Rainbow matchings in properly-colored hypergraphs

Hao Huang*
Department of Math and CS,
Emory University, Atlanta, GA, USA.
hao. huang@emory.edu

Tong Li
Department of Mathematics, Shandong University, Jinan, China.
tongli121@163.com

Guanghui Wang ${ }^{\dagger}$
Department of Mathematics, Shandong University, Jinan, China.
ghwang@sdu.edu.cn

Submitted: Aug 28, 2018; Accepted: Dec 31, 2018; Published: Jan 11, 2019
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A hypergraph H is properly colored if for every vertex $v \in V(H)$, all the edges incident to v have distinct colors. In this paper, we show that if H_{1}, \ldots, H_{s} are properly-colored k-uniform hypergraphs on n vertices, where $n \geqslant 3 k^{2} s$, and $e\left(H_{i}\right)>\binom{n}{k}-\binom{n-s+1}{k}$, then there exists a rainbow matching of size s, containing one edge from each H_{i}. This generalizes some previous results on the Erdős Matching Conjecture. Mathematics Subject Classifications: 05C70, 05D05

1 Introduction

A k-uniform hypergraph is a pair $H=(V, E)$, where $V=V(H)$ is a finite set of vertices, and $E=E(H) \subseteq\binom{V}{k}$ is a family of k-element subsets of V called edges. A matching in a hypergraph H is a collection of vertex-disjoint edges. The size of a matching is the number of edges in the matching. The matching number $\nu(H)$ is the maximum size of a matching in H. In 1965, Erdős [4] asked to determine the maximum number of edges that could appear in a k-uniform n-vertex hypergraph H with matching number $\nu(H)<s$, for given integer $s \leqslant \frac{n}{k}$. He conjectured that the problem has two extremal constructions.

[^0]The first one is a hyper-clique consisting of all the k-subsets on $k s-1$ vertices. The other one is a k-uniform hypergraph on n vertices containing all the edges intersecting a fixed set of $s-1$ vertices. Erdős posed the following conjecture:

Conjecture 1 ([4]). Every k-uniform hypergraph H on n vertices with matching number $\nu(H)<s \leqslant \frac{n}{k}$ satisfies $e(H) \leqslant \max \left\{\binom{k s-1}{k},\binom{n}{k}-\binom{n-s+1}{k}\right\}$.

The case $s=1$ is the classic Erdős-Ko-Rado Theorem [6]. The graph case $(k=2)$ was verified in [5] by Erdős and Gallai. The problem seems to be significantly harder for hypergraphs. When $k=3$, Frankl, Rödl and Ruciński [11] proved the conjecture for $s \leqslant \frac{n}{4}$. Łuczak and Mieczkowska [14] proved it for sufficiently large s. The $k=3$ case was finally settled by Frankl [8]. For general k, a short calculation shows that when $s \leqslant \frac{n}{k+1}$, we always have $\binom{n}{k}-\binom{n-s+1}{k}>\binom{k s-1}{k}$. For this range, the second construction is believed to be optimal. Erdős [4] proved the conjecture for $n \geqslant n_{0}(k, s)$. Bollobás, Daykin and Erdős [2] proved the conjecture for $n>2 k^{3}(s-1)$. Huang, Loh and Sudakov [12] improved it to $n \geqslant 3 k^{2} s$, which was further improved to $n \geqslant 3 k^{2} s / \log k$ by Frankl, Łuczak and Mieczkowska [10]. On the other hand, in an unpublished note, Füredi and Frankl proved the conjecture for $n \geqslant c k s^{2}$, Frankl [7] improved all the range above to $n \geqslant(2 s-1) k-s+1$. Currently the best range is $n \geqslant \frac{5}{3} s k-\frac{2}{3} s$ by Frankl and Kupavskii [9].

In this paper, we consider a generalization of Erdős Matching Conjecture to properlycolored hypergraphs. A hypergraph H is properly colored if for every vertex $v \in V(H)$, all edges incident to v are colored differently. A rainbow matching in a properly-colored hypergraph H is a collection of vertex disjoint edges with pairwise different colors. The size of a rainbow matching is the number of edges in the matching. The rainbow matching number, denoted by $\nu_{r}(H)$, is the maximum size of a rainbow matching in H. Motivated by the Erdős Matching Conjecture, we consider the following problem: how many edges can appear in a properly-colored k-uniform hypergraph H such that its rainbow matching number satisfies $\nu_{r}(H)<s \leqslant \frac{n}{k}$? In fact, it is called Rainbow Turán problem and is well studied in [13]. Note that here if we let H be rainbow, that is, every edge of H receives distinct colors, then we obtain the original Erdős Matching Conjecture.

More generally, let H_{1}, \ldots, H_{s} be properly-colored k-uniform hypergraphs on n vertices, a rainbow matching of size s in H_{1}, \ldots, H_{s} is a collection of vertex disjoint edges e_{1}, \ldots, e_{s} with pairwise different colors, where $e_{1} \in E\left(H_{1}\right), \ldots, e_{s} \in E\left(H_{s}\right)$. For simplicity, we call it an s-rainbow matching. Then what is the minimum M, such that by assuming $e\left(H_{i}\right)>M$ for every i, it guarantees the existance of an s-rainbow matching?

In this paper, we prove the following result, which generalizes Theorem 1.2 and Theorem 3.3 of [12].

Theorem 2. Let H_{1}, \ldots, H_{s} be properly-colored k-uniform hypergraphs on n vertices. If $n \geqslant 3 k^{2} s$ and every $e\left(H_{i}\right)>\binom{n}{k}-\binom{n-s+1}{k}$, then there exists an s-rainbow matching in H_{1}, \ldots, H_{s}.

2 Preliminary results

In this section, we list some preliminary results about "rainbow" hypergraphs, which is a special case of properly-colored hypergraphs. In the next section, we will prove our main theorem with the help of these results. A hypergraph H is rainbow if the colors of any two edges in $E(H)$ are different. From now on, when we say an edge e is disjoint from a collection of edges, it means that not only e is vertex-disjoint from those edges, but it also has a color different from the colors of all these edges. We start by the following lemma for graphs. Note that here although each G_{i} is rainbow, a color may appear in more than one G_{i} 's.

Lemma 3. Let G_{1}, \ldots, G_{s} be rainbow graphs on n vertices. If $n \geqslant 5 s$ and $e\left(G_{i}\right)>$ $\binom{n}{2}-\binom{n-s+1}{2}$, then there exists an s-rainbow matching in G_{1}, \ldots, G_{s}.
Proof. We do induction on s. The base case $s=1$ is trivial. For every vertex $v \in V\left(G_{i}\right)$ and $j \neq i$, let G_{v}^{j} be the subgraph of G_{j} induced by the vertex set $V\left(G_{j}\right) \backslash\{v\}$. Since there are at most $n-1$ edges containing v in $E\left(G_{j}\right)$, we have $e\left(G_{v}^{j}\right) \geqslant e\left(G_{j}\right)-(n-1)>$ $\binom{n}{2}-\binom{n-s+1}{2}-(n-1)=\binom{n-1}{2}-\binom{(n-1)-(s-1)+1}{2}$. By induction, there exists an $(s-1)-$ rainbow matching $\left\{e_{j}\right\}_{j \neq i}$ in $\left\{G_{v}^{j}\right\}_{j \neq i}$, which spans $2(s-1)$ vertices. So if some G_{i} has a vertex v with degree greater than $3(s-1)$, then there exists an edge e in G_{i} which contains v and disjoint from the edges of the $(s-1)$-rainbow matching, which produces an s-rainbow matching. Hence we may assume that the maximum degree of each G_{i} is at most $3(s-1)$.

Now pick an arbitrary edge $u v$ in G_{1}. Assume the color of $u v$ is $c(u v)$. Then we delete the vertices u, v and the edge colored by $c(u v)$ in G_{2}, \ldots, G_{s}. Denote the resulting graphs by $G_{2}^{\prime}, \ldots, G_{s}^{\prime}$. We can see that when $n \geqslant 5 s$, for each $i \in\{2, \ldots, s\}$, we have $e\left(G_{i}^{\prime}\right)>\binom{n}{2}-\binom{n-s+1}{2}-2 \cdot 3(s-1)-1>\binom{n-2}{2}-\binom{(n-2)-(s-1)+1}{2}$. By induction on s, there exists an $(s-1)$-rainbow matching in the graphs $G_{2}^{\prime}, \ldots, G_{s}^{\prime}$. Taking these $s-1$ edges with the edge $u v$, we obtain an s-rainbow matching in G_{1}, \ldots, G_{s}.

Lemma 4. Let H_{1}, \ldots, H_{s} be rainbow k-uniform hypergraphs on n vertices. If $n \geqslant 3 k^{2} s$ and $e\left(H_{i}\right)>\binom{n}{k}-\binom{n-s+1}{k}$, then there exists an s-rainbow matching in H_{1}, \ldots, H_{s}.
Proof. We do induction on both k and s. According to Lemma 3, the case $k=2$ holds for every s and $n \geqslant 5 s$. And for every k, the case $s=1$ is trivial. We first consider the situation when some H_{i} has a vertex v with degree greater than $k(s-1)\binom{n-2}{k-2}+s-1$. For every vertex $v \in V\left(H_{i}\right)$ and $j \neq i$, let H_{v}^{j} be the subgraph of H_{j} induced by the vertex set $V\left(H_{j}\right) \backslash\{v\}$. Since there are at most $\binom{n-1}{k-1}$ edges containing v in $E\left(H_{j}\right)$, we have $e\left(H_{v}^{j}\right) \geqslant e\left(H_{j}\right)-\binom{n-1}{k-1}>\binom{n}{k}-\binom{n-s+1}{k}-\binom{n-1}{k-1}=\binom{n-1}{k}-\binom{(n-1)-(s-1)+1}{k}$. By inductive hypothesis for the case $(n-1, k, s-1)$, there exists an $(s-1)$-rainbow matching $\left\{e_{j}\right\}_{j \neq i}$ in $\left\{H_{v}^{j}\right\}_{j \neq i}$, which spans $k(s-1)$ vertices. So if some H_{i} has a vertex v with degree greater than $k(s-1)\binom{n-2}{k-2}+s-1$, then there exists an edge e in $E\left(H_{i}\right)$ which contains v and disjoint from the edges of the ($s-1$)-rainbow matching, which produces an s-rainbow matching. Hence we may assume that the maximum degree in each hypergraph H_{i} is at most $k(s-1)\binom{n-2}{k-2}+s-1$.

By induction on s, we know that for every i there exists an $(s-1)$-rainbow matching in the hypergraphs $\left\{H_{j}\right\}_{j \neq i}$, spanning $k(s-1)$ vertices. If for some i, the s-th largest degree of H_{i} is at most $2(s-1)\binom{n-2}{k-2}+s-1$, then the sum of degrees of these $k(s-1)$ vertices in H_{i} is at most

$$
\begin{aligned}
& (s-1)\left[k(s-1)\binom{n-2}{k-2}+s-1\right]+(s-1)(k-1)\left[2(s-1)\binom{n-2}{k-2}+s-1\right] \\
= & (3 k-2)(s-1)^{2}\binom{n-2}{k-2}+(s-1)^{2} k .
\end{aligned}
$$

Since $n \geqslant 3 k^{2} s$, we have $e\left(H_{i}\right)>\binom{n}{k}-\binom{n-s+1}{k}>(s-1)^{2}\left(3 k-\frac{1}{2}\right)\binom{n-2}{k-2}>(3 k-$ 2) $(s-1)^{2}\binom{n-2}{k-2}+(s-1)^{2} k+s-1$, which guarantees the existence of an edge in H_{i} which is disjoint from the previous $(s-1)$-rainbow matching in $\left\{H_{j}\right\}_{j \neq i}$, which produces an s-rainbow matching. So we may assume that each H_{i} contains at least s vertices with degree above $2(s-1)\binom{n-2}{k-2}+s-1$.

Now we may greedily select distinct vertices $v_{i} \in V\left(H_{i}\right)$, such that for each $1 \leqslant$ $i \leqslant s$, the degree of v_{i} in H_{i} exceeds $2(s-1)\binom{n-2}{k-2}+s-1$. Consider all the subsets of $V\left(H_{i}\right) \backslash\left\{v_{1}, \ldots, v_{s}\right\}$ which together with v_{i} form an edge of H_{i}. Denote the ($k-1$)-uniform hypergraph by H_{i}^{\prime}. Then $e\left(H_{i}^{\prime}\right)>2(s-1)\binom{n-2}{k-2}+s-1-(s-1)\binom{n-2}{k-2}>\binom{n-s}{k-1}-\binom{n-2 s+1}{k-1}$. By the inductive hypothesis for the case $(n-s, k-1, s)$, there exists an s-rainbow matching $\left\{e_{i}\right\}_{1 \leqslant i \leqslant s}$ in $\left\{H_{i}^{\prime}\right\}_{1 \leqslant i \leqslant s}$. Taking the edges $e_{i} \bigcup\left\{v_{i}\right\}$, we obtain an s-rainbow matching in $\left\{H_{i}\right\}_{1 \leqslant i \leqslant s}$.

3 Main Theorem

In this section we prove our main result, Theorem 2, using induction and Lemma 4.
Proof. We split our proof into two cases.
Case 1: $\boldsymbol{k}=\mathbf{2}$. Now H_{1}, \ldots, H_{s} are properly-colored graphs. We do induction on s. The base case $s=1$ is trivial. For every vertex $v \in V\left(H_{i}\right)$ and $j \neq i$, let H_{v}^{j} be the subgraph of H_{j} induced by the vertex set $V\left(H_{j}\right) \backslash\{v\}$. Since there are at most $n-1$ edges containing v in $E\left(H_{j}\right)$, we have $e\left(H_{v}^{j}\right) \geqslant e\left(H_{j}\right)-(n-1)>\binom{n}{2}-\binom{n-s+1}{2}-(n-1)=$ $\binom{n-1}{2}-\binom{(n-1)-(s-1)+1}{2}$. By induction, there exists an $(s-1)$-rainbow matching $\left\{e_{j}\right\}_{j \neq i}$ in $\left\{H_{v}^{j}\right\}_{j \neq i}$, which spans $2(s-1)$ vertices. So if some H_{i} has a vertex v of degree greater than $3(s-1)$, then there exists an edge e in H_{i} which contains v and disjoint from the edges of the $(s-1)$-rainbow matching, which produces an s-rainbow matching. Hence we may assume the maximum degree in each H_{i} is at most $3(s-1)$.

For every color c in H_{i} and $j \neq i$, let H_{c}^{j} be the subgraph of H_{j} obtained by deleting all the edges colored by c in $E\left(H_{j}\right)$. Since each H_{j} is properly colored, there are at most $\frac{n}{2}$ edges colored by c in $E\left(H_{j}\right)$. So $e\left(H_{c}^{j}\right) \geqslant e\left(H_{j}\right)-\frac{n}{2}>\binom{n}{2}-\binom{n-s+1}{2}-\frac{n}{2}>\binom{n}{2}-\binom{n-(s-1)+1}{2}$. By induction, there exists an $(s-1)$-rainbow matching $\left\{e_{j}\right\}_{j \neq i}$ in $\left\{H_{v}^{j}\right\}_{j \neq i}$, which spans $2(s-1)$ vertices $u_{1}, \ldots, u_{2(s-1)}$. Also since H_{i} is properly colored, it has at most one edge containing each u_{j} and colored by c. So if the number of edges in H_{i} colored by c is greater than 2(s-1), then there exists an edge e in H_{i} colored by c and disjoint from $\left\{e_{j}\right\}_{j \neq i}$, which produces an s-rainbow matching. So we can now assume that the number of edges in every color in each H_{i} is at most $2(s-1)$.

Now pick an arbitrary edge $u v$ in H_{1}. Assume the color of $u v$ is $c(u v)$. Then we delete the vertices u, v and all the edges colored by $c(u v)$ in H_{2}, \ldots, H_{s}. Denote the resulting graphs by $H_{2}^{\prime}, \ldots, H_{s}^{\prime}$. We can see that when $n \geqslant 7 s$, for each $i \in\{2, \ldots, s\}$, we have $e\left(H_{i}^{\prime}\right)>\binom{n}{2}-\binom{n-s+1}{2}-2 \cdot 3(s-1)-2(s-1)>\binom{n-2}{2}-\binom{(n-2)-(s-1)+1}{2}$. By induction on s, there exists an $(s-1)$-rainbow matching in the graphs $H_{2}^{\prime}, \ldots, H_{s}^{\prime}$. Taking these $s-1$ edges with the edge $u v$, we obtain an s-rainbow matching in H_{1}, \ldots, H_{s}.

Case 2: $\boldsymbol{k} \geqslant \mathbf{3}$. We do induction on s. The case $s=1$ is trivial. We first consider the situation when some H_{i} has a vertex of degree greater than $k(s-1)\binom{n-2}{k-2}+s-1$. For every vertex $v \in H_{i}$ and $j \neq i$, let H_{v}^{j} be the subgraph of H_{j} induced by the vertex set $V\left(H_{j}\right) \backslash\{v\}$. Since there are at most $\binom{n-1}{k-1}$ edges containing v in $E\left(H_{j}\right)$, we have $e\left(H_{v}^{j}\right) \geqslant e\left(H_{j}\right)-\binom{n-1}{k-1}>\binom{n}{k}-\binom{n-s+1}{k}-\binom{n-1}{k-1}=\binom{n-1}{k}-\binom{(n-1)-(s-1)+1}{k}$. By induction, there exists an $(s-1)$-rainbow matching $\left\{e_{j}\right\}_{j \neq i}$ in $\left\{H_{v}^{j}\right\}_{j \neq i}$, which spans $k(s-1)$ vertices. So if some H_{i} has a vertex v with degree greater than $k(s-1)\binom{n-2}{k-2}+s-1$, then there exists an edge e in $E\left(H_{i}\right)$ which contains v and disjoint from the edges of the $(s-1)$-rainbow matching, which produces an s-rainbow matching. Hence we may assume the maximum degree in each hypergraph H_{i} is at most $k(s-1)\binom{n-2}{k-2}+s-1$.

By induction on s, we know that for every i there exists an $(s-1)$-rainbow matching in the hypergraphs $\left\{H_{j}\right\}_{j \neq i}$, spanning $k(s-1)$ vertices. If for some i, the s-th largest degree of H_{i} is at most $2(s-1)\binom{n-2}{k-2}+s-1$, then the sum of degrees of these $k(s-1)$ vertices in H_{i} is at most

$$
(s-1)\left[k(s-1)\binom{n-2}{k-2}+s-1\right]+(s-1)(k-1)\left[2(s-1)\binom{n-2}{k-2}+s-1\right]=(3 k-2)(s-
$$ $1)^{2}\binom{n-2}{k-2}+(s-1)^{2} k$.

On the other hand, the maximum degree of the subgraph of H_{i} by deleting these $k(s-1)$ vertices is at most $s-1$, otherwise, we can find an s-rainbow matching. Since $n \geqslant 3 k^{2} s$, we have $e\left(H_{i}\right)>\binom{n}{k}-\binom{n-s+1}{k}>(s-1)^{2}\left(3 k-\frac{1}{2}\right)\binom{n-2}{k-2}>(3 k-2)(s-1)^{2}\binom{n-2}{k-2}+(s-1)^{2} k+$ $\frac{(s-1)[n-k(s-1)]}{k}$, which guarantees the existence of an edge in H_{i} disjoint from the previous $(s-1)$-rainbow matching in $\left\{H_{j}\right\}_{j \neq i}$, which produces an s-rainbow matching. So we may assume that each H_{i} contains at least s vertices with degree above $2(s-1)\binom{n-2}{k-2}+s-1$.

Now we may greedily select distinct vertices $v_{i} \in V\left(H_{i}\right)$, such that for each $1 \leqslant$ $i \leqslant s$, the degree of v_{i} in H_{i} exceeds $2(s-1)\binom{n-2}{k-2}+s-1$. Consider all the subsets of $V\left(H_{i}\right) \backslash\left\{v_{1}, \ldots, v_{s}\right\}$ which together with v_{i} form an edge of H_{i}. Denote the ($k-1$)-uniform hypergraph by H_{i}^{\prime}. Since each H_{i} is properly colored, we can see that each H_{i}^{\prime} is rainbow and $e\left(H_{i}^{\prime}\right)>2(s-1)\binom{n-2}{k-2}+s-1-(s-1)\binom{n-2}{k-2}>\binom{n-s}{k-1}-\binom{n-2 s+1}{k-1}$. By Lemma 4, there exists an s-rainbow matching $\left\{e_{i}\right\}_{1 \leqslant i \leqslant s}$ in $\left\{H_{i}^{\prime}\right\}_{1 \leqslant i \leqslant s}$. Taking the edges $e_{i} \bigcup\left\{v_{i}\right\}$, we obtain an s-rainbow matching in $\left\{H_{i}\right\}_{1 \leqslant i \leqslant s}$.

4 Concluding Remarks

In this short note, we propose a generalization of the Erdős hypergraph matching conjecture to finding rainbow matchings in properly-colored hypergraphs, and prove Theorem 2 for $s<n /\left(3 k^{2}\right)$. The following conjecture seems plausible.

Conjecture 5. There exists constant $C>0$ such that if H_{1}, \ldots, H_{s} are properly-colored k-uniform hypergraphs on n vertices, with $n \geqslant C k s$ and every $e\left(H_{i}\right)>\binom{n}{k}-\binom{n-s+1}{k}$, then there exists an s-rainbow matching in H_{1}, \ldots, H_{s}.

Recall that for the special case when each H_{i} is identical and rainbow, Frankl and Kupavskii [9] were able to verify it for $C=5 / 3$. However the proof relies on the technique of shifting, while the property of a hypergraph being properly colored may not be preserved under shifting.

It is tempting to believe that Erdős Matching Conjecture can be extended to properlycolored hypergraphs for the entire range of s, that is, once the number of edges in each hypergraph exceeds the maximum of $\binom{n}{k}-\binom{n-s+1}{k}$ and $\binom{k s-1}{k}$, then one can find an s rainbow matching. However this is false in general, a simple construction is by taking $s=2$ and $n=2 k$. The maximum of these two expressions is $\binom{2 k-1}{k}$, while one can let H_{1} be a rainbow $K_{2 k}^{k}$ with an edge coloring c_{1}, and H_{2} be on the same vertex set with edge coloring c_{2}, such that $c_{2}(e)=c_{1}([2 k] \backslash e)$. Then clearly each H_{i} contains $\binom{2 k}{k}>\binom{2 k-1}{k}$ edges and there is no 2 -rainbow matching. It would be interesting to find constructions for s close to n / k, and formulate a complete conjecture for properly-colored hypergraphs.

References

[1] J. Akiyama, P. Frankl, On the size of graphs with complete-factors, J. Graph Theory, 9(1)(2010), 197-201.
[2] B. Bollobás, D.E. Daykin, P. Erdős, Sets of independent edges of a hypergraph, Q. J. Math. Oxf. Ser., (2) 27 (105)(1976), 25-32.
[3] M. Deza, P. Frankl, Erdős-Ko-Rado theorem - 22 years later, SIAM J. Algebr. Discrete Methods, 4(4) (1983), 419-431.
[4] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 8(1965), 93-95.
[5] P. Erdős, T. Gallai, On the maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung., 10(1959), 337-357.
[6] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser., (2)12 (1961), 313-320.
[7] P. Frankl, Improved bounds for Erdős' matching conjecture, J. Combin. Theory Ser. A, 120 (2013), 1068-1072.
[8] P. Frankl, On the maximum number of edges in a hypergraph with a given matching number, Discrete Appl. Math., 216 (2017), 562-581.
[9] P. Frankl, A. Kupavskii, The Erdős Matching Conjecture and concentration inequalities, available at arXiv:1806.08855.
[10] P. Frankl, T. Łuczak, K. Mieczkowska, On matchings in hypergraphs, Electron. J. Combin., 19(2) (2012), \#P42.
[11] P. Frankl, V. Rödl, A. Ruciński, On the maximum number of edges in a triple system not containing a disjoint family of a given size, Combin. Probab. Comput., 21(2012), 141-148.
[12] H. Huang, P. Loh, B. Sudakov, The size of a hypergraph and its matching number, Combin. Probab. Comput., 21 (2012), 442-450.
[13] P. Keevash, D. Mubayi, B. Sudakov and J. Verstraëte, Rainbow Turán problems, Combin. Probab. Comput., 16 (2007), 109-126.
[14] T. Łuczak, K. Mieczkowska, On Erdős extremal problem on matchings in hypergraphs, J. Combin. Theory Ser. A, 124 (2014), 178-194.

[^0]: *Research supported in part by the Collaboration Grants from the Simons Foundation.
 ${ }^{\dagger}$ Research supported by NNSF (No. 11471193, 11631014)

