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Abstract

Consider these two distinct combinatorial objects: (1) the necklaces of length n
with at most q colors, and (2) the multisets of integers modulo n with subset sum
divisible by n and with the multiplicity of each element being strictly less than q.
We show that these two objects have the same cardinality if q and n are mutually
coprime. Additionally, when q is a prime power, we construct a bijection between
these two objects by viewing necklaces as cyclic polynomials over the finite field of
size q. Specializing to q = 2 answers a bijective problem posed by Richard Stanley
(Enumerative Combinatorics Vol. 1 Chapter 1, Problem 105(b)).

Mathematics Subject Classifications: 05A19, 05E99

1 Introduction

Let q be and n be two coprime positive integers. The main characters of this paper are
the following two combinatorial objects:

• The set N of necklaces (i.e., equivalent up to cyclic rotations) of length n for which
the color of each bead is drawn from a color set of size q.

• The set F of functions f : Zn → {0, 1, . . . , q− 1} for which their (linearly) weighted
sum is divisible by n, i.e.,

F :=

{
f

∣∣∣∣ ∑
z∈Zn

z f(z) = 0 (mod n)

}
,

where Zn denotes the ring of integers modulo n.
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Equivalently, F is the set of multisets of Zn with subset sum divisible by n and with
the multiplicity of each element being at most q − 1. The set F for the case q = 2 has
been studied in different areas of mathematics, such as coding theory [SY72], number
theory [OS78], and toric arrangements [ACH15, AC17].

It was known thatN and F have the same cardinality when q = 2 (see [Sta12, Problem
105(b) Chapter 1]). We extend this result to all values of q.

Theorem 1.1. Let q and n be two coprime positive integers. Then

|N | = |F| =
∑

I⊆{1,...,m}

gcd(n, gcd(si)i∈I)

n

∏
i∈I

(q`i − 1),

where m, si, and `i are as in Definition 2.1.

We remark that Theorem 1.1 gives a new expression for the cardinality of N and
F . This expression is different from the formulas in [KP93, Theorem 11] and [Kus14,
Section 4.2], which involve the Möbius function and the Euler’s totient function. We also
remark that the condition that n and q are coprime is necessary, as there are examples for
which |N | is not equal to |F| when gcd(n, q) > 1. One such example is when n = q = 2,
which gives us |N | = 3 and |F| = 2.

The proof of Stanley for the case q = 2 is not bijective in nature, and neither is our
proof of Theorem 1.1. In [Sta12, Problem 105(b) Chapter 1], Stanley asked for a bijective
proof of Theorem 1.1 for the case q = 2. We answer this question here by constructing a
bijection between the two sets when q is a prime power.

Our bijection starts by viewing necklaces with q colors as cyclic polynomials over the
finite field Fq. Each necklace can then be associated to a coset of a finite abelian group
by taking the remainder of the division of the cylic polynomial by irreducible factors of
Xn − 1. On the other hand, a function in F can be associated to an element of the
same finite abelian group by evaluating the function on the cyclotomic cosets of Zn. It
will follow from the construction that, for any given necklace, the corresponding coset
contains exactly one group element that is associated to a function in F . We take this
unique function as the image of the necklace under our bijection. The full definition of
this bijection is given in §4.

Theorem 1.2. Let q be a prime power, and let n be a positive integer that is coprime to
q. Then the map ψ̂ : N → F in Definition 4.12 is a bijection.

See Example 4.13 for an example of the bijection ψ̂ when q = 2 and n = 3. A bijection
for general values of q remains an open problem.

This paper is structured as follows. In §2, we review algebraic tools that will be used
in the proofs of the main theorems. In §3, we present a proof of Theorem 1.1 in §3. In §4,
we present a proof of Theorem 1.2. In §5, we present two open bijective problems that
extend Theorem 1.2.
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2 Preliminaries

In this section, we review algebraic tools that will be used in the proof of Theorem 1.1
and Theorem 1.2.

Throughout this paper, q and n are two positive integers such that gcd(n, q) = 1.

Definition 2.1. Consider the equivalence relation on Zn that takes all multiplications by
q as equivalent. Fix integers s1, s2, . . . , sm as the representatives of the equivalence classes
of this relation. The cyclotomic cosets S1, . . . , Sm of Zn are

Si := {si, q si, q2si, . . . , q`i−1si} (i ∈ {1, . . . ,m}),

where `i is the smallest positive integer such that q`isi = si (mod n). 4

When q is a prime power, we view the set of necklaces N from the following algebraic
perspective. Let Q be the quotient

Q :=
Fq[X]

(Xn − 1)
,

of the polynomial ring over the finite field Fq of order q in a single variable X by the ideal
generated by Xn − 1. Each element of Q corresponds to an n-character string over an
alphabet of size q by taking its coefficient vector. The set N can then be viewed as

N :=

{
{α,Xα, . . . , Xn−1α}

∣∣∣∣ α ∈ Q} ,
the set of equivalence classes of the relation in Q that takes all multiplications by X as
equivalent.

Fix a primitive n-th root of unity ω in the algebraic closure of Fq. Such ω exists
because q is coprime to n.

Definition 2.2. Let q be a prime power. Let P1, . . . , Pm be the irreducible factors of
Xn − 1 over the field Fq. That is, for any i ∈ {1, . . . ,m},

Pi :=
∏
k∈Si

(X − ωk).

We denote by Gi the set
Gi := (Q/PiQ)×,

of nonzero elements of the quotient ring Q/PiQ. 4

Definition 2.3. Let q be a prime power. For any α ∈ Q, we denote by αi := α mod Pi
the image of α in Q/PiQ under the quotient map. In particular, Xi is the image of X in
Q/PiQ. 4

We now present examples of the objects discussed above for the case that q = 2 and
n = 3. This case will be our running example throughout this paper.
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Example 2.4. Let q = 2 and n = 3. We make the following choices of cyclotomic cosets
from Definition 2.1:

s1 = 0, S1 = {0}; and s2 = 1, S2 = {1, 2}.

We represent a function f : Z3 → {0, 1} as the set {z ∈ Z3 | f(z) = 1}. In this
notation, the sets N and F are given by

N ={{0}, {1, X,X2}, {1 +X,X +X2, 1 +X2}, {1 +X +X2}},
F ={∅, {0}, {1, 2}, {0, 1, 2}}.

The polynomials Pi ∈ Q from Definition 2.2 are given by

P1 = 1 +X; P2 = 1 +X +X2. 4

We refer to [Wan03] for the proofs of the following properties of Q/PiQ and Gi.

Lemma 2.5 ([Wan03, Section 9]). Let q be a prime power, and let n be a positive integer
coprime to q. For any i ∈ {1, . . . ,m},

(i) Q/PiQ is a finite field of order q`i.

(ii) Gi is a cyclic group of order q`i − 1 under multiplication.

(iii) Xi is an element of Gi with multiplicative order n
gcd(n,si)

.

We will use the following versions of the Chinese remainder theorem in the proof of
Theorem 1.1 and Theorem 1.2.

Theorem 2.6 (Chinese remainder theorem [Hun80, Theorem 2.25]).

(i) Let n be a positive integer with prime factorization n = pa11 . . . pa`` . Then the follow-
ing map is an isomorphism:

Z/nZ→ Z/pa11 Z× · · · × Z/pa`` Z
x mod n 7→ (x mod pa11 , . . . , x mod pa`` ).

(ii) Let q be a prime power and let n be a positive integer coprime to q. Then the
following map is an isomorphism:

Q → Q/P1Q× · · · × Q/PmQ
α 7→ (α mod P1, . . . , α mod Pm).

The following lemma is a consequence of Theorem 2.6(i).
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Lemma 2.7. Let n and d1, . . . , dk be positive integers. Then there exists a group auto-
morphism φ :

∏k
i=1 Z n

gcd(n,di)
→
∏k

i=1 Z n
gcd(n,di)

such that

d1h1 + · · ·+ dkhk = gcd(n, d1, . . . , dk) (mod n),

where hi is the i-th coordinate of φ(1, . . . , 1).

Proof. By the Chinese remainder theorem (Theorem 2.6(i)), the group and the sum in
the lemma can be decomposed into their corresponding prime parts. Therefore, it suffices
to prove the lemma for when n is a prime power pa.

For any i ∈ {1, . . . , k}, let ai be the integer such that pai = gcd(n, di), and let ti be an
integer coprime to n such that tidi = gcd(n, di) (mod n). Note that ai 6 a by definition.
By reindexing if necessary, we can without loss of generality assume that a1 6 · · · 6 ak.

Let ei be the group element (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0). We define φ(ei) to be

φ(ei) :=


t1e1 −

k∑
j=2

ej if i = 1;

ei if i ∈ {2, . . . , k}.

We claim that φ can be extended to a group automorphism of
∏k

i=1 Z n
gcd(n,di)

.

Since a1 is chosen to be the minimum value of ai’s, we have

n

gcd(n, di)
φ(ei) =


t1
(
pa−a1e1

)
−

k∑
j=2

paj−a1
(
pa−ajej

)
= 0 if i = 1;

pa−aiei = 0 if i ∈ {2, . . . , k},

and so φ extends to a group homomorphism.
Tha map φ is an automorphism since the corresponding matrix is triangular and all

the diagonal entries are coprime to n. Finally, we have

φ(1, . . . , 1) =
k∑
j=1

φ(ei) = t1e1 −
k∑
j=2

ej +
k∑
j=2

ej = t1e1 = (t1, 0, . . . , 0),

which implies that

d1h1 + . . .+ dkhk = d1t1 = gcd(n, d1) (mod n) = gcd(n, d1, . . . , dk) (mod n),

where the last equality is a consequence of a1 being the minimum value of ai’s. This
proves the claim.

We will use the following version of Dirichlet’s prime number theorem in the proof of
Theorem 1.1.

Theorem 2.8 ([JJ98, Dirichlet’s prime number theorem]). Let a and b be two coprime
positive integers. Then there are infinitely many positive integers k such that a+ kb is a
prime number.
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3 Proof of Theorem 1.1

In this section, we present a proof of Theorem 1.1, starting with the case that q is a prime
power.

Let m and Si be as in Definition 2.1, and Pi be as in Definition 2.2. For any function
f : Zn → {0, 1, . . . , q − 1}, the level set Lq−1(f) of f at q − 1 is the set {z ∈ Zn | f(z) =
q − 1}.

Definition 3.1. Let q be a prime power. For any I ⊆ {1, . . . ,m}, the sets NI and FI
are given by

NI :=

{
{α,Xα, . . . , Xn−1α} ∈ N

∣∣∣∣ Pi divides α iff i /∈ I
}
,

FI := {f ∈ F | Lq−1(f) ∩ Si = Si iff i /∈ I}. 4

By definition {NI}I⊆{1,...,m} and {FI}I⊆{1,...,m} form a partition of N and F , respec-
tively.

Example 3.2. Continuing from Example 2.4, the sets FI and NI from Definition 3.1 are
given by

N∅ = {{0}}, F∅ = {{0, 1, 2}};
N{1} = {{1 +X +X2}}, F{1} = {{1, 2}};
N{2} = {{1 +X,X +X2, 1 +X2}}, F{2} = {{0}};
N{1,2} = {{1, X,X2}}, F{1,2} = {∅}. 4

We now show that NI and FI have the same cardinality for any I ⊆ {1, . . . ,m}.
Let si and `i be as in Definition 2.1.

Lemma 3.3. Let q be a prime power, let n be a positive integer coprime to q, and let
I ⊆ {1, . . . ,m}. Then

|NI | =
gcd(n, gcd(si)i∈I)

n

∏
i∈I

(q`i − 1).

Proof. Recall the definition of Gi from Definition 2.2 and the definition of αi and Xi from
Definition 2.3. In particular, if α is an element of Q that is not divisible by Pi, then αi is
contained in Gi. Consider the map

ξ : {α ∈ Q | Pi divides α iff i /∈ I} →
∏
i∈I

Gi

α 7→ (αi)i∈I .

The map ξ is a bijection by Theorem 2.6(ii).
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Denote by CI the cyclic subgroup of
∏

i∈I Gi generated by (Xi)i∈I . Note that NI is in
bijection with cosets of CI in

∏
i∈I Gi by the map ξ. Hence we have

|NI | =

∣∣∣∣∣∏
i∈I

Gi

/
CI

∣∣∣∣∣ =
1

|CI |
∏
i∈I

|Gi|. (1)

On the other hand, we also have

|Gi| = q`i − 1 (by Lemma 2.5(ii));

|CI | = min{k > 0 | (Xi)
k is the identity element of Gi for all i ∈ I}

= lcm

(
1,

(
n

gcd(n, si)

)
i∈I

)
(by Lemma 2.5(iii))

=
n

gcd(n, gcd(n, si)i∈I)
.

The conclusion of the lemma now follows from (1).

Lemma 3.4. Let q and n be two coprime positive integers, and let I ⊆ {1, . . . ,m}. Then

|FI | =
gcd(n, gcd(si)i∈I)

n

∏
i∈I

(q`i − 1).

Proof. Let EI denote the set

EI := {f : Zn → {0, 1, . . . , q − 1} | Lq−1(f) ∩ Si = Si iff i /∈ I}.

Let ηI : EI →
∏

i∈I Zq`i−1 be the map defined by

f 7→

(
`i−1∑
j=0

qjf(qjsi) mod q`i − 1

)
i∈I

.

The map ηI is surjective by the definition of EI .
Let f be any function in EI . For any i ∈ I, the sum

∑`i−1
j=0 q

jf(qjsi) is strictly less than

q`i − 1 since Lq−1(f) ∩ Si 6= Si. This implies that the i-th coordinate of ηI(f) determines
f(si), . . . , f(q`i−1si) for any i ∈ I. Furthermore, we have (f(si), . . . , f(q`i−1si)) = (q −
1, . . . , q − 1) for any i /∈ I by the definition of EI . Therefore, we conclude that ηI is an
injective map.

Let ζI be the map defined by

ζI :
∏
i∈I

Zq`i−1 → Zn

(zi)i∈I 7→
∑
i∈I

sizi mod n.
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The map ζI is a well defined group homomorphism as n divides si(q
`i − 1) for all i ∈

{1, . . . ,m} by Definition 2.1. Furthermore, by the definition of gcd, the image of ζI is
gcd(n, gcd(si)i∈I)Zn.

Now note that, for any f ∈ EI ,

∑
z∈Zn

zf(z) =
∑
i∈I

`i−1∑
j=0

qjsif(qjsi) +
∑
i/∈I

(q`i − 1)si

=
∑
i∈I

si

`i−1∑
j=0

qjf(qjsi) (mod n)

=ζI(ηI(f)).

Since ηI is a bijection, it then follows from the definition of FI (Definition 3.1) that the
kernel of ζI is equal to ηI(FI).

Combining all those observations, we conclude that

|FI | =|ηI(FI)| = | ker(ζI)| =
|
∏

i∈I Zq`i−1|
| gcd(n, gcd(si)i∈I)Zn|

=
gcd(n, gcd(si)i∈I)

n

∏
i∈I

(q`i − 1),

as desired.

We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix an arbitrary positive integer n. Let r ∈ {0, . . . , n− 1} be such
that gcd(n, r) = 1. Let x be a variable, and let q = xn + r throughout this proof. Note
that gcd(n, r) = gcd(n, q) = 1.

Since the integers m, si, and `i from Definition 2.1 depend only on n and r, we have
the function

x 7→
∑

I⊆{1,...,m}

gcd(n, gcd(si)i∈I)

n

∏
i∈I

((xn+ r)`i − 1) (2)

is a polynomial of x.
By Lemma 3.3, Lemma 3.4, and the fact that {NI}I⊆{1,...,m} and {FI}I⊆{1,...,m} form a

partition of N and F respectively, we have that |N | and |F| are equal to the polynomial
in (2) when q = xn + r is a prime power. Since gcd(n, r) = 1, we have by Theorem 2.8
that there are infinitely many positive integers x for which xn + r is a prime. Hence it
suffices to show that |N | and |F| are polynomials of x.

For any i ∈ {1, . . . , n}, let col(i) be the number of necklaces of length n with colors
chosen from {0, . . . i− 1}, and such that all i colors are used. Then

|N | =
n∑
i=1

col(i)

(
q

i

)
=

n∑
i=1

col(i)

i!

i−1∏
j=0

(xn+ r − j).
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This shows that |N | is a polynomial of x.
Let V denote the set

V :=

{
R ∈ {0, . . . , n− 1}Zn

∣∣∣∣ ∑
z∈Zn

zRz = 0 (mod n)

}
.

We then have

|F| =
∑
R∈V

{f : Zn → {0, 1, . . . , q − 1} | f(z) = Rz (mod n) for all z ∈ Zn}

=
∑
R∈V

∏
z∈Zn

|{k > 0 | kn+Rz < q}|

=
∑
R∈V

(x+ 1)|{z∈Zn |Rz<r}| x|{z∈Zn |Rz>r}|.

This shows that |F| is a polynomial of x. This completes the proof.

4 Proof of Theorem 1.2

In this section, we present a proof of Theorem 1.2. Throughout this section, q is a prime
power and n is a positive integer that is coprime to q.

Let Q be as defined in Section 2, and let E be the set of all functions from Zn to
{0, 1, . . . , q − 1}. Suppose that there exists a map ψ : Q → E that satisfies the following
conditions:

(C1) The map ψ is a bijection from Q to E ; and

(C2) For any α ∈ Q there exists a unique β ∈ {α,Xα, . . . , Xn−1α} such that ψ(β) is
contained in F .

We could then define the map ψ̂ : N → F by

{α,Xα, . . . , Xn−1α} 7→ ψ(β).

It would follow that ψ̂ is a bijection between N and F , which would prove Theorem 1.2.
In this section, we will construct a map ψ : Q → E that satisfies (C1) and (C2).

Recall the definition of m, si, and `i from Definition 2.1, the definition of Gi from
Definition 2.2, and the definition of Xi from Definition 2.3.

Let i ∈ {1, . . . ,m}. Since Gi is a cyclic group of order q`i − 1 (Lemma 2.5(ii)) and Xi

is an element of Gi with order n
gcd(n,si)

(Lemma 2.5(iii)), the group Gi contains a group

generator such that Xi is (q`i−1) gcd(n,si)
n

-th power of this generator.

Definition 4.1. For any i ∈ {1, . . . ,m}, let gi be a group generator of Gi such that Xi

is the (q`i−1) gcd(n,si)
n

-th power of gi. 4
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Recall the definition of Pi from Definition 2.2 and the definition of αi from Defini-
tion 2.3.

Definition 4.2 (Discrete logarithm). Let i ∈ {1, . . . ,m}, and let α be an element of Q
not divisible by Pi. The discrete logarithm loggi(α) is the smallest non-negative integer k
such that αi = gki in Gi. 4

By Lemma 2.5(ii), the integer loggi(α) is contained in {0, . . . , q`i − 2}.

Definition 4.3. Let i ∈ {1, . . . ,m}, and let α be an element of Q not divisible by Pi.
We denote by ai(α) and bi(α) the quotient and the remainder of the division of loggi(α)

by (q`i−1) gcd(n,si)
n

, respectively. 4

In particular, the nonnegative integers ai(α) is strictly less than n
gcd(n,si)

and bi(α) is

strictly less than (q`i−1) gcd(n,si)
n

. We compute these integers for the case n = 3 below.

Example 4.4. Continuing from Example 3.2, we make the following choices of g1 and g2
that satisfy the condition in Definition 4.1:

g1 = 1 mod 1 +X and g2 = X mod 1 +X +X2.

Note that (q`i−1) gcd(n,si)
n

= 1 for i ∈ {1, 2}; we remark that this equality is special to this
example and is false for large values of n and q.

The following is the value of logg1(α), a1(α) and b1(α) for different α’s:

• If α = 1 (mod 1 +X), then

logg1(α) = 0; a1(α) = 0; b1(α) = 0.

The following is the value of logg2(α), a2(α) and b2(α) for different α’s:

• If α = 1 (mod 1 +X +X2), then

logg2(α) = 0; a2(α) = 0; b2(α) = 0.

• If α = X (mod 1 +X +X2), then

logg2(α) = 1; a2(α) = 1; b2(α) = 0.

• If α = 1 +X (mod 1 +X +X2), then

logg2(α) = 2; a2(α) = 2; b2(α) = 0. 4

Lemma 4.5. Let q be a prime power, let n be a positive integer coprime to q, and let
i ∈ {1, . . . ,m}. Then
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(i) ai(X) = 1 and bi(X) = 0; and

(ii) For any k > 0 and any α ∈ Q,

ai(X
kα) = k + ai(α)

(
mod

n

gcd(n, si)

)
; and

bi(X
kα) = bi(α).

Proof. Part (i) follows directly from Definition 4.1 and Definition 4.3.
By Definition 4.2, we have for any non-negative integer k and any α ∈ Q that

loggi(X
kα) = loggi(α) + k loggi(X) (mod q`i − 1)

= (k + ai(α))
(q`i − 1) gcd(n, si)

n
+ bi(α) (mod q`i − 1).

Part (ii) now follows from Definition 4.3.

Definition 4.6. Let I be a subset of {1, . . . ,m}. Let φI be a group automorphism of∏
i∈I Z n

gcd(n,si)
that satisfies∑

i∈I

sihi,I = gcd(n, gcd(si)i∈I) (mod n), (3)

where hi,I is the i-th coordinate of φI(1, . . . , 1). The function φI exists for any I ⊆
{1, . . . ,m} by Lemma 2.7. 4

We present an explicit example of the function φI for the case n = 3 below.

Example 4.7. Continuing from Example 4.4, we choose φI to be the identity map on∏
i∈I Z n

gcd(n,si)
for any I ⊆ {1, 2}. The map φI satisfies (3) by the following computation:

• When I = ∅, the condition in (3) is vacuously true.

• When I = {1}, we have

s1h1,{1} = 0 · 1 = 3 (mod 3).

• When I = {2}, we have

s2h2,{2} = 1 · 1 = 1 (mod 3).

• When I = {1, 2},we have

s1h1,{1,2} + s2h2,{1,2} = 0 · 1 + 1 · 1 = 1 (mod 3). 4
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Recall that Lq−1(f) = {z ∈ Zn | f(z) = q − 1}. For any I ⊆ {1, . . . ,m}, write

QI :=

{
α ∈ Q

∣∣∣∣ Pi divides α iff i /∈ I
}

;

EI := {f ∈ E | Lq−1(f) ∩ Si = Si iff i /∈ I}.

By definition {QI}I⊆{1,...,m} and {EI}I⊆{1,...,m} form a partition of Q and E , respectively.
Let i ∈ I, and let α be any element of QI . We denote by φi,I(α) the i-th coordinate

of φI((ai(α))i∈I), which corresponds to a nonnegative integer strictly less than n
gcd(n,si)

.

Since bi(α) is a nonnegative integer strictly less than (q`i−1) gcd(n,si)
n

and φi,I(α) is a
nonnegative integer strictly less than n

gcd(n,si)
, we have

0 6 bi(α)
n

gcd(n, si)
+ φi,I(α) < q`i − 1. (4)

We denote by ci,0(α), . . . , ci,`i−1(α) ∈ {0, . . . , q − 1} the unique integers that satisfy

`i−1∑
j=0

ci,j(α) qj = bi(α)
n

gcd(n, si)
+ φi,I(α). (5)

By (4), the sequence of integers (ci,0, . . . , ci,`i−1) is well defined and is not equal to (q −
1, . . . , q − 1).

Let fα : Zn → {0, 1, . . . , q − 1} be given by

fα(qjsi) :=

{
q − 1 if i /∈ I;

ci,j(α) if i ∈ I.
(6)

The function fα has the property that Lq−1(fα) ∩ Si is a strict subset of Si for any i ∈ I
since (ci,0, . . . , ci,`i−1) is is not equal to (q−1, . . . , q−1). This implies that fα is contained
in EI .

Definition 4.8. Let I ⊆ {1, . . . ,m}. We define ψI : QI → EI to be the map that sends
α ∈ QI to the function fα. 4

Example 4.9. Continuing from Example 4.7, we present the image of the function ψI
for different α’s (recall that we represent a function f : Z3 → {0, 1} as the set {z ∈ Z3 |
f(z) = 1}):

• The case I = ∅: When α = 0, the map ψ∅ sends α to {0, 1, 2}.

• The case I = {1}: When α = 1 +X +X2, we have

b1(α) + φ1,{1}(α) = 0 + 0 = 0 = 0 · 20.

The map ψ{1} then sends α to {1, 2}.
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• The case I = {2}:

– When α = 1 +X, we have

3 b2(α) + φ2,{2}(α) = 3 · 0 + 2 = 2 = 0 · 20 + 1 · 21.

The map ψ{2} then sends α to {0, 2}.
– When α = X +X2, we have

3 b2(α) + φ2,{2}(α) = 0 · 0 + 0 = 0 = 0 · 20 + 0 · 21.

The map ψ{2} then sends α to {0}.
– When α = 1 +X2, we have

3 b2(α) + φ2,{2}(α) = 3 · 0 + 1 = 1 = 1 · 20 + 0 · 21.

The map ψ{2} then sends α to {0, 1}.

• The case I = {1, 2}:

– When α = 1, we have

b1(α) + φ1,{1,2}(α) = 0 + 0 = 0 = 0 · 20;

3 b2(α) + φ2,{1,2}(α) = 3 · 0 + 0 = 0 = 0 · 20 + 0 · 21.

The map ψ{1,2} then sends α to ∅.

– When α = X, we have

b1(α) + φ1,{1,2}(α) = 0 + 0 = 0 = 0 · 20;

3 b2(α) + φ2,{1,2}(α) = 3 · 0 + 1 = 1 = 1 · 20 + 0 · 21.

The map ψ{1,2} then sends α to {1}.
– When α = X2, we have

b1(α) + φ1,{1,2}(α) = 0 + 0 = 0 = 0 · 20;

3 b2(α) + φ2,{1,2}(α) = 3 · 0 + 2 = 2 = 0 · 20 + 1 · 21.

The map ψ{1,2} then sends α to the function {2}. 4

Lemma 4.10. Let q be a prime power, let n be a positive integer coprime to q, and let
I ⊆ {1, . . . ,m}. Then the map ψI : QI → EI is a bijection.

Proof. Let α and α′ be two elements of QI with the same image under ψI . By (5), (6),
and the definition of ψI , we have

bi(α)
n

gcd(n, si)
+ φi,I(α) = bi(α

′)
n

gcd(n, si)
+ φi,I(α

′) for any i ∈ I.
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Since φi,I(α) and φi,I(α
′) are both nonnegative integers strictly less than n

gcd(n,si)
, and the

equation above then implies that

φi,I(α) = φi,I(α
′) and bi(α) = bi(α

′) for any i ∈ I.

Since φI is chosen to be a bijection by Definition 4.6, we conclude that

ai(α) = ai(α
′) and bi(α) = bi(α

′) for any i ∈ I.

It then follows from Definition 4.1 and Definition 4.3 that

α = α′ (mod Pi) for any i ∈ I.

On the other hand, by the definition of QI , we have

α = 0 = α′ (mod Pi) for any i /∈ I.

By Theorem 2.6(ii), we then conclude that α = α′. This proves the injectivity of ψI .
Let f be an arbitrary element of EI . For any i ∈ I, let bi and φi,I be the quotient and the

remainder of the division of the sum
∑`i−1

j=0 q
jf(qjsi) by n

gcd(n,si)
. The sum

∑`i−1
j=0 q

jf(qjsi)

is a nonnegative integer strictly less than q`i−1 by the assumption that Lq−1(f)∩Si 6= Si.

This implies that bi and φi,I satisfy the inequalities 0 6 bi <
(q`i−1) gcd(n,si)

n
and 0 6 φi,I <

n
gcd(n,si)

.

Write (ai)i∈I := φ−1I ((φi,I)i∈I). By Theorem 2.6(ii) there exists a unique α ∈ Q that
satisfies the following equations:

loggi(α) = ai
(q`i − 1) gcd(n, si)

n
+ bi (for i ∈ I);

α = 0 (mod Pi) (for i /∈ I).

The element α is contained in QI as α is divisible by Pi if and only if i /∈ I. Furthermore,
the map ψI maps α to f , as the construction above mirrors the construction of ψI with
steps taken in the reverse order. This proves the surjectivity of ψI .

Lemma 4.11. Let q be a prime power, let n be a positive integer coprime to q, and let
I ⊆ {1, . . . ,m}. Then, for any α ∈ QI ,

(i)
∑
z∈Zn

zfα(z) =
∑
i∈I

siφi,I(α) (mod n); and

(ii) There exists unique β ∈ {α,Xα, . . . , Xn−1α} such that ψI(β) is contained in F .
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Proof. We start with proving part (i). We have

∑
z∈Zn

zfα(z) =
∑
i∈I

`i−1∑
j=0

qjsici,j(α) +
∑
i/∈I

`i−1∑
j=0

qjsi(q − 1) (by (6))

=
∑
i∈I

`i−1∑
j=0

qjsici,j(α) +
∑
i/∈I

(q`i − 1)si

=
∑
i∈I

`i−1∑
j=0

qjsici,j(α) (mod n) (by Definition 2.1)

=
∑
i∈I

si

(
bi(α)

n

gcd(n, si)
+ φi,I(α)

)
(mod n) (by (5))

=
∑
i∈I

siφi,I(α) (mod n).

This proves part (i).
We now prove part (ii). We have

|{α,Xα, . . . , Xn−1α}| = min{k > 0 | Xkα = α} = lcm(1, (order of X in Gi)i∈I),

where the last equality is a consequence of Theorem 2.6(ii) and the assumption that
α ∈ QI . By Lemma 2.5(iii), we have

lcm(1, (order of X in Gi)i∈I) = lcm

(
1,

(
n

gcd(n, si)

)
i∈I

)
=

n

gcd(n, gcd(si)i∈I)
.

Combining the two equations above, we get

|{α,Xα, . . . , Xn−1α}| = n

gcd(n, gcd(si)i∈I)
.

Hence it suffices to show that there exists a unique k ∈ {0, . . . , n
gcd(n,gcd(si)i∈I)

− 1} for

which ψI(X
kα) is contained in F , or equivalently,∑

z∈Zn

zfXkα(z) = 0 (mod n).

By Lemma 4.5(ii), we have, for any k > 0,

φI((ai(X
kα))i∈I) = φI((k + ai(α))i∈I).

It then follows from the definition of hi,I and φi,I that, for any i ∈ I,

φi,I(X
kα) = k hi,I + φi,I(α). (7)
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We then have, for any k > 0,∑
z∈Zn

zfXkα(z) =
∑
i∈I

siφi,I(X
kα) (mod n) (by part (i))

=
∑
i∈I

si (k hi,I + φi,I(α)) (mod n) (by (7))

=k
∑
i∈I

sihi,I +
∑
i∈I

siφi,I(α) (mod n)

=k gcd(n, gcd(si)i∈I) +
∑
i∈I

siφi,I(α) (mod n) (by (3)).

(8)

By the definition of gcd, the sum
∑

i∈I siφi,I(α) is a multiple of gcd(n, gcd(si)i∈I) modulo
n. Hence there exists a unique k ∈ {0, 1, . . . , n

gcd(n,gcd(si)i∈I)
− 1} for which the sum in (8)

is equal to 0. This completes the proof.

Definition 4.12. Let ψ̂ : N → F be the map defined by

{α,Xα, . . . , Xn−1α} 7→ ψI(β),

where I is the subset of {1, . . . ,m} such that α ∈ QI , and β is the unique element of
{α,Xα, . . . , Xn−1α} for which its image is contained in F . 4

Proof of Theorem 1.2. Note that the maps ψI (I ⊆ {1, . . . ,m}) satisfy (C1) and (C2)

by Lemma 4.10 and Lemma 4.11(ii), respectively. It then follows that the map ψ̂ in
Definition 4.12 is a bijection.

Example 4.13. Continuing from Example 4.9, the map ψ̂ : N → F is given by (recall
that we represent a function f : Z3 → {0, 1} as the set {z ∈ Z3 | f(z) = 1}):

• {0} is being mapped to ψ∅(0) = {0, 1, 2};

• {1 +X +X2} is being mapped to ψ{1}(1 +X +X2) = {1, 2};

• {1 +X,X +X2, 1 +X2} is being mapped to ψ{2}(X +X2) = {0};

• {1, X,X2} is being mapped to ψ{1,2}(1) = ∅.

5 Some open bijective problems

We conclude with two bijective problems that refine Theorem 1.1 and Theorem 1.2.

1. Construct a bijection between N and F for any two coprime positive integers q and
n. Note that the bijection in Theorem 1.2 relies on viewing the color for neckaces
in N as being drawn from the finite field Fq, and thus fails to work when q is not a
prime power.
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2. Let n be an odd positive integer, and let k ∈ {0, . . . , n}. Give a bijective proof that
these two sets have the same cardinality:

• The set Nk of necklaces of length n with k black beads and n− k white beads;
and

• The set Fk of functions f : Zn → {0, 1} such that the sum
∑

z∈Zn
zf(z) is

equal to 0 modulo n and the set {z ∈ Zn | f(z) 6= 0} has cardinality k.

One can show that Nk and Fk have the same cardinality by computing |Nk| and
|Fk| separately. The cardinality of Nk was computed by [ACH15, Theorem 1.20]
by using the orbit-counting theorem, and the cardinality of Fk can be computed by
using the counting method developed in [KP93]. The same bijective problem was
asked in [ACH15] for the case that k divides n.

We remark that the bijection in Theorem 1.2 does not map Nk to Fk, as can be
seen from Example 4.13.
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