Rainbow matchings in properly-colored hypergraphs
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Abstract

A hypergraph H is properly colored if for every vertex v € V(H), all the edges
incident to v have distinct colors. In this paper, we show that if Hy, ..., Hg
are properly-colored k-uniform hypergraphs on n vertices, where n > 3k?s, and
e(H;) > (})— ("_,‘zﬂ), then there exists a rainbow matching of size s, containing one
edge from each H;. This generalizes some previous results on the Erdés Matching

Conjecture.
Mathematics Subject Classifications: 05C70, 05D05

1 Introduction

A Ek-uniform hypergraph is a pair H = (V, E), where V = V(H) is a finite set of vertices,
and F = FE(H) C (Z) is a family of k-element subsets of V' called edges. A matching
in a hypergraph H is a collection of vertex-disjoint edges. The size of a matching is the
number of edges in the matching. The matching number v(H) is the maximum size of a
matching in H. In 1965, Erdés [4] asked to determine the maximum number of edges that
could appear in a k-uniform n-vertex hypergraph H with matching number v(H) < s, for
given integer s < 7. He conjectured that the problem has two extremal constructions.
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The first one is a hyper-clique consisting of all the k-subsets on ks — 1 vertices. The other
one is a k-uniform hypergraph on n vertices containing all the edges intersecting a fixed
set of s — 1 vertices. Erdés posed the following conjecture:

Conjecture 1 ([4]). Every k-uniform hypergraph H on n vertices with matching number

v(H) < s < 7 satisfies e(H) < max{ (ksk_l), () — (”‘2“)}.

The case s = 1 is the classic Erdés—Ko—Rado Theorem [6]. The graph case (k = 2)
was verified in [5] by Erd6és and Gallai. The problem seems to be significantly harder
for hypergraphs. When k = 3, Frankl, Rédl and Ruciniski [11] proved the conjecture
for s < %. Luczak and Mieczkowska [14] proved it for sufficiently large s. The k = 3
case was finally settled by Frankl [8]. For general k, a short calculation shows that when
s < 34, we always have (Z) — (”?H) > (ksl; 1). For this range, the second construction
is believed to be optimal. Erdés [4] proved the conjecture for n > ng(k, s). Bollobas,
Daykin and Erdés [2] proved the conjecture for n > 2k3(s —1). Huang, Loh and Sudakov
[12] improved it to n > 3k?s, which was further improved to n > 3k%*s/logk by Frankl,
BLuczak and Mieczkowska [10]. On the other hand, in an unpublished note, Fiiredi and
Frankl proved the conjecture for n > cks?, Frankl [7] improved all the range above to
n > (2s — 1)k — s+ 1. Currently the best range is n > gsk — %s by Frankl and Kupavskii
9].

In this paper, we consider a generalization of Erdés Matching Conjecture to properly-
colored hypergraphs. A hypergraph H is properly colored if for every vertex v € V(H),
all edges incident to v are colored differently. A rainbow matching in a properly-colored
hypergraph H is a collection of vertex disjoint edges with pairwise different colors. The
size of a rainbow matching is the number of edges in the matching. The rainbow matching
number, denoted by v,.(H), is the maximum size of a rainbow matching in H. Motivated
by the Erdés Matching Conjecture, we consider the following problem: how many edges
can appear in a properly-colored k-uniform hypergraph H such that its rainbow matching
number satisfies v,.(H) < s < 27 In fact, it is called Rainbow Turdn problem and is well
studied in [13]. Note that here if we let H be rainbow, that is, every edge of H receives
distinct colors, then we obtain the original Erdés Matching Conjecture.

More generally, let Hy, ..., H, be properly-colored k-uniform hypergraphs on n ver-
tices, a rainbow matching of size s in Hy, ..., Hy is a collection of vertex disjoint edges
e1,...,es with pairwise different colors, where e; € E(H;),...,es € E(H,). For simplicity,
we call it an s-rainbow matching. Then what is the minimum M, such that by assuming
e(H;) > M for every i, it guarantees the existance of an s-rainbow matching?

In this paper, we prove the following result, which generalizes Theorem 1.2 and The-
orem 3.3 of [12].

Theorem 2. Let Hy, ..., Hy be properly-colored k-uniform hypergraphs on n vertices. If
n > 3k%s and every e(H;) > () — ("j‘j“), then there exists an s-rainbow matching in
Hy, ..., H,.
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2 Preliminary results

In this section, we list some preliminary results about “rainbow” hypergraphs, which is a
special case of properly-colored hypergraphs. In the next section, we will prove our main
theorem with the help of these results. A hypergraph H is rainbow if the colors of any
two edges in E(H) are different. From now on, when we say an edge e is disjoint from a
collection of edges, it means that not only e is vertex-disjoint from those edges, but it also
has a color different from the colors of all these edges. We start by the following lemma
for graphs. Note that here although each G; is rainbow, a color may appear in more than
one G;’s.

Lemma 3. Let Gy, ..., Gs be rainbow graphs on n vertices. If n > 5s and e(G;) >

(Z) — (”_SH), then there exists an s-rainbow matching in Gy, ..., G,.

Proof. We do induction on s. The base case s = 1 is trivial. For every vertex v € V(G;)
and j # i, let GY be the subgraph of G; induced by the vertex set V(G;) \ {v}. Since
there are at most n — 1 edges containing v in E(G;), we have e(G?) > e(G;) — (n — 1) >
B =3 -(m-1)=("") - (("71)75571”1). By induction, there exists an (s — 1)-
rainbow matching {e;};; in {G?};.;, which spans 2(s — 1) vertices. So if some G; has
a vertex v with degree greater than 3(s — 1), then there exists an edge e in G; which
contains v and disjoint from the edges of the (s — 1)-rainbow matching, which produces
an s-rainbow matching. Hence we may assume that the maximum degree of each G; is at
most 3(s — 1).

Now pick an arbitrary edge wv in G;. Assume the color of wv is c¢(uv). Then we
delete the vertices u, v and the edge colored by c¢(uv) in G, ..., G,. Denote the resulting
graphs by G5, ..., G’. We can see that when n > 5s, for each i € {2,...,s}, we have
e(GH >0 - (") —2-3(s—1)—1> (") — ((”_2)_58_1)“). By induction on s, there
exists an (s — 1)-rainbow matching in the graphs G, ..., G.. Taking these s — 1 edges

with the edge uv, we obtain an s-rainbow matching in Gy, ..., G,. O
Lemma 4. Let Hy, ..., H, be rainbow k-uniform hypergraphs on n vertices. If n > 3k*s
and e(H;) > (Z) — (nfzﬂ), then there ewists an s-rainbow matching in Hq, ..., H,.

Proof. We do induction on both k and s. According to Lemma 3, the case k& = 2 holds
for every s and n > 5s. And for every k, the case s = 1 is trivial. We first consider the
situation when some H; has a vertex v with degree greater than k(s—1)(7_5) +s—1. For
every vertex v € V(H;) and j # i, let H? be the subgraph of H; induced by the vertex
set V(H;) \ {v}. Since there are at most (Zj) edges containing v in E(H;), we have
e(Hy) > e(Hy) = ;7)) > (i) = (") = (2) = (1) = ("), By inductive
hypothesis for the case (n—1, k, s —1), there exists an (s — 1)-rainbow matching {e;}, . in
{H}; .2, which spans k(s — 1) vertices. So if some H; has a vertex v with degree greater
than k(s — 1)(}_2) + s — 1, then there exists an edge e in E(H;) which contains v and
disjoint from the edges of the (s — 1)-rainbow matching, which produces an s-rainbow
matching. Hence we may assume that the maximum degree in each hypergraph H; is at

most k(s — 1)(2:;) +s—1.
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By induction on s, we know that for every i there exists an (s — 1)-rainbow matching
in the hypergraphs {H,},.;, spanning k(s — 1) vertices. If for some 4, the s-th largest
degree of H; is at most 2(s — 1)(}_2) + s — 1, then the sum of degrees of these k(s — 1)
vertices in H; is at most

(s—DEs-1D0G2) +s—1+ (s =)k —D2(s - 1)(72) +s— 1]
=3k —2)(s —1)2(22) + (s — 1)%k.

Since n > 3k*s, we have e(H;) > () — (" > (s — 1)%(3k — %)(Z:g) > (3k —
2)(s—1)%(7-3) + (s — 1)%k + s — 1, which guarantees the existence of an edge in H; which
is disjoint from the previous (s — 1)-rainbow matching in {H;};.;, which produces an
s-rainbow matching. So we may assume that each H; contains at least s vertices with
degree above 2(s — 1)(1~7) +s — 1.

Now we may greedily select distinct vertices v; € V/(H;), such that for each 1 <
i < s, the degree of v; in H; exceeds 2(s — 1)(2:3) + s — 1. Consider all the subsets of
V(H;)\{v1,...,vs} which together with v; form an edge of H;. Denote the (k—1)-uniform
hypergraph by H/. Then e(H]) > 2(s—1)(}2)+s—1—(s—1)(122) > (?=5)— (" >!"). By
the inductive hypothesis for the case (n — s,k — 1, s), there exists an s-rainbow matching
{ei}1<ics in {H]}1<ics. Taking the edges e; | J{v;}, we obtain an s-rainbow matching in
{Hi}i<ics O

3 Main Theorem

In this section we prove our main result, Theorem 2, using induction and Lemma 4.

Proof. We split our proof into two cases.

Case 1: k = 2. Now H,, ..., H, are properly-colored graphs. We do induction on
s. The base case s = 1 is trivial. For every vertex v € V(H;) and j # 4, let HJ be the
subgraph of H; induced by the vertex set V(H;) \ {v}. Since there are at most n — 1
edges containing v in E(H;), we have e(H7) > e(H;)—(n—1) > (3) — ("3 —(n—1) =
(" - ((”_1)_58_1)“). By induction, there exists an (s — 1)-rainbow matching {e;};.;
in {H?},.;, which spans 2(s — 1) vertices. So if some H; has a vertex v of degree greater
than 3(s — 1), then there exists an edge e in H; which contains v and disjoint from the
edges of the (s — 1)-rainbow matching, which produces an s-rainbow matching. Hence we
may assume the maximum degree in each H; is at most 3(s — 1).

For every color ¢ in H; and j # 4, let H? be the subgraph of H; obtained by deleting
all the edges colored by c in E(H;). Since each H; is properly colored, there are at most &
edges colored by cin E(H;). Soe(H?) > e(H;)—2> (3) - ("3 -2 > (}) - (”7(851)“).
By induction, there exists an (s — 1)-rainbow matching {e;};.; in {H7},.;, which spans
2(s — 1) vertices u1,...,uss—1). Also since H; is properly colored, it has at most one
edge containing each w; and colored by c. So if the number of edges in H; colored by c
is greater than 2(s — 1), then there exists an edge e in H; colored by ¢ and disjoint from
{€;};-i, which produces an s-rainbow matching. So we can now assume that the number
of edges in every color in each H; is at most 2(s — 1).
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Now pick an arbitrary edge wv in Hy. Assume the color of uv is ¢(uv). Then we delete
the vertices u, v and all the edges colored by c(uv) in Hs, ..., Hs. Denote the resulting
graphs by H), ..., H.. We can see that when n > 7s, for each i € {2,...,s}, we have
e(H)> ) — ("3 —2-3(s—1)—2(s—1) > ("}?) — ((”_2)_5‘9_1)“). By induction on
s, there exists an (s — 1)-rainbow matching in the graphs Hj, ..., H.. Taking these s — 1
edges with the edge uv, we obtain an s-rainbow matching in Hy, ..., H,.

Case 2: k > 3. We do induction on s. The case s = 1 is trivial. We first consider
the situation when some H; has a vertex of degree greater than k(s — 1)(2:5) +s—1.
For every vertex v € H; and j # i, let H? be the subgraph of H; induced by the vertex
set V(H;) \ {v}. Since there are at most (}_|) edges containing v in E(H;), we have
e(Hy) > e(H;) — (i) > () = ("57) = (2 = () = (77777 By induction,
there exists an (s — 1)-rainbow matching {e;} ;4 in {H7},;;, which spans k(s —1) vertices.
So if some H; has a vertex v with degree greater than k(s—1)(7~7) +s—1, then there exists
an edge e in E(H;) which contains v and disjoint from the edges of the (s — 1)-rainbow
matching, which produces an s-rainbow matching. Hence we may assume the maximum
degree in each hypergraph H; is at most k(s — 1) (Z:;) +s—1.

By induction on s, we know that for every i there exists an (s — 1)-rainbow matching
in the hypergraphs {H;},.;, spanning k(s — 1) vertices. If for some 4, the s-th largest
degree of H; is at most 2(s — 1)(2:;) + s — 1, then the sum of degrees of these k(s — 1)
vertices in H; is at most

(s = Dlk(s = (2 +5 = 1)+ (s = Dk = DI2As — D(2) 45— 1] = (3k — 2)(s -
1)2(373) + (s — 1)%k.

On the other hand, the maximum degree of the subgraph of H; by deleting these k(s—1)
vertices is at most s — 1, otherwise, we can find an s-rainbow matching. Since n > 3k?s,
we have e(H;) > () — (") > (s—1)?Bk—3)(120) > Bk—2)(s—1)?(}2) + (s —1)%k+
%;k(sflﬂ, which guarantees the existence of an edge in H; disjoint from the previous
(s — 1)-rainbow matching in {H,},;, which produces an s-rainbow matching. So we may
assume that each H; contains at least s vertices with degree above 2(s — 1) (Z:;) +s—1.

Now we may greedily select distinct vertices v; € V(H;), such that for each 1 <
i < s, the degree of v; in H; exceeds 2(s — 1)(2:;) + s — 1. Consider all the subsets of
V(H;)\{v1,...,vs} which together with v; form an edge of H;. Denote the (k—1)-uniform
hypergraph by H!. Since each H; is properly colored, we can see that each H| is rainbow
and e(H]) >2(s—1)(? ) +s—1—(s—1)(}2) > (=) — (".*"). By Lemma 4, there
exists an s-rainbow matching {e; }1<i<s in { H] }1<i<s. Taking the edges e; | J{v;}, we obtain
an s-rainbow matching in {H; }1<i<s. O

4 Concluding Remarks

In this short note, we propose a generalization of the Erdés hypergraph matching conjec-
ture to finding rainbow matchings in properly-colored hypergraphs, and prove Theorem
2 for s < n/(3k?). The following conjecture seems plausible.
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Conjecture 5. There exists constant C' > 0 such that if Hy, ..., Hg are properly-colored
k-uniform hypergraphs on n vertices, with n > Cks and every e(H;) > (Z) — (”*ZH),
then there exists an s-rainbow matching in Hy, ..., H,.

Recall that for the special case when each H; is identical and rainbow, Frankl and
Kupavskii [9] were able to verify it for C' = 5/3. However the proof relies on the technique
of shifting, while the property of a hypergraph being properly colored may not be preserved
under shifting.

It is tempting to believe that Erdés Matching Conjecture can be extended to properly-
colored hypergraphs for the entire range of s, that is, once the number of edges in each
hypergraph exceeds the maximum of (Z) — ("71‘:“) and (ksl; 1), then one can find an s-
rainbow matching. However this is false in general, a simple construction is by taking
s = 2 and n = 2k. The maximum of these two expressions is (Qkk_ 1), while one can let H,
be a rainbow K3, with an edge coloring ¢;, and H, be on the same vertex set with edge
coloring ¢y, such that cs(e) = c1([2k] \ €). Then clearly each H; contains (%) > (1)
edges and there is no 2-rainbow matching. It would be interesting to find constructions
for s close to n/k, and formulate a complete conjecture for properly-colored hypergraphs.
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