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Abstract

Consider these two distinct combinatorial objects: (1) the necklaces of length n
with at most g colors, and (2) the multisets of integers modulo n with subset sum
divisible by n and with the multiplicity of each element being strictly less than gq.
We show that these two objects have the same cardinality if ¢ and n are mutually
coprime. Additionally, when ¢ is a prime power, we construct a bijection between
these two objects by viewing necklaces as cyclic polynomials over the finite field of
size q. Specializing to ¢ = 2 answers a bijective problem posed by Richard Stanley
(Enumerative Combinatorics Vol. 1 Chapter 1, Problem 105(b)).

Mathematics Subject Classifications: 05A19, 05E99

1 Introduction

Let ¢ be and n be two coprime positive integers. The main characters of this paper are
the following two combinatorial objects:

e The set A of necklaces (i.e., equivalent up to cyclic rotations) of length n for which
the color of each bead is drawn from a color set of size q.

e The set F of functions f : Z, — {0,1,...,q— 1} for which their (linearly) weighted
sum is divisible by n, i.e.,

-y

where Z,, denotes the ring of integers modulo n.

Z zf(z) =0 (mod n)},

2E€Ln
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Equivalently, F is the set of multisets of Z, with subset sum divisible by n and with
the multiplicity of each element being at most ¢ — 1. The set F for the case ¢ = 2 has
been studied in different areas of mathematics, such as coding theory [SY72], number
theory [OST78], and toric arrangements [ACH15, AC17].

It was known that N and F have the same cardinality when ¢ = 2 (see [Stal2, Problem
105(b) Chapter 1]). We extend this result to all values of g.

Theorem 1.1. Let q and n be two coprime positive integers. Then

| = |F| = Z ged(n, ged(s;i)ier) H<qei — ),

n .
IC{1,....m} el

where m, s;, and {; are as in Definition 2.1.

We remark that Theorem 1.1 gives a new expression for the cardinality of A/ and
F. This expression is different from the formulas in [KP93, Theorem 11] and [Kusl4,
Section 4.2], which involve the Mdbius function and the Euler’s totient function. We also
remark that the condition that n and ¢ are coprime is necessary, as there are examples for
which |V is not equal to |F| when ged(n, q) > 1. One such example is when n = ¢ = 2,
which gives us [N| =3 and |F| = 2.

The proof of Stanley for the case ¢ = 2 is not bijective in nature, and neither is our
proof of Theorem 1.1. In [Stal2, Problem 105(b) Chapter 1], Stanley asked for a bijective
proof of Theorem 1.1 for the case ¢ = 2. We answer this question here by constructing a
bijection between the two sets when ¢ is a prime power.

Our bijection starts by viewing necklaces with ¢ colors as cyclic polynomials over the
finite field F,. Each necklace can then be associated to a coset of a finite abelian group
by taking the remainder of the division of the cylic polynomial by irreducible factors of
X™ — 1. On the other hand, a function in F can be associated to an element of the
same finite abelian group by evaluating the function on the cyclotomic cosets of Z,. It
will follow from the construction that, for any given necklace, the corresponding coset
contains exactly one group element that is associated to a function in F. We take this
unique function as the image of the necklace under our bijection. The full definition of
this bijection is given in §4.

Theorem 1.2. Let q be a prime power, and let n be a positive integer that is coprime to
q. Then the map +p : N — F in Definition 4.12 is a bijection.

See Example 4.13 for an example of the bijection zZ when ¢ = 2 and n = 3. A bijection
for general values of ¢ remains an open problem.

This paper is structured as follows. In §2, we review algebraic tools that will be used
in the proofs of the main theorems. In §3, we present a proof of Theorem 1.1 in §3. In §4,
we present a proof of Theorem 1.2. In §5, we present two open bijective problems that
extend Theorem 1.2.
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2 Preliminaries

In this section, we review algebraic tools that will be used in the proof of Theorem 1.1
and Theorem 1.2.
Throughout this paper, ¢ and n are two positive integers such that ged(n,q) = 1.

Definition 2.1. Consider the equivalence relation on Z, that takes all multiplications by

q as equivalent. Fix integers s, s9, ..., S, as the representatives of the equivalence classes
of this relation. The cyclotomic cosets Sy, ..., S, of Z, are

Si = {s5,q5:,¢si,...,q" s} (1€ {l,...,m}),
where /; is the smallest positive integer such that ¢‘s; = s; (mod n). A

When ¢ is a prime power, we view the set of necklaces N from the following algebraic
perspective. Let Q be the quotient
0. FX
- (Xr=1)
of the polynomial ring over the finite field F, of order ¢ in a single variable X by the ideal
generated by X" — 1. Each element of Q corresponds to an n-character string over an
alphabet of size ¢ by taking its coefficient vector. The set A/ can then be viewed as

aEQ},

the set of equivalence classes of the relation in Q that takes all multiplications by X as
equivalent.

Fix a primitive n-th root of unity w in the algebraic closure of F,. Such w exists
because ¢ is coprime to n.

N = {{a,Xa, LX)

Definition 2.2. Let ¢ be a prime power. Let P,..., P, be the irreducible factors of
X™ — 1 over the field F,. That is, for any i € {1,...,m},

P, = H(X —wh).
keS;

We denote by G; the set
Gi = (Q/PQ)",

of nonzero elements of the quotient ring Q/P,Q. YA

Definition 2.3. Let ¢ be a prime power. For any a € Q, we denote by «; := @ mod P,
the image of a in Q/P;Q under the quotient map. In particular, X; is the image of X in

Q/FQ. A

We now present examples of the objects discussed above for the case that ¢ = 2 and
n = 3. This case will be our running example throughout this paper.
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Example 2.4. Let ¢ = 2 and n = 3. We make the following choices of cyclotomic cosets
from Definition 2.1:

s1=0, S;={0}; and sy=1, Sy={1,2}.

We represent a function f : Zs — {0,1} as the set {z € Z3 | f(z) = 1}. In this
notation, the sets ' and F are given by

N ={{0} {1, X, X*}, {1+ X, X + X* 1+ X}, {1 + X + X*}},
F ={2,{0},{1,2},{0,1,2}}.

The polynomials P; € Q from Definition 2.2 are given by
P=1+X; P=1+X+X" A
We refer to [Wan03] for the proofs of the following properties of Q/FP;Q and G;.

Lemma 2.5 ([Wan03, Section 9]). Let g be a prime power, and let n be a positive integer
coprime to q. For any i € {1,...,m},

(i) Q/PQ is a finite field of order ¢".
(ii) G is a cyclic group of order q“ — 1 under multiplication.

O

(i) X; is an element of G; with multiplicative order el

We will use the following versions of the Chinese remainder theorem in the proof of
Theorem 1.1 and Theorem 1.2.

Theorem 2.6 (Chinese remainder theorem [Hun80, Theorem 2.25]).

i) Let n be a positive integer with prime factorization n = pi* ... p7t. Then the follow-
1 ¢
g map s an isomorphism:

ZInZ — Z)p7'Z % - - X L] p,' L

z mod n — (z mod p{*,...,z mod pj*).

(ii) Let q be a prime power and let n be a positive integer coprime to q. Then the
following map is an isomorphism:

Q—Q/PQx---xQ/P,0Q

a— (amod Pi,...,amod P,). O

The following lemma is a consequence of Theorem 2.6(1i).
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Lemma 2.7. Let n and dy,...,d; be positive integers. Then there exists a group auto-
morphism ¢ : [, L = | such that

ged(n,dy)
dihy + -+ dphg = ged(n, dy, ..., di)  (mod n),
where h; is the i-th coordinate of ¢(1,...,1).

Proof. By the Chinese remainder theorem (Theorem 2.6(i)), the group and the sum in
the lemma can be decomposed into their corresponding prime parts. Therefore, it suffices
to prove the lemma for when n is a prime power p®.

For any i € {1,...,k}, let a; be the integer such that p* = ged(n, d;), and let ¢; be an
integer coprime to n such that ¢;d; = ged(n, d;) (mod n). Note that a; < a by definition.

By reindexing if necessary, we can without loss of generality assume that a; < --- < ay.
Let e; be the group element (0,...,0,1,0,...,0). We define ¢(e;) to be
i—1

k
t1€1 — €, ifi = 1,
P(e;) = J; ’
€; 1f16{2,,]€}

We claim that ¢ can be extended to a group automorphism of Hle Zm.

Since a; is chosen to be the minimum value of a;’s, we have
k
n t (p*"er) — Zpaj"“ (p*%e;) =0 ifi=1;
ged(n, d;) olei) = =2
p*%e; =0 ifie€{2,...,k},

and so ¢ extends to a group homomorphism.
Tha map ¢ is an automorphism since the corresponding matrix is triangular and all
the diagonal entries are coprime to n. Finally, we have

k

k k
¢(1,,1) = Z¢(el) :tlel —Z€j+Z€j :t161 = (tl,O,‘..,O),
j=2 j=2

7=1
which implies that
d1h1 + ...+ dkhk = dltl = gcd(n, dl) (mod n) = gcd(n, dl, . ,dk) (HlOd n),

where the last equality is a consequence of a; being the minimum value of a;’s. This
proves the claim. O]

We will use the following version of Dirichlet’s prime number theorem in the proof of
Theorem 1.1.

Theorem 2.8 ([JJ98, Dirichlet’s prime number theorem]). Let a and b be two coprime
positive integers. Then there are infinitely many positive integers k such that a + kb is a
prime number. O
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3 Proof of Theorem 1.1

In this section, we present a proof of Theorem 1.1, starting with the case that ¢ is a prime
power.

Let m and S; be as in Definition 2.1, and F; be as in Definition 2.2. For any function
f:Z,—{0,1,...,q — 1}, the level set L,_1(f) of f at ¢ — 1 is the set {z € Z,, | f(z) =
q—1}.

Definition 3.1. Let ¢ be a prime power. For any I C {1,...,m}, the sets N7 and F;
are given by

N = {{a,on,...,X”_loz} eN | P dividesaiffi@é]},
f[lz{f€f| Lq_l(f)mSZ:SZIffl§é]} A

By definition {N7}icp
tively.

my form a partition of A" and F, respec-

..........

Example 3.2. Continuing from Example 2.4, the sets F; and N7 from Definition 3.1 are
given by

Nz = {{0}}, F» = {{0,1,2} };

Nyy = {{1+X + X?}}, Foy = {{1,2}}
N{g}:{{1+X,X+X2,1+X2}}, ]-“{2}:{{()}};

N{L?} = {{17X7 XQ}}v f{LQ} = {@} JAN

We now show that N; and F; have the same cardinality for any I C {1,...,m}.
Let s; and ¢; be as in Definition 2.1.

Lemma 3.3. Let ¢ be a prime power, let n be a positive integer coprime to q, and let
I C{1,....,m}. Then

ged(n, ged(si)ier) »
] = B T )
i€l
Proof. Recall the definition of G; from Definition 2.2 and the definition of a; and X; from

Definition 2.3. In particular, if « is an element of Q that is not divisible by P;, then «; is
contained in G;. Consider the map

f:{ozEQ|P¢dividesaiffi§él}—>HGi
iel

o = ()ier-

The map £ is a bijection by Theorem 2.6(ii).
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Denote by C; the cyclic subgroup of [],.; G; generated by (X;)ic;. Note that Aj is in
bijection with cosets of Cy in [[,.; G; by the map £. Hence we have

[Ic:/c

i€l

il

N1l =

- %' e 1)

iel
On the other hand, we also have

Gi] = ¢ —1  (by Lemma 2.5(ii));
|Cr| = min{k > 0 | (X;)* is the identity element of G; for all i € I}

— lem (1, (m)ie) (by Lemma 2.5(iii))

n

B ng(TL? ng(n7 51’)2’61).

The conclusion of the lemma now follows from (1). O

Lemma 3.4. Let ¢ and n be two coprime positive integers, and let I C {1,...,m}. Then

Proof. Let £ denote the set
Er=Af 2y —{0,1,...,q =1} | Lea(f) NS = S;iffi ¢ I}

Let 07 : & — [l;e; Zyti 1 be the map defined by

61
[ (Z ¢ f(¢’s;) mod ¢" — 1) .
j=0 il

The map 7 is surjective by the definition of &;.

Let f be any function in &;. For any ¢ € I, the sum Ef.":_ol ¢ f(¢s;) is strictly less than
¢ — 1 since L, 1(f) N S; # S;. This implies that the i-th coordinate of n;(f) determines
f(si),..., f(¢"1s;) for any i € I. Furthermore, we have (f(s;),..., f(¢" 's;)) = (¢ —
1,...,q—1) for any i ¢ I by the definition of £;. Therefore, we conclude that 7 is an
injective map.

Let (; be the map defined by

G2 — 2

el

(zi)ier — Z s;z; mod n.

i€l
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The map (; is a well defined group homomorphism as n divides s;(¢"% — 1) for all i €
{1,...,m} by Definition 2.1. Furthermore, by the definition of gcd, the image of (; is
ged(n, ged(s;)ier) Zon.

Now note that, for any f € &,

61
D 2f(2) =)D dsif(dsi) + D (" = 1)s;
2ETn, iel j=0 il
01
= Z S; ‘ ¢ f(¢’s;) (mod n)
=Cr(me(f))-

Since 7y is a bijection, it then follows from the definition of F; (Definition 3.1) that the
kernel of (; is equal to n;(Fp).
Combining all those observations, we conclude that

| Ties Zyte
_ _ k _ 7 q
Frl =l (Fol = Tker(Cl = o At e Ze

_ged(n, ged(si)ier) H(qgi _),

el
as desired. ]
We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix an arbitrary positive integer n. Let r € {0,...,n— 1} be such
that ged(n,r) = 1. Let « be a variable, and let ¢ = xn + r throughout this proof. Note
that ged(n,r) = ged(n,q) = 1.

Since the integers m, s;, and ¢; from Definition 2.1 depend only on n and r, we have
the function

N Z gcd(n, ng(Si)iEI) H((xn + T)Ei o 1) (2>

n .
I1C{1,....m} i€l

is a polynomial of x.

By Lemma 3.3, Lemma 3.4, and the fact that {N;}cqi,.my and {Fr}cp
partition of AV and F respectively, we have that || and |F| are equal to the polynomial
in (2) when ¢ = xn + r is a prime power. Since ged(n,r) = 1, we have by Theorem 2.8
that there are infinitely many positive integers x for which xn + r is a prime. Hence it
suffices to show that |[N| and |F| are polynomials of x.

For any ¢ € {1,...,n}, let col(i) be the number of necklaces of length n with colors
chosen from {0, ...7 — 1}, and such that all 7 colors are used. Then

-----

n

V| = Zcol(i) (f) = Z%@ H(mn+r—j).

1=1
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This shows that |\ is a polynomial of z.
Let V' denote the set

V= {RE{O,...,n—l}Z"

Z 2R, =0 (mod n)}

ZEZTL

We then have

\FI=> {f:Zy—{0,1,...,g— 1} | f(2) = R. (mod n) for all z € Z,}

ReV
=S [] HE =01 kn+R. < g}
ReV z€Zn
= Z(m 4 1)He€Za  Re<r}] g {z€20 | R,
ReV
This shows that |F| is a polynomial of z. This completes the proof. N

4 Proof of Theorem 1.2

In this section, we present a proof of Theorem 1.2. Throughout this section, ¢ is a prime
power and n is a positive integer that is coprime to q.

Let Q be as defined in Section 2, and let £ be the set of all functions from 7Z, to
{0,1,...,qg — 1}. Suppose that there exists a map ¢ : Q@ — & that satisfies the following
conditions:

(C1) The map 9 is a bijection from Q to &; and

(C2) For any a € Q there exists a unique 8 € {a, Xa,..., X" 'a} such that (8) is
contained in F.

We could then define the map % : N — F by
{a, Xa, ..., X" a} = ¥(B).

It would follow that @Z is a bijection between N and F, which would prove Theorem 1.2.
In this section, we will construct a map ¢ : Q@ — £ that satisfies (C1) and (C2).

Recall the definition of m, s;, and ¢; from Definition 2.1, the definition of G; from
Definition 2.2, and the definition of X; from Definition 2.3.

Let i € {1,...,m}. Since G, is a cyclic group of order ¢* — 1 (Lemma 2.5(ii)) and X;
is an element of G; with order —i— (Lemma 2.5(iii)), the group G; contains a group

generator such that X is w—th power of this generator.

Definition 4.1. For any i € {1,...,m}, let g; be a group generator of G; such that X;
is the wﬂch power of g;. A
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Recall the definition of P; from Definition 2.2 and the definition of «; from Defini-
tion 2.3.

Definition 4.2 (Discrete logarithm). Let ¢ € {1,...,m}, and let a be an element of Q
not divisible by P;. The discrete logarithm log, (c) is the smallest non-negative integer &
such that o; = gf in Gj. A

By Lemma 2.5(ii), the integer log, () is contained in {0,...,¢" — 2}.

Definition 4.3. Let i € {1,...,m}, and let o be an element of Q not divisible by P;.
We denote by a;(ar) and b;(«) the quotient and the remainder of the division of log,, ()

by (¢%i—1) ;glcd(n,si)

, respectively. A

In particular, the nonnegative integers a;(«) is strictly less than sed(nsy and bi(a) is

strictly less than w. We compute these integers for the case n = 3 below.

Example 4.4. Continuing from Example 3.2, we make the following choices of g; and g,
that satisfy the condition in Definition 4.1:

¢g1=1mod1+X and ¢o=Xmodl+X+ X2

Note that WM =1 for i € {1,2}; we remark that this equality is special to this
example and is false for large values of n and gq.
The following is the value of log, (a), ai(a) and b;(«) for different a’s:

o Ifa=1 (mod 1+ X), then
log,, (@) = 0; ar (o) = 0; by () = 0.
The following is the value of log,, (), as(a) and by(ax) for different a’s:
e Ifa=1 (mod 1+ X+ X?), then
log,, (o) = 0; as(a) = 0; bo(ar) = 0.
e Ifa=X (mod 1+ X + X?), then
log,, (a) = 1; as(a) = 1; ba(a) = 0.
e fa=1+X (mod1+ X + X?), then
log,, (@) = 2; as(a) = 2; ba(ar) = 0. A

Lemma 4.5. Let q be a prime power, let n be a positive integer coprime to q, and let
ie{l,...,m}. Then
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(i) a;(X) =1 and b;(X) =0; and
(ii) For any k >0 and any o € Q,

ai(X*a) =k + a;(a) (mod m) ; and

Proof. Part (i) follows directly from Definition 4.1 and Definition 4.3.
By Definition 4.2, we have for any non-negative integer k£ and any o € Q that

log,, (X*a) =log,,(a) + klog, (X) (mod g — 1)

(¢ — 1) ged(n, 5)
n

=(k + ai(a)) +bi(a) (mod ¢" —1).

Part (ii) now follows from Definition 4.3. O

Definition 4.6. Let I be a subset of {1,...,m}. Let ¢; be a group automorphism of
HieIchd(zs_) that satisfies

Z sihi 1 = ged(n, ged(si)ier)  (mod n), (3)

icl
where h;; is the i-th coordinate of ¢r(1,...,1). The function ¢; exists for any I C
{1,...,m} by Lemma 2.7. A

We present an explicit example of the function ¢; for the case n = 3 below.

Example 4.7. Continuing from Example 4.4, we choose ¢; to be the identity map on
[Lic;Z_» _ for any I C {1,2}. The map ¢; satisfies (3) by the following computation:

ged(n,s;)

e When / = @, the condition in (3) is vacuously true.

e When [ = {1}, we have

Sth{l} =0-1=3 (IIlOd 3)

e When I = {2}, we have

SQhQ’{Q} =1-1=1 (mod 3)

e When I = {1, 2}, we have

81h17{172} + Sghg’{l’g} =0-1+1-1=1 (mod 3) A
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Recall that L,_1(f) ={z € Z, | f(z) =¢—1}. For any I C{1,...,m}, write

QI::{aeQ‘Bdividesaiﬁi¢I};

By definition {Qs}rcqi,..my and {&€r}icq,...my form a partition of Q and &, respectively.
Let i € I, and let o be any element of ;. We denote by ¢; ;(«) the i-th coordinate

of ¢r((ai(«))ier), which corresponds to a nonnegative integer strictly less than wedlns

Since b;(«v) is a nonnegative integer strictly less than w and ¢; ;(a) is a

nonnegative integer strictly less than m, we have
0 < bi()——— + disla) < g — 1 (4)
S eed(n, ) " '

We denote by ¢;o(@), ..., cip-1(a) € {0,...,q— 1} the unique integers that satisfy

-1
, n
() ¢ = bi(a) ——— + di (). i)
D cule) = bla) s + dule) 5)
By (4), the sequence of integers (c;p, ..., Ci¢—1) is well defined and is not equal to (¢ —

L...,qg—1).
Let fo : Zn — {0,1,...,q — 1} be given by

iy Ja—1 ifi ¢ I;
fa(q SZ) T {Ci’j(Oé) if 4 € 1. (6)

The function f, has the property that L,_1(f,) N S; is a strict subset of S; for any ¢ € I
since (¢;p, .., Cig—1) is is not equal to (¢—1,...,¢—1). This implies that f, is contained
in 5].

Definition 4.8. Let I C {1,...,m}. We define ¢; : Q; — & to be the map that sends
a € Qr to the function f,. A

Example 4.9. Continuing from Example 4.7, we present the image of the function
for different o’s (recall that we represent a function f : Zg — {0,1} as the set {z € Zs |

£(2) = 1}
e The case I = @: When a = 0, the map 94 sends « to {0,1,2}.
e The case [ = {1}: When a =1+ X + X2, we have
bi(a) + ¢113(a) =04+0=0=0-2°

The map 171 then sends o to {1,2}.
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e The case I = {2}:
— When a =1+ X, we have
3by(a) + ooy () =3-0+2=2=0-2"+1-2"

The map g9y then sends « to {0,2}.
— When o = X + X?, we have

3ba(a) + ooy (a) =0-0+0=0=0-2"+0-2"

The map 19y then sends o to {0}.
— When o = 1+ X?, we have

3by(a) + doqoy(a) =3-0+1=1=1-2°4+0-2"
The map 1;sy then sends o to {0, 1}.
e The case I = {1,2}:
— When a = 1, we have

bi(a) + ¢1.193 () =
3by(ar) + doq1,2) () =

The map 11 2y then sends a to @.
— When a = X, we have

+0=
04+1=1=1-2"+0-2%

o
I
o
N\

\.O

bi() + 1,01,y ()
3ba(a) + P2 (1,23 ()

The map 1)(1,9y then sends a to {1}.

— When o = X2, we have

=0
=3

bi(a) + ¢ (@) =0+0=0=0-2%
3by() + o oy(a) =3-042=2=0-2"41.2"

The map 1q1 23 then sends « to the function {2}. A

Lemma 4.10. Let q be a prime power, let n be a positive integer coprime to q, and let
I C{1,...,m}. Then the map v; : Q; — &/ is a bijection.

Proof. Let a and o/ be two elements of Q; with the same image under ;. By (5), (6),
and the definition of 17, we have

n

bi() + ¢ir(a) = bi(o) +¢ir(a’)  forany i€ I.

ged(n, s;) ged(n, s;)
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Since ¢; ;(«) and ¢; 1(a’) are both nonnegative integers strictly less than W and the
equation above then implies that

Gir(a) = ¢ir(a) and bi(a) = b;(a’) forany i€ I.
Since ¢; is chosen to be a bijection by Definition 4.6, we conclude that
a;(a) = a;(a’) and bi(a) =bi(a’) forany i€ I.

It then follows from Definition 4.1 and Definition 4.3 that

/

a=a (mod FP) foranyic€l.
On the other hand, by the definition of Q;, we have
a=0=a (mod P;) foranyi¢I.

By Theorem 2.6(ii), we then conclude that o = o/. This proves the injectivity of ;.

Let f be an arbitrary element of &£;. For any i € I, let b; and ¢i.1 be the quotient and the
remainder of the division of the sum S5~ -0 "/ f(¢’s;) by sed(nsg- The sum S im0 " f(fss)
is a nonnegative integer strictly less than ¢“ — 1 by the assumptlon that L,_1(f)NS; # 5.
This implies that b; and ¢; ; satisfy the inequalities 0 < b; < m and 0 < ¢ <
ged(m,s;)

Write (a;)ier == ¢7 " ((¢i.r)icr). By Theorem 2.6(ii) there exists a unique o € Q that
satisfies the following equations:

l; ~1 )
log, (a) = o, L= DEAMS) 0 ey,
n

a=0 (mod P) (for i ¢ I).

The element « is contained in Q; as « is divisible by P; if and only if ¢ ¢ I. Furthermore,
the map 1y maps « to f, as the construction above mirrors the construction of ; with
steps taken in the reverse order. This proves the surjectivity of ;. ]

Lemma 4.11. Let q be a prime power, let n be a positive integer coprime to q, and let
I C{1,...,m}. Then, for any o € Qy,

(i) Z zfa(z Z si¢ir(a) (mod n); and

2ELm i€l

(i) There exists unique B € {a, X, ..., X" ‘a} such that ¥;(B) is contained in F.
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Proof. We start with proving part (i). We have

eZsza ;jzoqscu )+;§qjsi(q—1) (by (6))
= ; EX_; ¢’ sicij(a) + ;(qz -
— ; Z_; ¢’sicij(a) (modn)  (by Definition 2.1)
=5 (W) gy ) mod ) (o 5)
_ ; sibir(@)  (mod n).

This proves part (i).
We now prove part (ii). We have

Ha, Xa,..., X" a}| = min{k > 0| X*a = a} = lem(1, (order of X in G;)ic;),

where the last equality is a consequence of Theorem 2.6(ii) and the assumption that

a € Q;. By Lemma 2.5(iii), we have

n n
lem(1, (order of X in G;)icr) =lem (1, | ——— = .
( ( ) EI) ( <ng(n7 3i))ie]> ng(nang<Si)i€]>

Combining the two equations above, we get

n

ged(n, ged(s;)ier)

Hao, Xa,..., X" ta}| =

n

Hence it suffices to show that there exists a unique k € {0,..., ——"——
ged(n.ged(si)ier)

which ¢;(X*a) is contained in F, or equivalently,

Z 2fxrta(z) =0 (mod n).

ZGZn

By Lemma 4.5(ii), we have, for any k& > 0,

1((ai(X" ))ier) = 1((k + ai(@))ier).

It then follows from the definition of h; ; and ¢; ; that, for any i € I,

bir(X*a) = khig + ¢is(a).
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We then have, for any k£ > 0,

Z 2fxra(z) = Z siir(X*a)  (mod n) (by part (i))

=Y si(khir+ (@) (modn)  (by (7))

iel (8)
=k Z Sihi’[ + Z Sﬂ%](&) (HlOd n)
=k ged(n, ged(s;)ier) + Z sigir(a)  (mod n) (by (3)).

iel

By the definition of ged, the sum ). ; s;¢; 1() is a multiple of ged(n, ged(s;)icr) modulo
n. Hence there exists a unique k € {0,1, ..., m — 1} for which the sum in (8)
is equal to 0. This completes the proof. O

Definition 4.12. Let ¢ : N — F be the map defined by
{a, Xa,... ,X”_la} = Yr(8),

where [ is the subset of {1,...,m} such that a € Q;, and f is the unique element of
{a, Xa,..., X" 'a} for which its image is contained in F. AN

Proof of Theorem 1.2. Note that the maps ¢; (I C {1,...,m}) satisfy (Cl) and (C2)

-~

by Lemma 4.10 and Lemma 4.11(ii), respectively. It then follows that the map ¢ in
Definition 4.12 is a bijection. O

Example 4.13. Continuing from Example 4.9, the map 271\ : N — F is given by (recall
that we represent a function f : Zs; — {0,1} as the set {z € Z3 | f(z) = 1}):

e {0} is being mapped to ¥4(0) = {0, 1, 2};
e {1+ X + X?} is being mapped to 13 (1 + X + X?) = {1,2};
o {1+X,X+ X? 1+ X?} is being mapped to ¢y (X + X?) = {0};

e {1,X,X?} is being mapped to 19 (1) = .

5 Some open bijective problems
We conclude with two bijective problems that refine Theorem 1.1 and Theorem 1.2.

1. Construct a bijection between A and F for any two coprime positive integers ¢ and
n. Note that the bijection in Theorem 1.2 relies on viewing the color for neckaces
in A as being drawn from the finite field F,, and thus fails to work when ¢ is not a
prime power.
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2.

Let n be an odd positive integer, and let k& € {0,...,n}. Give a bijective proof that
these two sets have the same cardinality:

e The set N} of necklaces of length n with k black beads and n — k white beads;
and

e The set Fj, of functions f : Z, — {0,1} such that the sum »___, zf(z) is
equal to 0 modulo n and the set {z € Z,, | f(2) # 0} has cardinality k.

One can show that N; and Fj, have the same cardinality by computing |[N| and
| Fi| separately. The cardinality of A} was computed by [ACH15, Theorem 1.20]
by using the orbit-counting theorem, and the cardinality of F} can be computed by
using the counting method developed in [KP93]. The same bijective problem was
asked in [ACH15] for the case that k divides n.

We remark that the bijection in Theorem 1.2 does not map N to Fj, as can be
seen from Example 4.13.
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