6 n+ 2m.

Proof. We may assume t > 2 and Syl2(G) = Zt, as otherwise Theorem 5 implies χ(G) =
n 6 n + 2n

t
. Lemma 13 then tells us that G has a normal subgroup H of order m

satisfying G/H ∼= Zt. With χ(H) and χ(Zt) determined by Theorem 5 and Theorem 10,
respectively, it follows from Lemma 12 that

χ(G) 6 χ(H)χ(Zt) = n+ 2m.

Recall that the previously best-known general upper bound, proven in [15], was χ(G) 6
2n. Theorem 14 improves significantly upon this bound for general groups whose order
is divisible by large powers of 2. Indeed, as t grows with respect to m, Theorem 14
approaches the conjectured best possible bound of χ(G) 6 n+ 2.

Given a (full) transversal T in a latin square L of order n, there is a unique bijection
φ : [n] → [n], known as the index map of T , which sends the row index x ∈ [n] to the
column index of the unique cell in T with row index x, so that

T = {Li,φ(i) : i ∈ [n]}.

If L is the Cayley table of a group G = {g0, g1, . . . , gn−1}, then φ ∈ Sn is the index map
of some transversal if and only if gigφ(i) is an enumeration of G (or, in the language of [7],
gi 7→ gφ(i) is a complete mapping).

We end by proving our second main result, Theorem 7, which states that every finite
group G of order n satisfies

χ(G) 6 3
2n.

Proof of Theorem 7. Let P be a Sylow 2-subgroup of G. We may assume P = 〈p〉 ∼= Z2;
indeed, if P is trivial then Theorem 5 implies χ(G) = n 6 3

2n, while if |P | > 4 then it
follows from Theorem 14 that

χ(G) 6 n+ 2 n

|P |
6 n+ 2n

4 = 3
2n.

Letting m := n
2 , Lemma 13 tells us that G has a normal subgroup H of order m satisfying

G/H ∼= P . As in the proof of Lemma 12, we fix an arbitrary enumeration of H =
{h0, h1, . . . , hm−1} and order the rows and columns of L = L(G) by

h0, h1, . . . , hm−1, ph0, ph1, . . . , phm−1.
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Breaking L into four m×m subsquares, we obtain the block representation

L =
(
A0 A2
A1 A3

)
.

Observe that each Ai is a latin subsquare with A0 = L(H).
Because m = |H| is odd, Theorem 5 implies χ(A0) = m = |A0|. Let {T0, T1, . . . , Tm−1}

be an m-coloring of A0. For each i ∈ [m], let φi be the index map corresponding to the
transversal Ti, so that

Ti = {Lj,φi(j) : j ∈ [m]}.
We want to use φi to define m-colorings of A1, A2, and A3. Fixing an arbitrary i ∈ [m],
define the set

T ′i := {Lm+j,φi(j) : j ∈ [m]},
and note that T ′i ⊆ A1. To see that T ′i is a transversal of A1, note that φi is a bijection
and phjhφi(j) is an enumeration of pH. It is then easy to check that {T ′i : i ∈ [m]} is an
m-coloring of A1.

To find m-colorings for A2 and A3, we use the fact that H is normal in G to define a
permutation π ∈ Sm for which hjp = phπ(j) for every j ∈ [m]. Fixing an arbitrary i ∈ [m],
define the map ψi : [m]→ ([2m] \ [m]) by

ψi(j) := m+ φi(π(j)) for every j ∈ [m].
As both π and φi are permutations of [m], their composition is also a permutation. Thus,
ψi is a bijection. We then define the sets

Qi := {Lj,ψi(j) : j ∈ [m]} and Q′i := {Lm+j,ψi(j) : j ∈ [m]}.
Observing that S(Lj,ψi(j)) = hjphφi(π(j)) = phπ(j)hφi(π(j)) and S(Lm+j,ψi(j)) = hπ(j)hφi(π(j)),
it is easy to check that {Qi : i ∈ [m]} and {Q′i : i ∈ [m]} are m-colorings of A2 and A3,
respectively.

Let Γ := Γ(L). Expressing indices modulo m, define for every i ∈ [m] the set
Xi := Ti ∪ T ′i+1 ∪Qi ∪Q′i.

Because Xi is the union of four subsquare transversals, it contains exactly two cells from
each row, column, and symbol class of L. Thus, the induced subgraph Γi := Γ[Xi] is cubic.
Noticing that {Xi : i ∈ [m]} partitions L, if we can show that χ(Γi) 6 3 for every i ∈ [m],
then we may conclude that χ(L) 6 3

2n. Fixing an arbitrary i ∈ [m], Brooks’ Theorem
tells us that Γi is 3-colorable unless it contains a connected component isomorphic to the
complete graph K4.

Suppose we could find a connected component Λ ⊆ Γi which is isomorphic to K4. As
V (Γi) is the union of four independent sets—one corresponding to each subsquare Aj—we
may assume V (Λ) = {vj ∈ Aj : j ∈ [4]}. Moreover, the row and column edges of Λ must
form a 4-cycle. Thus, if R(v0) = j, we must have C(v0) = φi(j) and R(v2) = j. It then
follows from the definition of Qi that C(v2) = ψi(j). But this implies C(v3) = ψi(j), so
that R(v3) = m+ψ−1

i (ψi(j)) = m+ j. We then have R(v1) = m+ j and C(v1) = φi+1(j).
If v0, v2, v3, v1 is to form a 4-cycle, we must have C(v0) = C(v1). However, this would
mean φi(j) = φi+1(j), contradicting the fact that Ti ∩ Ti+1 = ∅.
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4 Concluding remarks and open problems

While the restriction of Cavenagh’s Conjecture 2 to finite group Cayley tables remains
open, even for groups as basic as dihedral groups with order congruent to 2 modulo 4,
we believe that the restriction of Brualdi’s Conjecture 3 to Cayley tables may be within
reach.
Conjecture 15. For every finite group G, its Cayley table L(G) possesses a near transver-
sal.

Conjecture 15 is related to the notion of sequenceable groups, and is known to hold
true for many groups that are not known to satisfy Cavenagh’s conjecture [4, Chapter 3]
(including all dihedral groups [11]).

One strengthening of Conjecture 2 is worth mentioning. Cavenagh and Kuhl [2] have
conjectured that latin squares should possess optimal colorings that are equitable, i.e.
colorings in which any two color classes differs in size by at most one.

Conjecture 16. Every latin square L possesses an equitable χ(L)-coloring.

This obviously holds true if χ(L) = n, while Mehdi Esmaili [6] has recently verified
Conjecture 16 for all latin squares of order at most 8. Cavenagh and Kuhl prove that
Conjecture 16 also holds for L(Zn) when n is congruent to 2 or 10 modulo 12. They
do this by starting with a construction similar to that in our proof of Theorem 10, then
extending the two smaller color classes by carefully transferring cells from several of the
larger color classes. Can a similar process be done with our colorings?

Finally, we mention a natural generalization of chromatic number to the class of or-
thogonal arrays. Following [3, §11.1], an orthogonal array is a k × n2 matrix in which
every 2× n2 submatrix contains every pair in [n]× [n] as a column. Let OA(n, k) be the
set of orthogonal arrays with fixed n and k. For k > 3, a member of OA(n, k) (with two
rows designated as index sets) is equivalent to a set of k − 2 mutually orthogonal latin
squares (MOLS) of order n. Let O ∈ OA(n, k). We may define χ(O) to be the least
number of parts into which the columns of O can be partitioned such that the submatrix
induced by each part has no row with a repeated entry. It is easy to show that χ(O) > n
and that χ(O) = n if and only if O extends to a member of OA(n, k + 1). Thus χ(O)
serves as a measure of how close a set of k − 2 MOLS is to being extendable to a set of
k − 1 MOLS. A number questions regarding the chromatic number of orthogonal arrays
can be formulated, few of which have been investigated to our knowledge.
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