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Abstract

A hypergraph H is properly colored if for every vertex v ∈ V (H), all the edges
incident to v have distinct colors. In this paper, we show that if H1, . . . , Hs

are properly-colored k-uniform hypergraphs on n vertices, where n > 3k2s, and
e(Hi) >

(
n
k

)
−
(
n−s+1

k

)
, then there exists a rainbow matching of size s, containing one

edge from each Hi. This generalizes some previous results on the Erdős Matching
Conjecture.

Mathematics Subject Classifications: 05C70, 05D05

1 Introduction

A k-uniform hypergraph is a pair H = (V,E), where V = V (H) is a finite set of vertices,
and E = E(H) ⊆

(
V
k

)
is a family of k-element subsets of V called edges. A matching

in a hypergraph H is a collection of vertex-disjoint edges. The size of a matching is the
number of edges in the matching. The matching number ν(H) is the maximum size of a
matching in H. In 1965, Erdős [4] asked to determine the maximum number of edges that
could appear in a k-uniform n-vertex hypergraph H with matching number ν(H) < s, for
given integer s 6 n

k
. He conjectured that the problem has two extremal constructions.

∗Research supported in part by the Collaboration Grants from the Simons Foundation.
†Research supported by NNSF (No. 11471193, 11631014)
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The first one is a hyper-clique consisting of all the k-subsets on ks−1 vertices. The other
one is a k-uniform hypergraph on n vertices containing all the edges intersecting a fixed
set of s− 1 vertices. Erdős posed the following conjecture:

Conjecture 1 ([4]). Every k-uniform hypergraph H on n vertices with matching number
ν(H) < s 6 n

k
satisfies e(H) 6 max{

(
ks−1
k

)
,
(
n
k

)
−
(
n−s+1

k

)
}.

The case s = 1 is the classic Erdős–Ko–Rado Theorem [6]. The graph case (k = 2)
was verified in [5] by Erdős and Gallai. The problem seems to be significantly harder
for hypergraphs. When k = 3, Frankl, Rödl and Ruciński [11] proved the conjecture
for s 6 n

4
.  Luczak and Mieczkowska [14] proved it for sufficiently large s. The k = 3

case was finally settled by Frankl [8]. For general k, a short calculation shows that when
s 6 n

k+1
, we always have

(
n
k

)
−
(
n−s+1

k

)
>
(
ks−1
k

)
. For this range, the second construction

is believed to be optimal. Erdős [4] proved the conjecture for n > n0(k, s). Bollobás,
Daykin and Erdős [2] proved the conjecture for n > 2k3(s− 1). Huang, Loh and Sudakov
[12] improved it to n > 3k2s, which was further improved to n > 3k2s/log k by Frankl,
 Luczak and Mieczkowska [10]. On the other hand, in an unpublished note, Füredi and
Frankl proved the conjecture for n > cks2, Frankl [7] improved all the range above to
n > (2s− 1)k− s+ 1. Currently the best range is n > 5

3
sk− 2

3
s by Frankl and Kupavskii

[9].
In this paper, we consider a generalization of Erdős Matching Conjecture to properly-

colored hypergraphs. A hypergraph H is properly colored if for every vertex v ∈ V (H),
all edges incident to v are colored differently. A rainbow matching in a properly-colored
hypergraph H is a collection of vertex disjoint edges with pairwise different colors. The
size of a rainbow matching is the number of edges in the matching. The rainbow matching
number, denoted by νr(H), is the maximum size of a rainbow matching in H. Motivated
by the Erdős Matching Conjecture, we consider the following problem: how many edges
can appear in a properly-colored k-uniform hypergraph H such that its rainbow matching
number satisfies νr(H) < s 6 n

k
? In fact, it is called Rainbow Turán problem and is well

studied in [13]. Note that here if we let H be rainbow, that is, every edge of H receives
distinct colors, then we obtain the original Erdős Matching Conjecture.

More generally, let H1, . . . , Hs be properly-colored k-uniform hypergraphs on n ver-
tices, a rainbow matching of size s in H1, . . . , Hs is a collection of vertex disjoint edges
e1, . . . , es with pairwise different colors, where e1 ∈ E(H1), . . . , es ∈ E(Hs). For simplicity,
we call it an s-rainbow matching. Then what is the minimum M , such that by assuming
e(Hi) > M for every i, it guarantees the existance of an s-rainbow matching?

In this paper, we prove the following result, which generalizes Theorem 1.2 and The-
orem 3.3 of [12].

Theorem 2. Let H1, . . . , Hs be properly-colored k-uniform hypergraphs on n vertices. If
n > 3k2s and every e(Hi) >

(
n
k

)
−
(
n−s+1

k

)
, then there exists an s-rainbow matching in

H1, . . . , Hs.
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2 Preliminary results

In this section, we list some preliminary results about “rainbow” hypergraphs, which is a
special case of properly-colored hypergraphs. In the next section, we will prove our main
theorem with the help of these results. A hypergraph H is rainbow if the colors of any
two edges in E(H) are different. From now on, when we say an edge e is disjoint from a
collection of edges, it means that not only e is vertex-disjoint from those edges, but it also
has a color different from the colors of all these edges. We start by the following lemma
for graphs. Note that here although each Gi is rainbow, a color may appear in more than
one Gi’s.

Lemma 3. Let G1, . . . , Gs be rainbow graphs on n vertices. If n > 5s and e(Gi) >(
n
2

)
−
(
n−s+1

2

)
, then there exists an s-rainbow matching in G1, . . . , Gs.

Proof. We do induction on s. The base case s = 1 is trivial. For every vertex v ∈ V (Gi)
and j 6= i, let Gj

v be the subgraph of Gj induced by the vertex set V (Gj) \ {v}. Since
there are at most n− 1 edges containing v in E(Gj), we have e(Gj

v) > e(Gj)− (n− 1) >(
n
2

)
−
(
n−s+1

2

)
− (n − 1) =

(
n−1
2

)
−
(
(n−1)−(s−1)+1

2

)
. By induction, there exists an (s − 1)-

rainbow matching {ej}j 6=i in {Gj
v}j 6=i, which spans 2(s − 1) vertices. So if some Gi has

a vertex v with degree greater than 3(s − 1), then there exists an edge e in Gi which
contains v and disjoint from the edges of the (s − 1)-rainbow matching, which produces
an s-rainbow matching. Hence we may assume that the maximum degree of each Gi is at
most 3(s− 1).

Now pick an arbitrary edge uv in G1. Assume the color of uv is c(uv). Then we
delete the vertices u, v and the edge colored by c(uv) in G2, . . . , Gs. Denote the resulting
graphs by G′2, . . . , G

′
s. We can see that when n > 5s, for each i ∈ {2, . . . , s}, we have

e(G′i) >
(
n
2

)
−
(
n−s+1

2

)
− 2 · 3(s− 1)− 1 >

(
n−2
2

)
−
(
(n−2)−(s−1)+1

2

)
. By induction on s, there

exists an (s − 1)-rainbow matching in the graphs G′2, . . . , G
′
s. Taking these s − 1 edges

with the edge uv, we obtain an s-rainbow matching in G1, . . . , Gs.

Lemma 4. Let H1, . . . , Hs be rainbow k-uniform hypergraphs on n vertices. If n > 3k2s
and e(Hi) >

(
n
k

)
−
(
n−s+1

k

)
, then there exists an s-rainbow matching in H1, . . . , Hs.

Proof. We do induction on both k and s. According to Lemma 3, the case k = 2 holds
for every s and n > 5s. And for every k, the case s = 1 is trivial. We first consider the
situation when some Hi has a vertex v with degree greater than k(s−1)

(
n−2
k−2

)
+s−1. For

every vertex v ∈ V (Hi) and j 6= i, let Hj
v be the subgraph of Hj induced by the vertex

set V (Hj) \ {v}. Since there are at most
(
n−1
k−1

)
edges containing v in E(Hj), we have

e(Hj
v) > e(Hj) −

(
n−1
k−1

)
>
(
n
k

)
−
(
n−s+1

k

)
−
(
n−1
k−1

)
=
(
n−1
k

)
−
(
(n−1)−(s−1)+1

k

)
. By inductive

hypothesis for the case (n−1, k, s−1), there exists an (s−1)-rainbow matching {ej}j 6=i in
{Hj

v}j 6=i, which spans k(s− 1) vertices. So if some Hi has a vertex v with degree greater
than k(s − 1)

(
n−2
k−2

)
+ s − 1, then there exists an edge e in E(Hi) which contains v and

disjoint from the edges of the (s − 1)-rainbow matching, which produces an s-rainbow
matching. Hence we may assume that the maximum degree in each hypergraph Hi is at
most k(s− 1)

(
n−2
k−2

)
+ s− 1.
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By induction on s, we know that for every i there exists an (s− 1)-rainbow matching
in the hypergraphs {Hj}j 6=i, spanning k(s − 1) vertices. If for some i, the s-th largest
degree of Hi is at most 2(s − 1)

(
n−2
k−2

)
+ s − 1, then the sum of degrees of these k(s − 1)

vertices in Hi is at most

(s− 1)[k(s− 1)
(
n−2
k−2

)
+ s− 1] + (s− 1)(k − 1)[2(s− 1)

(
n−2
k−2

)
+ s− 1]

= (3k − 2)(s− 1)2
(
n−2
k−2

)
+ (s− 1)2k.

Since n > 3k2s, we have e(Hi) >
(
n
k

)
−
(
n−s+1

k

)
> (s − 1)2(3k − 1

2
)
(
n−2
k−2

)
> (3k −

2)(s− 1)2
(
n−2
k−2

)
+ (s− 1)2k+ s− 1, which guarantees the existence of an edge in Hi which

is disjoint from the previous (s − 1)-rainbow matching in {Hj}j 6=i, which produces an
s-rainbow matching. So we may assume that each Hi contains at least s vertices with
degree above 2(s− 1)

(
n−2
k−2

)
+ s− 1.

Now we may greedily select distinct vertices vi ∈ V (Hi), such that for each 1 6
i 6 s, the degree of vi in Hi exceeds 2(s − 1)

(
n−2
k−2

)
+ s − 1. Consider all the subsets of

V (Hi)\{v1, . . . , vs} which together with vi form an edge of Hi. Denote the (k−1)-uniform
hypergraph by H ′i. Then e(H ′i) > 2(s−1)

(
n−2
k−2

)
+s−1−(s−1)

(
n−2
k−2

)
>
(
n−s
k−1

)
−
(
n−2s+1
k−1

)
. By

the inductive hypothesis for the case (n− s, k− 1, s), there exists an s-rainbow matching
{ei}16i6s in {H ′i}16i6s. Taking the edges ei

⋃
{vi}, we obtain an s-rainbow matching in

{Hi}16i6s.

3 Main Theorem

In this section we prove our main result, Theorem 2, using induction and Lemma 4.

Proof. We split our proof into two cases.
Case 1: k = 2. Now H1, . . . , Hs are properly-colored graphs. We do induction on

s. The base case s = 1 is trivial. For every vertex v ∈ V (Hi) and j 6= i, let Hj
v be the

subgraph of Hj induced by the vertex set V (Hj) \ {v}. Since there are at most n − 1
edges containing v in E(Hj), we have e(Hj

v) > e(Hj)− (n−1) >
(
n
2

)
−
(
n−s+1

2

)
− (n−1) =(

n−1
2

)
−
(
(n−1)−(s−1)+1

2

)
. By induction, there exists an (s − 1)-rainbow matching {ej}j 6=i

in {Hj
v}j 6=i, which spans 2(s− 1) vertices. So if some Hi has a vertex v of degree greater

than 3(s − 1), then there exists an edge e in Hi which contains v and disjoint from the
edges of the (s− 1)-rainbow matching, which produces an s-rainbow matching. Hence we
may assume the maximum degree in each Hi is at most 3(s− 1).

For every color c in Hi and j 6= i, let Hj
c be the subgraph of Hj obtained by deleting

all the edges colored by c in E(Hj). Since each Hj is properly colored, there are at most n
2

edges colored by c in E(Hj). So e(Hj
c ) > e(Hj)− n

2
>
(
n
2

)
−
(
n−s+1

2

)
− n

2
>
(
n
2

)
−
(
n−(s−1)+1

2

)
.

By induction, there exists an (s − 1)-rainbow matching {ej}j 6=i in {Hj
v}j 6=i, which spans

2(s − 1) vertices u1, . . . , u2(s−1). Also since Hi is properly colored, it has at most one
edge containing each uj and colored by c. So if the number of edges in Hi colored by c
is greater than 2(s− 1), then there exists an edge e in Hi colored by c and disjoint from
{ej}j 6=i, which produces an s-rainbow matching. So we can now assume that the number
of edges in every color in each Hi is at most 2(s− 1).
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Now pick an arbitrary edge uv in H1. Assume the color of uv is c(uv). Then we delete
the vertices u, v and all the edges colored by c(uv) in H2, . . . , Hs. Denote the resulting
graphs by H ′2, . . . , H

′
s. We can see that when n > 7s, for each i ∈ {2, . . . , s}, we have

e(H ′i) >
(
n
2

)
−
(
n−s+1

2

)
− 2 · 3(s− 1)− 2(s− 1) >

(
n−2
2

)
−
(
(n−2)−(s−1)+1

2

)
. By induction on

s, there exists an (s− 1)-rainbow matching in the graphs H ′2, . . . , H
′
s. Taking these s− 1

edges with the edge uv, we obtain an s-rainbow matching in H1, . . . , Hs.
Case 2: k > 3. We do induction on s. The case s = 1 is trivial. We first consider

the situation when some Hi has a vertex of degree greater than k(s − 1)
(
n−2
k−2

)
+ s − 1.

For every vertex v ∈ Hi and j 6= i, let Hj
v be the subgraph of Hj induced by the vertex

set V (Hj) \ {v}. Since there are at most
(
n−1
k−1

)
edges containing v in E(Hj), we have

e(Hj
v) > e(Hj) −

(
n−1
k−1

)
>
(
n
k

)
−
(
n−s+1

k

)
−
(
n−1
k−1

)
=
(
n−1
k

)
−
(
(n−1)−(s−1)+1

k

)
. By induction,

there exists an (s−1)-rainbow matching {ej}j 6=i in {Hj
v}j 6=i, which spans k(s−1) vertices.

So if some Hi has a vertex v with degree greater than k(s−1)
(
n−2
k−2

)
+s−1, then there exists

an edge e in E(Hi) which contains v and disjoint from the edges of the (s − 1)-rainbow
matching, which produces an s-rainbow matching. Hence we may assume the maximum
degree in each hypergraph Hi is at most k(s− 1)

(
n−2
k−2

)
+ s− 1.

By induction on s, we know that for every i there exists an (s− 1)-rainbow matching
in the hypergraphs {Hj}j 6=i, spanning k(s − 1) vertices. If for some i, the s-th largest
degree of Hi is at most 2(s − 1)

(
n−2
k−2

)
+ s − 1, then the sum of degrees of these k(s − 1)

vertices in Hi is at most

(s − 1)[k(s − 1)
(
n−2
k−2

)
+ s − 1] + (s − 1)(k − 1)[2(s − 1)

(
n−2
k−2

)
+ s − 1] = (3k − 2)(s −

1)2
(
n−2
k−2

)
+ (s− 1)2k.

On the other hand, the maximum degree of the subgraph ofHi by deleting these k(s−1)
vertices is at most s− 1, otherwise, we can find an s-rainbow matching. Since n > 3k2s,
we have e(Hi) >

(
n
k

)
−
(
n−s+1

k

)
> (s−1)2(3k− 1

2
)
(
n−2
k−2

)
> (3k−2)(s−1)2

(
n−2
k−2

)
+(s−1)2k+

(s−1)[n−k(s−1)]
k

, which guarantees the existence of an edge in Hi disjoint from the previous
(s− 1)-rainbow matching in {Hj}j 6=i, which produces an s-rainbow matching. So we may
assume that each Hi contains at least s vertices with degree above 2(s− 1)

(
n−2
k−2

)
+ s− 1.

Now we may greedily select distinct vertices vi ∈ V (Hi), such that for each 1 6
i 6 s, the degree of vi in Hi exceeds 2(s − 1)

(
n−2
k−2

)
+ s − 1. Consider all the subsets of

V (Hi)\{v1, . . . , vs} which together with vi form an edge of Hi. Denote the (k−1)-uniform
hypergraph by H ′i. Since each Hi is properly colored, we can see that each H ′i is rainbow
and e(H ′i) > 2(s− 1)

(
n−2
k−2

)
+ s− 1− (s− 1)

(
n−2
k−2

)
>
(
n−s
k−1

)
−
(
n−2s+1
k−1

)
. By Lemma 4, there

exists an s-rainbow matching {ei}16i6s in {H ′i}16i6s. Taking the edges ei
⋃
{vi}, we obtain

an s-rainbow matching in {Hi}16i6s.

4 Concluding Remarks

In this short note, we propose a generalization of the Erdős hypergraph matching conjec-
ture to finding rainbow matchings in properly-colored hypergraphs, and prove Theorem
2 for s < n/(3k2). The following conjecture seems plausible.
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Conjecture 5. There exists constant C > 0 such that if H1, . . . , Hs are properly-colored
k-uniform hypergraphs on n vertices, with n > Cks and every e(Hi) >

(
n
k

)
−
(
n−s+1

k

)
,

then there exists an s-rainbow matching in H1, . . . , Hs.

Recall that for the special case when each Hi is identical and rainbow, Frankl and
Kupavskii [9] were able to verify it for C = 5/3. However the proof relies on the technique
of shifting, while the property of a hypergraph being properly colored may not be preserved
under shifting.

It is tempting to believe that Erdős Matching Conjecture can be extended to properly-
colored hypergraphs for the entire range of s, that is, once the number of edges in each
hypergraph exceeds the maximum of

(
n
k

)
−
(
n−s+1

k

)
and

(
ks−1
k

)
, then one can find an s-

rainbow matching. However this is false in general, a simple construction is by taking
s = 2 and n = 2k. The maximum of these two expressions is

(
2k−1
k

)
, while one can let H1

be a rainbow Kk
2k with an edge coloring c1, and H2 be on the same vertex set with edge

coloring c2, such that c2(e) = c1([2k] \ e). Then clearly each Hi contains
(
2k
k

)
>
(
2k−1
k

)
edges and there is no 2-rainbow matching. It would be interesting to find constructions
for s close to n/k, and formulate a complete conjecture for properly-colored hypergraphs.
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[14] T.  Luczak, K. Mieczkowska, On Erdős extremal problem on matchings in hyper-
graphs, J. Combin. Theory Ser. A, 124 (2014), 178–194.

the electronic journal of combinatorics 26(1) (2019), #P1.4 7


	Introduction
	Preliminary results
	Main Theorem
	Concluding Remarks

