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Abstract

We define the operation of composing two hereditary classes of permutations
using the standard composition of permutations as functions and we explore prop-
erties and structure of permutation classes considering this operation. We mostly
concern ourselves with the problem of whether permutation classes can be com-
posed from their proper subclasses. We provide examples of classes which can be
composed from two proper subclasses, classes which can be composed from three
but not from two proper subclasses and classes which cannot be composed from any
finite number of proper subclasses.

Mathematics Subject Classifications: 05A05

1 Introduction

Permutations of numbers or other finite sets are a very deeply and frequently studied
combinatorial and algebraic object. There are two main structures on permutations in-
vestigated in modern mathematics: groups, closed under the composition operator, and
hereditary pattern-avoiding classes, closed under the relation of containment. This paper
is one of several texts exploring the relation between the two notions by applying the
composition operator to permutation classes. That is, given two classes A and B, we
denote by A◦B the class of all permutations which can be written as α ◦ β, where α ∈ A
and β ∈ B.

The oldest results combining permutation classes and groups that we know of are due
to Atkinson and Beals [4], who consider the permutation classes whose permutations of
length n form a subgroup of Sn for every n and completely characterise the types of groups
which may occur this way. These results were recently refined and extended by Lehtonen
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and Pöschel [8, 9]. In an earlier version of their paper, Atkinson and Beals [3] also deal
with composing permutation classes, showing that compositions of many pairs of finitely
based classes are again finitely based.

Some permutation classes characterise permutations which can be sorted by some
sorting machine such as a stack. In this view, a composition of two permutation classes
can characterise permutations sortable by two corresponding sorting machines connected
serially. For example, Atkinson and Stitt [5, Section 6.4] introduce the pop-stack, a sorting
machine which sorts precisely the layered permutations (see Section 4.2 for a definition),
and consider the class of permutations which can be sorted by two pop-stacks in genuine
series, i.e. connected by a queue. This turns out to be the class of permutations that
can be written as a composition of two layered permutations. Using their more general
results they calculate its generating function and enumerate its basis.

Albert et al. [1] give more enumerative results on compositions of classes in terms of
sorting machines.

In the present paper, we study a different question connected to compositions of classes;
namely whether a permutation of a given class C can always be written as a composition
of two or more permutations from its subclasses, i.e. whether C ⊆ C1 ◦ C2 ◦ · · · ◦ Ck for
some C1, . . . , Ck ( C. If this is true, we say that the class C is composable and we refer to
this property of C as composability.

The paper is organised as follows. In Section 2 we supply all the necessary definitions
and facts about permutation classes. In Section 3 we introduce composability and give
some basic results. In Section 4 we explore composability of the class Av(k · · · 21). In
Section 4.2 we explore composability of various classes of layered patterns. Finally in
Section 5 we give several additional miscellaneous results.

2 Preliminaries

For a positive integer n we let [n] denote the set {1, 2, . . . , n}. A permutation of length
n is a bijective function π : [n] −→ [n]. We denote the length of a permutation π by
|π|. We may also interpret a permutation π as a sequence π(1), π(2), . . . , π(n) of distinct
elements of [n], or as a diagram in an n × n square in the plane, consisting of points
{(i, π(i)); 1 6 i 6 n}. For n > 0 let Sn denote the set of all permutations of length n.

If π and σ are two permutations of length n we define their composition π ◦ σ as
(π ◦ σ)(i) = π(σ(i)) for every i ∈ [n].

We define two more permutation operators. The sum π ⊕ σ of permutations π ∈ Sk
and σ ∈ Sl is the permutation π(1), π(2), . . . , π(k), σ(1) + k, σ(2) + k, . . . , σ(l) + k. The
skew sum π	σ is the permutation π(1) + l, π(2) + l, . . . , π(k) + l, σ(1), σ(2), . . . , σ(l). For
example, 3127645 = 312⊕ 4312 and 6547123 = 3214	 123 (see Figure 1).

In addition, we will sometimes write π1 ⊕ π2 ⊕ · · · ⊕ πk as
⊕k

i=1 πi.
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(a) 3127645 = 312⊕ 4312 (b) 6547123 = 3214	 123

Figure 1: An example of sums and skew sums

2.1 Permutation classes

Let s1, s2, . . . , sn and r1, r2, . . . , rn be two finite sequences of numbers. We say that they
are order-isomorphic if for any two indices i, j ∈ [n] it is true that si < sj if and only if
ri < rj.

We define the following partial ordering on the set of all permutations. We say that π
is contained in σ and write π 6 σ if σ has a subsequence of length |π| order-isomorphic
to π. See the example of containment in Figure 2. On the other hand, if π � σ, we say
that σ avoids π.

Figure 2: The permutation 213 is contained in 143625.

A set C of permutations is called a permutation class if for every π ∈ C and every
σ 6 π we have σ ∈ C. We say that C avoids a permutation σ if σ /∈ C, i.e. every π ∈ C
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avoids σ. Permutation classes are often described by the patterns they avoid. If B is
any set of permutations, we denote by Av(B) the set of all permutations avoiding every
element of B. Observe that C is a permutation class if and only if C = Av(B) for some set
B. Indeed, if C is a permutation class, then C = Av(S\C), and if σ 6 π ∈ C, then π avoids
all permutations of B and clearly σ avoids them too. If C = Av(B) and B is an anti-chain
with respect to containment, we call B the basis of C. Also if B = {π1, π2, . . . , πk} is
finite, we write just Av(π1, . . . , πk) instead of Av({π1, . . . , πk}). Finally, if C = Av(π) for
a single permutation π, we say that C is a principal class.

Let s1, s2, . . . , sk be k finite sequences of numbers. We denote their concatenation by
s1s2 · · · sk. If a sequence s can be constructed by interleaving s1, s2, . . . , sk in some (not
necessarily unique) way, we say that s is a merge of or it is merged from s1, s2, . . . , sk.

We define Ik resp. Dk to be the class of all permutations merged from at most k
increasing resp. decreasing subsequences. Also let I = I1 and D = D1, i.e. I = Av(21)
is the set of all increasing permutations and D = Av(12) is the set of all decreasing
permutations, and for convenience let I0 = D0 = S0.

The classes Ik and Dk are well-known examples of principal classes.

Fact 1. Ik−1 = Av(k · · · 21) and Dk−1 = Av(12 · · · k) for any positive integer k.

Next we recall a known and important property of infinite permutation classes which
will become useful in the upcoming sections, and which is an immediate consequence of
the Erdős-Szekeres theorem.

Fact 2. Let C be an infinite permutation class. Then either I ⊆ C or D ⊆ C.

2.2 Splittability

In this section we shortly introduce another concept which has been recently used to
derive enumerative results on permutation classes and which we will also utilize in our
work.

A permutation π is merged from permutations α and β if we can color the elements
of π with red and blue such that the red subsequence is order-isomorphic to α and the
blue sequence is order-isomorphic to β. Given two permutation classes A and B we define
their merge denoted by A�B as the class of all permutations which can be merged from
a (possibly empty) permutation from A and a (possibly empty) permutation from B. For
example, it is easy to see that

Ik = I � I � · · · � I︸ ︷︷ ︸
k×

.

We say that a class C is splittable if it has two proper subclasses A and B such that
C ⊆ A � B. We refer the reader to the work of Jeĺınek and Valtr [6] for an exhaustive
study of splittability.
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3 The notion of composability

In the following sections we provide definitions of the key notions of this work as well as
basic facts and observations.

3.1 Composing permutation classes

We define the composition of two permutation classesA and B as the setA◦B = {π◦ϕ; π ∈
A, ϕ ∈ B, |π| = |ϕ|}.

Lemma 3. Let A, B and C be arbitrary permutation classes.

(a) A ◦ B is again a permutation class.

(b) Composing permutation classes is associative, i.e. (A ◦ B) ◦ C = A ◦ (B ◦ C).

Proof. Let α ◦ β = π ∈ A ◦ B, so that α ∈ A and β ∈ B. Then a permutation contained
in π at indices i1 < · · · < ir is composed of α′ 6 α and β′ 6 β such that β′ is contained
at indices i1, . . . , ir in β and α′ is contained at indices β(i1), . . . , β(i2) in α. Associativity
follows from associativity of permutation composition.

Having verified associativity of the composition operator we can now define the com-
position of more than two classes in a natural inductive way:

C1 ◦ C2 ◦ · · · ◦ Ck = (C1 ◦ C2 ◦ · · · ◦ Ck−1) ◦ Ck.

We will also sometimes use the power notation C ◦ C ◦ · · · ◦ C︸ ︷︷ ︸
k×

= (C)k.

We continue by proving several simple lemmas about composing permutations merged
from few increasing sequences.

Lemma 4. Ik ◦ Il ⊆ Ikl for any integers k, l > 0.

Proof. Choose π ∈ Ik and ϕ ∈ Il, partition ϕ into l increasing sequences and choose one
of them at indices i1 < · · · < ir. Then ϕ(i1) < · · · < ϕ(ir) and so π(ϕ(i1)), . . . , π(ϕ(ir)) is
a subsequence of π and therefore it can be partitioned into at most k increasing sequences
since that is the property of π. This is true for the image of each of the l increasing
subsequences in ϕ and therefore π ◦ ϕ can be partitioned into at most k · l increasing
subsequences.

Since D ◦ D = I, the argument of the previous proof can be repeated to show that
Dk ◦ Dl ⊆ Ikl. We can generalise this even more.

Lemma 5. Let k, l,m, n be any non-negative integers. Then

(Ik �Dm) ◦ (Il �Dn) ⊆ Ikl+mn �Dkn+ml.

Proof. Use an approach identical to that of Lemma 4.

the electronic journal of combinatorics 26(1) (2019), #P1.41 5



3.2 Composability

The main problem we are addressing in this work is whether permutations in a given per-
mutation class can be constructed by composing permutations from two or more smaller
classes. We formalise this as follows. A permutation class C is said to be composable from
classes C1, . . . , Ck if C ⊆ C1◦· · ·◦Ck. A class C is k-composable, if k of its proper subclasses
C1, . . . , Ck can be chosen such that C is composable from them. A class C is composable,
if it is k-composable for some k > 2. In addition, if a class is not composable, we say
that it is uncomposable. Using this terminology, our goal is thus answering the question
whether a given permutation class is composable.

Clearly, for every class C we have C ⊆ C ◦I. For an infinite class we have either I ⊆ C,
which implies C ⊆ C ◦ C, or D ⊆ C, which implies I ⊆ C ◦ C and C ⊆ C ◦ C ◦ C. Restricting
ourselves to proper subclasses in the definition of a composable class is motivated by these
trivial inclusions.

We begin the exploration of composability by proving the following result which implies
that unlike splittability, k-composability for k > 2 does not imply 2-composability.

Theorem 6. Let C be an infinite permutation class such that I * C. Then C is not
2k-composable for any positive integer k.

Proof. Since C does not contain I, there is an integer n such that C avoids 12 · · ·n(n+ 1)
and therefore C ⊆ Dn by Fact 1.

Now let A1,B1,A2,B2, . . . ,Ak,Bk be proper subclasses of C and suppose that C ⊆
A1 ◦B1 ◦A2 ◦B2 ◦ · · · ◦Ak ◦Bk. Since all these classes are subsets of Dn, Lemma 5 implies
Ai ◦ Bi ⊆ In2 for every i ∈ [k]. Using Lemma 5 again we get that

A1 ◦ B1 ◦ A2 ◦ B2 ◦ · · · ◦ Ak ◦ Bk ⊆ In2 ◦ · · · ◦ In2 ⊆ In2k ,

therefore, according to our assumption, C ⊆ In2k , which means that C does not contain
a decreasing permutation of length n2k + 1 by Fact 1. But since C is infinite and does not
contain I, it has to contain D according to Fact 2, which is a contradiction.

3.3 Properties of symmetries

In this section we explore how composability is preserved under some of the usual sym-
metries.

For a permutation π of length n we define πr to be the reverse of π, i.e. πr(k) = π(n−
k+1), and πc to be the complement of π, i.e. πc(k) = n−π(k)+1. For a permutation class
A we define the inverse class A−1 = {π−1; π ∈ A}, the reverse class Ar = {πr; π ∈ A},
and the complementary class Ac = {πc; π ∈ A}.

It is clear that all these class operators are involutory, i.e. (A−1)−1 = A, (Ar)r = A
and (Ac)c = A. The following simple lemma describes how these operators relate to
composition. We leave its proof as an exercise for the reader.

Lemma 7. Let A,A1,A2, . . . ,Ak be permutation classes. Then
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(a) 14352 (b) (14352)−1 (c) (14352)r (d) (14352)c

Figure 3: Symmetries of the permutation 14352

(a) (A1 ◦ A2 ◦ · · · ◦ Ak)−1 = A−1k ◦ · · · ◦ A
−1
2 ◦ A−11 ,

(b) Ar = A ◦ D and Ac = D ◦ A,

(c) (Ar)c = (Ac)r = D ◦ A ◦ D.

Using this lemma we derive several composability criteria for symmetries of a given
class, the first of which requires no further proof as it is an immediate consequence of
Lemma 7.

Corollary 8. Let A be a permutation class. Then the following statements are equivalent:

(a) A is composable,

(b) A−1 is composable,

(c) (Ar)c is composable.

The case of the reverse and complementary operators is more complicated and requires
additional assumptions.

Lemma 9. If A is a k-composable class and I ( A, then both Ar and Ac are (2k − 1)-
composable.

Proof. Let A be composable from its proper subclasses A1,A2, . . . ,Ak. Then

Ar = A ◦ D ⊆ A1 ◦ A2 ◦ · · · ◦ Ak ◦ D = (Ar
1 ◦ D) ◦ (Ar

2 ◦ D) ◦ · · · ◦ (Ar
k ◦ D) ◦ D.

It holds that D ◦ D = I, so we have

Ar ⊆ Ar
1 ◦ D ◦ Ar

2 ◦ D ◦ · · · ◦ Ar
k.

Clearly Ar
i ( Ar and since I ( A, we have D ( Ar, so the proper subclass criterion is

met and Ar is therefore (2k − 1)-composable. Analogously we show that

Ac ⊆ Ac
1 ◦ D ◦ Ac

2 ◦ D ◦ · · · ◦ Ac
k.
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4 On permutations avoiding a decreasing sequence

Recall that Ik = Av((k + 1) · · · 21) is the class of permutations merged from k increasing
sequences, or equivalently those avoiding a decreasing sequence of length k + 1. In this
section, we prove that Ik is 2-composable and show several examples of how Ik can be
composed from two proper subclasses.

4.1 Vertical and horizontal merge

Let C1, . . . , Ck be any permutation classes. We define the vertical merge of these classes as
the class of permutations that can be written as a concatenation s1s2 · · · sk of k (possibly
empty) sequences such that si is order-isomorphic to a permutation of Ci. We write
this class as V(C1, . . . , Ck). In addition, if C1 = C2 = · · · = Ck = I, we let Vk denote
the class V(C1, . . . , Ck). Similarly we define the horizontal merge of these classes as the
class of permutations that can be written as a merge of k (possibly empty) sequences
s1, s2, . . . , sk such that each si is order-isomorphic to πi ∈ Ci and every element of si is
smaller than every element of si+1 for 1 6 i 6 k − 1. Note that this implies that each
si uses a set of consecutive integers. We let H(C1, . . . , Ck) denote the horizontal merge of
classes C1, . . . , Ck and if C1 = C2 = · · · = Ck = I we write Hk = H(C1, . . . , Ck).

Alternatively, we can observe that π ∈ V(C1, . . . , Ck) resp. π ∈ H(C1, . . . , Ck) if and
only if its plot in R2 can be separated by vertical resp. horizontal lines into at most k
parts, i-th of them containing a sequence order-isomorphic to a permutation in Ci (see
Figure 4), hence the names of the classes.

(a) An element of the vertical merge Vk (b) An element of the horizontal merge Hk

Figure 4: Examples of vertical and horizontal merges

In addition we define H = H2 and V = V2 for future convenience. We continue by
observing an important connection between the horizontal and vertical merge.

Lemma 10. Let C1, . . . , Ck be any permutation classes. Then

H(C1, . . . , Ck) =
(
V(C−11 , . . . , C−1k )

)−1
.
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Proof. If π ∈ V(C−11 , . . . , C−1k ), we have that π = s1s2 · · · sk such that si is order-isomorphic
to πi ∈ C−1i . For every i ∈ [k], π−1 contains a set of consecutive integers on indices
(si)1, (si)2, . . . , (si)|si| and the sequence at these indices is order-isomorphic to π−1i ∈ Ci.

The opposite inclusion is equally straightforward.

When composed with any other class A, the classes Hk, Vk and Ik can be viewed as
a unary operator transforming A in a specific way. We formalise this approach in the
following lemma.

Lemma 11. Let A be an arbitrary permutation class. Then

(a) A◦Hk is precisely the class of permutations which can be obtained from a permutation
of A by dividing it into at most k contiguous subsequences and interleaving them in
any way,

(b) A◦Vk is precisely the class of permutations which can be obtained from a permutation
of A by dividing it into at most k subsequences and concatenating them,

(c) A◦Ik is precisely the class of permutations which can be obtained from a permutation
of A by dividing it into at most k subsequences and interleaving them in any way.

Proof. Let α ∈ A, η ∈ Hk, ν ∈ Vk and ι ∈ Ik.
(a): Consider the permutation α ◦ η ∈ A ◦ Hk. Then η is merged from k (possibly

empty) sequences of consecutive integers s1, . . . , sk. Now we define k sequences r1, . . . , rk
such that |si| = |ri| and (ri)j = α((si)j) for every i ∈ [k] and j ∈ [|si|] . Every ri is
a contiguous subsequence of α and at the same time α ◦ η is merged from r1, . . . , rk.

On the other hand, if a permutation π is obtained from α ∈ A by dividing it into
k contiguous subsequences r1, . . . , rk and merging them in some way, we define k sequences
s1, . . . , sk such that si is the sequence of indices of the elements of ri in α. Then by
definition α((si)j) = (ri)j for any suitable i and j, and since we divided α into contiguous
subsequences, each si is a sequence of consecutive integers. Now consider the permutation
η created by replacing the subsequence ri by the sequence si in π for every i. Then η is
merged from s1, . . . , sk, which are sequences of consecutive integers, therefore η ∈ H. At
the same time, for any m ∈ {1, 2, . . . , |π|} there are indices i and j such that π(m) =
(ri)j = α((si)j) = α(η(m)), where the last equality holds because we replaced (ri)j by
(si)j when constructing η from π. Therefore π = α ◦ η.

(b): Consider the permutation α ◦ ν ∈ A ◦ Vk. The permutation ν is formed by
concatenating k increasing sequences s1, . . . , sk. Define k sequences r1, . . . , rk such that
|ri| = |si| and (ri)j = α((si)j). Each ri is a subsequence of α and at the same time
α ◦ ν = r1r2 · · · rk.

On the other hand, if a permutation π is obtained from α ∈ A by dividing it into
k subsequences r1, . . . , rk and then concatenating them, we define k sequences s1, . . . , sk
such that si is the sequence of indices of elements of ri in α. Thus every si is an in-
creasing sequence and α((si)j) = (ri)j. Consider a permutation ν created by replacing
the subsequence ri by the sequence si in π for every i. Since π is a concatenation of
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r1, . . . , rk, we get that ν is a concatenation of s1, . . . , sk and thus ν ∈ Vk. Also, for any
m ∈ {1, 2, . . . , |π|} there are indices i and j such that π(m) = (ri)j = α((si)j) = α(ν(m)),
where the last equality holds because we replaced (ri)j by (si)j when constructing ν from
π. Therefore π = α ◦ ν.

(c): The proof is similar to the proofs of (a) and (b).

4.2 Composability results

Using the machinery introduced in the previous section we now prove a key lemma which
we will use to show several composability results.

Lemma 12. Let C1, C2, . . . , Ck be arbitrary permutation classes. Then

C1 � C2 � · · · � Ck ⊆ V(C1, . . . , Ck) ◦ Hk.

Proof. Consider a permutation π ∈ C1� · · · � Ck and divide it into k sequences s1, . . . , sk
such that si is isomorphic to a permutation from Ci. The permutation ν = s1s2 · · · sk then
lies in V(C1, . . . , Ck), which together with Lemma 11(a) implies π ∈ V(C1, . . . , Ck)◦Hk.

By reformulating the previous statement we immediately get the following.

Corollary 13. Let A, B and C be permutation classes such that C ⊆ A � B. Then
C ⊆ V(A,B) ◦ H.

Using what has already been shown in this section it is now elementary to show that
Ik is 2-composable.

Theorem 14. The class Ik is 2-composable for every k > 2. In particular, Ik ⊆ Vk ◦Hk.

Proof. Trivially Vk ( Ik and Hk ( Ik. Next we recall that

Ik = I � · · · � I︸ ︷︷ ︸
k×

and use Lemma 12 for C1 = C2 = · · · = Ck = I.

We proceed by proving a result in some sense opposite to that of Lemma 4, namely
we show that Ik may be constructed from smaller Ia, Ib using composition.

Theorem 15. Ik+l−1 ⊆ Ik ◦ Il for all integers k, l > 2.

Proof. Consider a permutation π ∈ Ik+l−1, merged from two sequences a and b such that
a is merged from k increasing sequences s1, . . . , sk and b is merged from l − 1 increasing
sequences sk+1, . . . , sk+l−1. Let c be the increasing sequence created by sorting the ele-
ments of b. Consider a permutation σ created by merging the sequences a and c so that
c and sk form a single increasing sequence. Clearly σ ∈ Ik and sequences sk+1, . . . , sk+l−1
are subsequences of σ, since they are increasing and therefore were not affected by sorting
b.

the electronic journal of combinatorics 26(1) (2019), #P1.41 10



According to Lemma 11(c) the class Ik ◦ Il contains all permutations we can create
from σ by dividing it into l subsequences and merging them in any way. It is therefore
enough to find a way to divide σ into l subsequences which can be merged into π. A simple
choice of l such subsequences is a, sk+1, . . . , sk+l−1.

This theorem raises the question whether we could construct a bigger class from given
Ik and Il.

Question 16. Given positive integers k and l, what is the largest integer m = m(k, l)
such that Im ⊆ Ik ◦ Il?

So far we have shown that m(k, l) 6 kl (Lemma 4) and that
m(k, l) > k + l − 1 (Theorem 15). It is also not difficult to show the sharp inequality
m(k, l) < kl by constructing a permutation π ∈ Ikl \ (Ik ◦ Il).

In this section we cover classes of permutations which can be written as a sum or as
a skew sum of increasing or decreasing permutations. Among these classes we provide
infinitely many examples of composable classes as well as several examples of classes which
are uncomposable.

Let ιk denote the increasing permutation of length k and δk denote the decreasing
permutation of length k. A permutation is layered if it is a sum of decreasing permutations
which are then called layers. We let L denote the class of all layered permutations. We let
Lk denote the class of permutations which are sums of at most k layers. The complement
of a layered permutation is clearly a skew sum of increasing permutations and we call such
a permutation co-layered. The class Lc consists of precisely the co-layered permutations.

(a) Layered permutation (b) Co-layered permutation

Figure 5: Examples of layered and co-layered patterns

We start by proving that L2 is uncomposable using a counting argument. As it turns
out, proper subclasses of L2 are asymptotically too small to build the entire L2 class using
composition.
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Theorem 17. The class L2 is uncomposable.

Proof. Suppose that L2 ⊆ C1 ◦ C2 ◦ · · · ◦ Ck such that Ci ( L2 for every i ∈ [k]. Each
of these subclasses avoids at least one permutation of L2. In other words for every Ci
there is a πi ∈ L2 such that Ci ⊆ L2 ∩ Av(πi). Considering a sufficiently large n so that
πi 6 δn⊕ δn for every i ∈ [k] we get that Ci ⊆ L2 ∩Av(δn⊕ δn) for every i, in other words
every permutation in these subclasses has one of its two layers shorter than n. It follows
that for a fixed integer N there are at most 2(n − 1) permutations of length N in any
Ci, therefore there are at most (2n − 2)k permutations in C1 ◦ · · · ◦ Ck. But L2 contains
N permutations of length N for any N , therefore we obtain a contradiction by choosing
N > (2n− 2)k.

The number of permutations of length n in L2 is linear in n while any proper sub-
class contains only constantly many permutations of fixed length. We can use the same
approach using the asymptotic jump from polynomial to exponential functions to show
that a different class of permutations cannot be composable. Namely, let F2 be the class
of layered permutations with layers of size 1 or 2.

Theorem 18. The class F2 is uncomposable.

Proof. Suppose F2 is composable from k of its proper subclasses C1, C2, . . . , Ck. We choose
a permutation from F2 \Ci for every i and we select n large enough so that every chosen
permutation is contained in π =

∑n
i=1 δ2. Then if C = F2∩Av(π), we get that F2 ⊆ (C)k.

Every permutation in C contains fewer than n layers of size 2, otherwise it would contain
π. Clearly there are at most Na permutations of F2 that have length N and exactly a
layers of size 2. Therefore C contains at most N1 +N2 + · · ·+Nn−1 6 nNn permutations
of length N and the composition (C)k then contains at most nkNnk permutations of
length N , which is a number polynomial in N . As mentioned in [10, Chapter 4], the
number of permutations of length N of F2 is counted by the Fibonacci numbers which
grow exponentially, therefore there is N large enough so that F2 has more permutations
of length N than (C)k.

Note that this result also follows immediately from the theorem of Kaiser and Klazar
([7, 3.4]), which states that if the number of permutations of length n in a permutation
class is less than the n-th Fibonacci number for at least one value of n, then it is eventually
polynomial in n. This implies that every class counted by the Fibonacci numbers is
uncomposable.

The argument used in the proofs above cannot be used for L3, so we need a different
approach to show that this class too is uncomposable. We will make use of the following
property of L2 ∪ Lr

2.

Lemma 19. (L2 ∪ Lr
2) ∩ Sn is a subgroup of Sn for every n, i.e. it is closed under

composition.
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Proof. In this proof, we consider an additive group structure on the set [n] with the
identity element n and an operator +n defined as

a+n b = 1 + (a+ b− 1) mod n.

First we prove that Lr
2 ∩ Sn by itself is a subgroup of Sn. Observe that Lr

2 ∩ Sn contains
exactly permutations π such that there is a shifting number k with π(i) = i+n k for every
i ∈ [n]. Indeed, if π = ιa 	 ιb then for any i ∈ [n] we have π(i) = i+n b and conversely if
π(i) = i +n k for every i ∈ [n] then π = ιn−k 	 ιk. Now for two permutations π, σ ∈ Lr

2

with shifting numbers k, l respectively we have π(σ(i)) = i +n l +n k for any i ∈ [n],
therefore π ◦ σ ∈ Lr

2 since it has a shifting number k +n l.
It trivially holds that L2 ◦ D = Lr

2 = Lc
2 = D ◦ L2. Considering π, σ ∈ (L2 ∪ Lr

2) ∩ Sn
it remains to distinguish the following four cases:

(i) π ∈ Lr
2 and σ ∈ Lr

2, then π ◦ σ ∈ Lr
2 by the discussion above,

(ii) π ∈ Lr
2 and σ ∈ L2, then π ◦ σ = (π ◦ σr) ◦ δn ∈ L2,

(iii) π ∈ L2 and σ ∈ Lr
2, then π ◦ σ = (δn ◦ πc) ◦ σ = δn ◦ (πr ◦ σ) ∈ L2,

(iv) π ∈ L2 and σ ∈ L2, then π ◦ σ = πr ◦ (δn ◦ δn) ◦ σc = πr ◦ σr ∈ Lr
2.

Theorem 20. The class L3 is uncomposable.

Proof. Suppose that L3 ⊆ C1 ◦ C2 ◦ · · · ◦ Ck such that Ci ( L3 for any i. Using the same
initial argumentation as in the proof of Theorem 17 we get that there is an n such that
L3 ⊆ (L3 ∩ Av(δn ⊕ δn ⊕ δn))k, meaning that every permutation of L3 can be composed
from k permutations having at least one of the three layers shorter than n.

Let πi ∈ Ci for 1 6 i 6 k and π = π1 ◦ π2 ◦ · · · ◦ πk. We now claim that it is possible
to remove at most (n − 1)k elements from π to obtain a two-layered or a two-co-layered
permutation. We will prove this by induction on k. The case k = 1 is easy since π = π1
avoids δn ⊕ δn ⊕ δn, so it has a layer of length shorter than n whose removal creates
a two-layered pattern.

For k > 1 let σ = π1 ◦ · · · ◦ πk−1 and π = σ ◦ πk. Let all these permutations have
the length N . By the induction hypothesis, there are a indices i1, . . . ia such that a >
N − (n− 1)(k− 1) and σ restricted to these indices has the two-layer or the two-co-layer
pattern. Also there are b indices j1, . . . , jb such that b > N − (n− 1) and πk restricted to
these indices forms the two-layer or the two-co-layer pattern.

Let us now restrict the function σ◦πk to the set S = {π−1k (i1), . . . , π
−1
k (ia)}∩{j1, . . . , jb}

whose size is at least N−(n−1)k. Then both πk(S) and σ(πk(S)) are still two-layer or two-
co-layer patterns, which implies the same for their composition according to Lemma 19.
Therefore π restricted to S forms a two-layer or two-co-layer pattern and N−|S| 6 (n−1)k
which completes the induction step.

Consequently, any permutation of length N in C1 ◦ C2 ◦ · · · ◦ Ck contains a two-layered
or a two-co-layered pattern of size at least N−k(n−1). But choosing N = 3(k(n−1)+1)
and considering the permutation

⊕3
i=1 δk(n−1)+1 ∈ L3 we obtain a contradiction.
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If we allow more than three but still constantly many layers, we always get a compos-
able class.

Theorem 21. The class Lk is 3-composable for every k > 4.

Proof. We will show that Lk ⊆ Lk−1 ◦ Lk−2 ◦ Lk−1.
If π ∈ Lk of length n has fewer than k layers, then π = π ◦ δn ◦ δn ∈ Lk−1 ◦Lk−2 ◦Lk−1.

Otherwise π has at least 4 layers and has the form π = δa ⊕ δb ⊕ δc ⊕ δd ⊕ π′ for some
positive a, b, c, d. Since for every layered σ we have σ ◦ σ ◦ σ = σ it is not hard to check
that

π = (δa+b ⊕ δc ⊕ δd ⊕ π′) ◦ (δa+b ⊕ δc+d ⊕ π′) ◦ (δa ⊕ δb ⊕ δc+d ⊕ π′) ∈ Lk−1 ◦ Lk−2 ◦ Lk−1.

The situation is represented in Figure 6.

= ◦ ◦

Figure 6: δa ⊕ δb ⊕ δc ⊕ δd = (δa+b ⊕ δc ⊕ δd) ◦ (δa+b ⊕ δc+d) ◦ (δa ⊕ δb ⊕ δc+d)

This theorem raises the question whether Lk could be 2-composable for k > 4. Our
work from Section 3 quickly determines that this is not the case.

Proposition 22. Lk for k > 4 is not 2-composable. In particular, it is not n-composable
for any even number n.

Proof. Since Lk is an infinite class which does not contain I the statement directly follows
from Theorem 6.

We have now covered the classes Lk for all k > 2. It remains to consider the class L,
which we show to be uncomposable. Before we proceed with the proof, we introduce an
additional useful concept. We call a subsequence s of a permutation π a block if s is either
an increasing or a decreasing contiguous subsequence of consecutive integers. We then
call π a k-block if it is a concatenation of at most k blocks (see Figure 7).

Lemma 23. Let π ∈ Sn be a k-block and let σ ∈ Sn be an l-block. Then π ◦ σ is
a (k · l)-block.

Proof. Choose a block of σ at indices a, a+ 1, . . . , a+ b. Then the sequence

π(σ(a)), π(σ(a+ 1)), . . . , π(σ(a+ b))

is a contiguous subsequence of either π(1), π(2), . . . , π(n) or π(n), . . . , π(2), π(1) and there-
fore is a concatenation of at most k blocks since π itself is a k-block. This is true for each
of the l blocks of σ, therefore π ◦ σ is a (k · l)-block.
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Figure 7: An example of a 4-block

Now we can prove our main result.

Theorem 24. The class L is uncomposable.

Proof. Every subclass of L is determined by one or more forbidden layered permutations.
If L is composable from k subclasses, we may choose one forbidden layered permutation
from each of them and then choose n large enough so that π =

⊕n+1
i=1 δn+1 contains all of

the chosen patterns. That way, L ⊆ Ck where C = Av(π) ∩ L.
Clearly every permutation in C has at most n layers longer than n, otherwise it would

contain π. Our goal is to show that permutations in Ck are somehow very close to patterns
composed from permutations that have a constant number of non-trivial layers and all
other layers are just of size 1. Given a layered permutation we call a layer of length at
most n a short layer and a layer of length more than n a long layer.

We say that two permutations α and β are (c, l)-close, if |α(i) − β(i)| 6 c for every
index i with at most l exceptions.

For σ ∈ C we denote by N(σ) the permutation created from σ by replacing every short
layer by the corresponding number of layers of size 1, i.e. flipping the short layers into
increasing blocks.

We can now formally state our goal: we shall prove that for any σ1, σ2, . . . , σk ∈ C the
permutations σk ◦ · · · ◦ σ2 ◦ σ1 and N(σk) ◦ · · · ◦N(σ2) ◦N(σ1) are (2nk, 8n2k2)-close. We
will prove this by induction on k.

If k = 1, we have to show that σ1 and N(σ1) are (2n, 8n2)-close. Since N(σ) is created
by manipulating layers of σ of length at most n in place, every element of σ is shifted by
at most n, so they are even (n, 0)-close, thus the first step of induction is done.

If k > 2, suppose that σ = σk ◦ · · · ◦ σ2 ◦ σ1 and ν = N(σk) ◦ · · · ◦N(σ2) ◦N(σ1) are
(2nk, 8n2k)-close and we shall prove the statement for k + 1.

Given a layered permutation and one of its layers of size l+1 at indices i, i+1, . . . , i+l,
we say that a number u is in the area of influence of this layer if i 6 u 6 i+ l.

Given a long layer of σk+1 or N(σk+1) (their long layers are the same), there are at
most 4nk indices u such that |σ(u) − ν(u)| 6 kn and ν(u) is in the area of influence of
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this layer and σ(u) is not: at most 2nk to the left and to the right of the layer. Similarly
there are at most 4nk indices u such that |σ(u) − ν(u)| 6 kn and σ(u) is in the area of
influence of the considered layer and ν(u) is not. Since there are at most n long layers,
we get that in total there are at most 8n2k indices u such that |σ(u) − ν(u)| 6 kn and
one of {σ(u), ν(u)} is in the area of influence of a long layer while the other is not in that
area.

By the induction hypothesis, there are at most 8n2k2 indices u such that |σ(u)−ν(u)| >
nk. Together with the at most 8n2k indices from the previous paragraph we get 8n2k2 +
8n2k = 8n2k(k+ 1) 6 8n2(k+ 1)2 indices at which we will allow σk+1 ◦ σ and N(σk+1) ◦ ν
to differ arbitrarily in our proof that these two permutations are (2n(k+ 1), 8n2(k+ 1)2)-
close. It remains to show |σk+1(σ(u)) − N(σk+1(ν(u))| 6 n(k + 1) for all the remaining
indices u to complete the induction step.

For other indices u ∈ {1, 2, . . . , |σ|} not considered so far it holds that |ν(u)−σ(u)| 6
2nk and that either ν(u) and σ(u) are both in the area of influence of the same long layer
of σk+1 or they are in areas of influence of short or trivial layers. In the latter case the
value of σ(u) changes by at most n after applying σk+1 to it and similarly the value of ν(u)
changes by at most n after applying N(σk+1) to it, thus |N(σk+1)(ν(u))− σk+1(σ(u))| 6
2nk+ 2n 6 n(k+ 1). In the former case it is enough to realise that for a given decreasing
permutation δa it holds that δa(x± y) = δa(x)∓ y, thus if σ(u) differs by y from ν(u) and
they are in the area of influence of the same long layer, after applying σk+1 (or N(σk+1),
which is the same for the big layers) the values still differ by y 6 2nk 6 2n(k+ 1), which
finishes the induction step.

Notice that for σ ∈ C the permutation N(σ) is a (2n)-block according to the definition
above. Thus by Lemma 23 we get that by composing k such permutations we get a per-
mutation which is a (2n)k-block. As a result we get that each permutation from (C)k is
(c, l)-close to a C-block for suitable fixed constants c, l, C. Notice now that every C-block
avoids the (C + 1)-block γ = 214365 · · · (2C + 2)(2C + 1), so every permutation from
(C)k is (c, l)-close to a permutation avoiding γ. We can construct a layered permutation
which is not (c, l)-close to any γ-avoider as follows. Choose a layered permutation with
C + 1 layers of length l + 2c + 1 and consider a permutation (c, l)-close to it. Then in
every layer there are at least 2c+ 1 elements whose value changed by at most c; therefore
there exist at least two elements which remained in decreasing order. Choosing these
two elements from every layer forms an occurrence of γ. Since L contains a permutation
which is not (c, l)-close to γ and (C)k does not contain such permutations, we get that
L * (C)k, achieving contradiction.

Preceding results and Lemma 9 imply the following corollary.

Corollary 25. The classes of co-layered permutations Lc
2, Lc

3 and Lc are uncomposable.

5 Other results

In the final section of this work we collect several miscellaneous results concerning com-
posability. First we provide more examples of composable classes, and then we fininish
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by presenting several additional examples of uncomposable classes.

5.1 Composable principal classes

In this section, we use results of Section 4 and of [6] to prove that many classes avoiding
a single decomposable pattern (a permutation which can be written as a non-trivial sum
of smaller permutations) are composable.

We will base our proof on the following splittability result of Jeĺınek and Valtr [6].

Lemma 26 (Jeĺınek, Valtr [6]). Let α, β, γ be three nonempty permutations and let π ∈
Av(α ⊕ β ⊕ γ). Then π can be merged from two sequences (a)ni=1 and (c)mi=1 such that a
avoids α⊕ β, c avoids β ⊕ γ and for any i ∈ [n] and j ∈ [m] either π−1(ai) < π−1(cj) or
ai < cj.

Theorem 27. If α and γ are any non-empty permutations and β = δn for a positive
integer n, then

Av(α⊕ β ⊕ γ) ⊆ (V(Av(α⊕ β),Av(β ⊕ γ)) ∩ Av(α⊕ β ⊕ γ)) ◦ H.
In particular, Av(α⊕ δn ⊕ γ) is 2-composable whenever α⊕ δn ⊕ γ /∈ H.

Proof. Let C = Av(α ⊕ β ⊕ γ), A = Av(α ⊕ β) and B = Av(β ⊕ γ). Lemma 26 and
Corollary 13 immediately imply that C ⊆ V(A,B) ◦ H.

Let π ∈ C be merged from sequences a and c as in Lemma 26 and let σ = ac. We have
to show that σ ∈ C. Suppose for a contradiction that σ contains a copy of α⊕ β⊕ γ. Let
b be the decreasing subsequence of σ representing the occurrence of β. Then b cannot be
contained entirely in a or in c since that would create a copy of α⊕ β in a or of β ⊕ γ in
c. Thus if β = 1 the contradiction is reached immediately.

If |β| > 1, we would like to show that b is also a subsequence of π. Assume it is not,
therefore there are elements bi and bj with i < j such that they appear in reverse order
in π. That can only be achieved if bi is in a and bj is in c, which together with bi > bj
contradicts the properties of a and c from Lemma 26.

It follows that the entire occurrence of α ⊕ β ⊕ γ is also contained in π, which is
a contradiction, thus C ⊆ (V(A,B) ∩ C) ◦ H.

To prove that C is really 2-composable for α ⊕ β ⊕ γ /∈ H it remains to verify that
V(A,B)∩C and H are proper subclasses of C. Clearly V(A,B)∩C ⊆ C and the condition
α ⊕ β ⊕ γ /∈ H implies H ⊆ C, so it remains to show that the inclusions are proper.
Consider the permutation (α⊕ β)	 (β⊕ γ) which is clearly in C and not in V(A,B). For
the class H we use the results of Atkinson, who showed in [2, Proposition 3.4] that the
class H has a basis of size 3 and therefore it cannot be equal to a principal class.

Note that for the case β = 1 we get

V(Av(α⊕ 1),Av(1⊕ γ)) ( Av(α⊕ 1⊕ γ),

and thus we may omit the intersection with Av(α⊕ 1⊕ γ) in the formula of Theorem 27.
Indeed, if a permutation is concatenated of two parts, first avoiding α⊕ 1 and the second
avoiding 1⊕ γ, such a permutation cannot contain an occurrence of α ⊕ 1⊕ γ since one
of the two parts would contain the middle 1 and thus the forbidden pattern.
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5.2 More uncomposable classes

So far we have used classes such as V or H to prove that other classes are composable. In
this section, we will show that these classes, and classes similar to them, are themselves
uncomposable.

We call a permutation η ∈ H alternating if η(2i−1) < η(2i) > η(2i+1) for all possible
values of i. We will use the following simple observation about alternating permutations
in H.

Figure 8: An alternating permutation of length 7

Observation 28. Every permutation from H is contained in an alternating permutation
from H.

Proposition 29. The classes V, Vc, V(D, I), V(I,D), H, Hc, H(I,D)
and H(D, I) are uncomposable.

Proof. We will show the proof for the class H, the same approach can be applied to
every mentioned horizontal merge and the result is transferred by inversion to the vertical
merges by to Corollary 8.

Suppose that H is composable from its proper subclasses C1, . . . , Ck. Each of C1, . . . , Ck
avoids a permutation of H, thus according to Observation 28 there is an alternating
permutation η ∈ H such that Ci ⊆ Av(η) and therefore if C = Av(η) ∩ H ( H we have
H ⊆ (C)k.

Any permutation π ∈ C is merged from two sequences a and b of consecutive integers.
We label elements of π by a or b depending on which sequence they belong to. A sequence
of elements with alternating labels forms a copy of an alternating permutation in π. The
length of the longest sequence of alternating labels in π is thus limited by a constant N
determined by the order of η, thus π can be broken into at most N contiguous parts each
having one label. Since elements labeled with a single label form a sequence of consecutive
integers, this implies that π is in fact an N -block. Since the choice of π was arbitrary,
every permutation of C is an N -block and by Lemma 23 every permutation of (C)k is an
(Nk)-block. But a long enough alternating permutation from H is not an (Nk)-block,
therefore H * (C)k and the proof is finished.
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6 Conclusion

This paper studies the previously unexplored concept of composability of permutation
classes. Given a permutation class, our main goal is to show, how it can be constructed
using smaller permutation classes and the composition operator, or to prove that this
cannot be done. Throughout the paper, we present both types of results.

On the positive side, Theorems 14 and 15 show two distinct ways of constructing the
class Av(k · · · 21), Theorem 21 provides infinitely many examples of classes of layered
patterns which can be constructed from simpler subclasses and Theorem 27 shows that
many principal classes avoiding a decomposable pattern are composable.

On the negative side, in Theorems 17, 18, 20 and 24 we present four different classes
of layered patterns which cannot be constructed from any number of proper subclasses
using composition, and Proposition 29 provides us with 8 more examples of uncomposable
classes.

Composability is similar to splittability in that both these properties describe how
a bigger class is built from smaller ones. We do not know whether these two properties
are somehow connected; however, our research suggests that this may be the case, since
every composable class we have found so far is also splittable. We have found examples of
splittable yet uncomposable classes, namely the classes L2 and L3 introduced in Section
4.2. The class of all layered permutations is an example of a both uncomposable and
unsplittable class. The last case remains open and we pose it as a question for future
work.

Question 30. Is there a permutation class which is composable and unsplittable?

In Section 3 we showed that if a class is composable and avoids an increasing pattern,
then its reverse and complement are composable. It remains open whether the avoidance
condition is necessary.

Question 31. Is there a composable class A such that Ar or Ac is uncomposable?

Splittability has the property that if a class is splittable, it can be split into two parts.
This is not the case for composability as we showed in Section 4 where we proved that
the class Lk for k > 4 is 3-composable but not 2-composable.

Question 32. Is there a 4-composable class which is not 3-composable? More generally,
is there a universal constant K such that every composable class is K-composable?

Our work may find applications in enumerating permutation classes. Denote by gr(A)
the growth rate of the class A as defined e.g. in [10]. It is not difficult to see that if
C ⊆ A◦B, then gr(C) 6 gr(A) · gr(B). Using this observation one could try to find upper
bounds for growth rates of composable permutation classes.
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