Perfect matching covers of cubic graphs of oddness 2

Wuyang Sun*
School of Mathematics and Statistics
Shandong University (Weihai)
Weihai, China
sunwuyang@sdu.edu.cn

Fan Wang ${ }^{\dagger}$
School of Sciences
Nanchang University
Nanchang, Jiangxi 330000, China
wangfan@ncu.edu.cn

Submitted: Jul 25, 2017; Accepted: Feb 27, 2019; Published: Mar 8, 2019
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A perfect matching cover of a graph G is a set of perfect matchings of G such that each edge of G is contained in at least one member of it. Berge conjectured that every bridgeless cubic graph has a perfect matching cover of order at most 5 . The Berge Conjecture is largely open and it is even unknown whether a constant integer c does exist such that every bridgeless cubic graph has a perfect matching cover of order at most c. In this paper, we show that a bridgeless cubic graph G has a perfect matching cover of order at most 11 if G has a 2 -factor in which the number of odd circuits is 2 .

Mathematics Subject Classifications: 05C70

1 Introduction

Only finite and simple graphs are considered in this paper. A k-factor of a graph G is a spanning k-regular subgraph of G. The set of edges in a 1-factor of a graph G is called a perfect matching of G. A matching of a graph G is a set of edges in a 1-regular subgraph of G. A near-perfect matching of a graph G is a matching of G which misses exactly one vertex of G. A perfect matching cover of a graph G is a set of perfect matchings of G such that each edge of G is contained in at least one member of it. The order of a perfect matching cover is the number of perfect matchings in it.

One of the first theorems in graph theory, Petersen's Theorem from 1891 [17], states that every bridgeless cubic graph has a perfect matching. By Tutte's 1-factor theorem from 1947 [20], we can obtain that every edge in a bridgeless cubic graph G is contained

[^0]in a perfect matching of G. This implies that every bridgeless cubic graph has a perfect matching cover. What is the minimum number k such that every bridgeless cubic graph has a perfect matching cover of order k ? Berge conjectured this number is 5 (unpublished, see e.g. $[6,7]$).

Conjecture 1 (Berge Conjecture). Every bridgeless cubic graph has a perfect matching cover of order at most 5 .

The following stronger conjecture is attributed to Berge in [18], and was first published in a paper by Fulkerson [3].

Conjecture 2 (Fulkerson Conjecture). Every bridgeless cubic graph has six perfect matchings such that each edge belongs to exactly two of them.

Conjectures 1 and 2, which are proved to be equivalent by Mazzuoccolo [7], are largely open in graph theory. The equivalence of these two conjectures does not imply that Conjecture 2 holds for a given bridgeless cubic graph satisfying Conjecture 1. It is still an open question whether this holds.

Clearly, Conjectures 1 and 2 hold true for 3 -edge-colorable cubic graphs. Conjecture 2 has also been verified for some non-3-edge-colorable cubic graphs, such as flower snarks, Goldberg snarks and Loupekine snarks [5, 12, 14]. Besides the above snarks, Conjecture 1 has been verified for some special classes of cubic graphs. Steffen [16] showed that Conjecture 1 holds for bridgeless cubic graphs which have no nontrivial 3-edge-cuts and have 3 perfect matchings which miss at most 4 edges. It is proved by Hou et al. [10] that every almost Kotzig graph (defined in [10]) has a perfect matching cover of order at most 5. In [19], one author of this paper showed that a cubic graph G with n vertices has a perfect matching cover of order at most 5 if G has a circuit of length $n-1$ or has a 2 -factor with exactly two circuits.

Esperet and Mazzuoccolo [2] and Abreu et al. [1] showed respectively that there are infinite cubic graphs of which every perfect matching cover has order at least 5 . Mazzuoccolo [8] showed that every bridgeless cubic graph G with m edges has 5 perfect matchings which cover at least $\left\lceil\frac{215}{231} m\right\rceil$ edges of G. Esperet and Mazzuoccolo [2] also proved that the problem that deciding whether a bridgeless cubic graph has a perfect matching cover of order at most 4 is NP-complete.

As Conjecture 1 is a problem with large challenges, the following weaker problem (suggested by Berge) maybe should be considered firstly.

Problem 3. Is there a constant integer c such that every bridgeless cubic graph has a perfect matching cover of order at most c ?

Unluckily, this weaker problem is still open. If we don't restrict such integer c in Problem 3 to be constant, the best upper bound of c, which was given by Mazzuoccolo [8], is logarithmic in the number of vertices.

In this paper, we consider the perfect matching covers of bridgeless cubic graphs of oddness 2. Recall that the oddness of a bridgeless cubic graph G is the minimum number
of odd circuits in a 2 -factor of G. Since oddness is always an even integer and oddness zero means that the graph is 3 -edge-colorable, cubic graphs of oddness 2 constitute a natural class of graphs with structure close to that of 3 -edge-colorable graphs. The famous Cycle Double Cover Conjecture have been verified for bridgeless cubic graphs of oddness at most 4 [9, 11]. Recently, Máčajová and Škoviera [15] proved that Fan and Raspaud Conjecture [4], which states that every bridgeless cubic graph has three perfect matchings with empty intersection, holds for bridgeless cubic graphs of oddness 2 .

In this paper, we show that such constant integer c in Problem 3 exists under the assumption that the oddness of a bridgeless cubic graph is 2 . Our result is as follows.

Theorem 4. If G is a connected bridgeless cubic graph of oddness 2 , then G has a perfect matching cover of order at most 11.

2 Notations and two technical lemmas

Some notations and notions will be used in this paper. Let G be a graph with vertex-set $V(G)$ and edge-set $E(G)$. The order of G is the size of $V(G)$. The degree of a vertex u of G is the number of edges incident to u in G. For $X \subseteq V(G)$, we denote by $G-X$ the subgraph of G which is obtained from G by deleting all vertices in X and all edges incident to a vertex in X. If $X=\{u\}$, then $G-X$ is usually written to $G-u$ in short. For two graphs H_{1} and H_{2}, we denote by $H_{1} \cup H_{2}$ the graph with vertex-set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge-set $E\left(H_{1}\right) \cup E\left(H_{2}\right)$. For a positive integer n, we denote by $[n]$ the set $\{1,2, \ldots, n\}$. For two set Y_{1} and Y_{2}, we denote by $Y_{1} \triangle Y_{2}$ the set $\left(Y_{1} \backslash Y_{2}\right) \cup\left(Y_{2} \backslash Y_{1}\right)$.

For a path P in G, we denote by $V_{0}(P)$ the set consisting of the two ends of P and denote by $E_{0}(P)$ the set of the edges in P which have an end in $V_{0}(P)$. For $X_{1}, X_{2} \subseteq V(G)$ with $X_{1} \cap X_{2}=\emptyset$, we say that a path P in G is from X_{1} to X_{2} if $V_{0}(P) \cap X_{i} \neq \emptyset$ for $i=1,2$ and $\left(V(P) \backslash V_{0}(P)\right) \cap\left(X_{1} \cup X_{2}\right)=\emptyset$. For $F_{1}, F_{2} \subseteq E(G)$, a path or a circuit in G is called $F_{1}-F_{2}$ alternating if its edges are alternating in F_{1} and in F_{2}. An $F_{1}-F_{2}$ alternating path (or circuit) P is called F_{1}-alternating if $F_{2}=E(G) \backslash F_{1}$. An $F_{1}-F_{2}$ alternating path P is called $F_{1}-F_{2}-F_{1}$ alternating if $E_{0}(P) \subseteq F_{1}$. An $F_{1}-F_{2}-F_{1}$ alternating path P is called an $F_{1}-F_{2}-F_{1}$ ear of a subgraph H of G if $V(P) \cap V(H)=V_{0}(P)$ and $E(P) \cap E(H)=\emptyset$.

Now we present two technical lemmas.
Lemma 5. Let G be a graph of odd order which has a hamiltonian circuit C and let X be the set of vertices of degree 2 in G. Suppose $|X| \geqslant 3$ and that every vertex in G has degree at most 3. For a vertex u in X, let M_{1} be the perfect matching of $C-u$. Then G has three near-perfect matchings M_{2}, M_{3} and M_{4} such that $E(C) \backslash M_{1} \subseteq \bigcup_{i=2}^{4} M_{i}, M_{2}$ misses u and each of M_{3} and M_{4} misses a vertex in $X \backslash\{u\}$.

Proof. Set $E_{1}:=E(C) \backslash M_{1}$ and $E_{2}:=E(G) \backslash E(C)$. Let H be the subgraph of G with vertexset $V(G)$ and edge-set $E_{1} \cup E_{2}$. Let D be the component of H which contains u. Noting that the degree of each vertex in G is 2 or 3 , we know that D is a path or a circuit.

Assume that D is a path. We know $V_{0}(D) \subseteq X \backslash\{u\}$. Let P_{1} and P_{2} be the two edge-disjoint paths from u to $V_{0}(D)$ in D. We know that both P_{1} and P_{2} are $E_{1}-E_{2}-E_{1}$
alternating. For $i=1,2$, set $M_{i+1}:=E\left(P_{i}\right) \triangle E_{1}$. We know that each of M_{2} and M_{3} misses an end of D and we have $E(C) \backslash M_{1} \subseteq M_{2} \cup M_{3}$. So M_{1}, M_{2} and M_{3} are 3 near-perfect matchings of G which meet the requirements.

Assume that D is a circuit. Set $M_{4}:=E(D) \triangle E_{1}$. We know $E_{1} \backslash M_{4}=E_{1} \cap E(D)$ and that M_{4} is a near-perfect matching of G which misses u. As $|X| \geqslant 3, G$ has an $E_{1}-E_{2}-E_{1}$ alternating path P_{3} with two ends in $X \backslash\{u\}$. Let P_{4} and P_{5} be the two edge-disjoint paths from u to $V\left(P_{3}\right)$ in C. For $i=4,5$, let P_{i}^{\prime} be the path from $V_{0}\left(P_{i}\right) \backslash\{u\}$ to $V_{0}\left(P_{3}\right)$ in P_{3} such that $P_{i} \cup P_{i}^{\prime}$ is E_{1}-alternating. For $i=4,5$, set $M_{i+1}:=E\left(P_{i} \cup P_{i}^{\prime}\right) \triangle E_{1}$. We know that each of M_{5} and M_{6} misses an end of P_{3}. Noting $E_{1} \backslash M_{4}=E_{1} \cap E(D)$ and $E\left(P_{4}\right) \cap E\left(P_{5}\right)=\emptyset$, we have $E(C) \backslash M_{1} \subseteq M_{4} \cup M_{5} \cup M_{6}$. So M_{4}, M_{5} and M_{6} are 3 near-perfect matchings of G which meet the requirements.

Lemma 6. Let M be a matching of a cubic graph G and let C be an M-alternating circuit of G. Suppose that P_{1} and P_{2} are two vertex-disjoint M-alternating paths of G such that $\emptyset \neq E\left(P_{i}\right) \cap E(C) \subseteq M$ for $i=1,2, E_{0}\left(P_{1}\right) \subseteq E(C)$ and $V_{0}\left(P_{2}\right) \cap V(C)=\emptyset$. Then G has two M-alternating paths P_{3} and P_{4} from $V_{0}\left(P_{1}\right)$ to $V_{0}\left(P_{2}\right)$ in $C \cup P_{1} \cup P_{2}$ such that $V_{0}\left(P_{3}\right) \cup V_{0}\left(P_{4}\right)=V_{0}\left(P_{1}\right) \cup V_{0}\left(P_{2}\right), E_{0}\left(P_{3}\right) \cup E_{0}\left(P_{4}\right)=E_{0}\left(P_{1}\right) \cup E_{0}\left(P_{2}\right)$ and $E\left(P_{3}\right) \cap E\left(P_{4}\right) \subseteq E\left(P_{1}\right) \cup E\left(P_{2}\right)$.

Proof. Noting $E\left(P_{1}\right) \cap E(C) \subseteq M$ and $E_{0}\left(P_{1}\right) \subseteq E(C)$, we have $E_{0}\left(P_{1}\right) \subseteq M$. Add two new vertices $u_{1,1}$ and $u_{1,2}$ such that $u_{1,1}$ is incident with an end of P_{1} and $u_{1,2}$ is incident with the other end of P_{1}. Extend P_{1} to a new path P_{1}^{\prime} such that $V_{0}\left(P_{1}^{\prime}\right)=\left\{u_{1,1}, u_{1,2}\right\}$ and $V\left(P^{\prime}\right) \backslash V_{0}\left(P_{1}^{\prime}\right)=V\left(P_{1}\right)$. It suffice to show that there are two M-alternating paths P_{3} and P_{4} from $V_{0}\left(P_{1}^{\prime}\right)$ to $V_{0}\left(P_{2}\right)$ in $C \cup P_{1}^{\prime} \cup P_{2}$ such that $V_{0}\left(P_{3}\right) \cup V_{0}\left(P_{4}\right)=V_{0}\left(P_{1}^{\prime}\right) \cup V_{0}\left(P_{2}\right)$, $E_{0}\left(P_{3}\right) \cup E_{0}\left(P_{4}\right)=E_{0}\left(P_{1}^{\prime}\right) \cup E_{0}\left(P_{2}\right)$ and $E\left(P_{3}\right) \cap E\left(P_{4}\right) \subseteq E\left(P_{1}^{\prime}\right) \cup E\left(P_{2}\right)$. This is because $P_{3}-V_{0}\left(P_{1}^{\prime}\right)$ and $P_{4}-V_{0}\left(P_{1}^{\prime}\right)$ are two paths that we need find if such P_{3} and P_{4} exist.

Let $J_{1}, J_{2}, \ldots, J_{r}$ be the (inclusionwise) maximal $M-(E(C) \backslash M)-M$ alternating paths in C which have both ends in $V\left(P_{1}^{\prime}\right)$ and contain no edges in $E\left(P_{2}\right) \cap E(C)$. Let J_{1}^{\prime}, J_{2}^{\prime}, \ldots, J_{r}^{\prime} be the (inclusionwise) maximal paths in C which have both ends in $V\left(P_{2}\right)$ and contain no edges in $E\left(P_{1}^{\prime}\right) \cap E(C)$. We know that the paths in $\left\{J_{1}, J_{2}, \ldots, J_{r}\right\}$ and the paths in $\left\{J_{1}^{\prime}, J_{2}^{\prime}, \ldots, J_{r}^{\prime}\right\}$ appear alternately in C. (See Fig. 1(a) for an example of J_{1}, J_{2}, \ldots, J_{r} and $J_{1}^{\prime}, J_{2}^{\prime}, \ldots, J_{r}^{\prime}$.)

For each $i \in[r]$, we construct two paths $J_{i, 1}$ and $J_{i, 2}$ as follows. For each $i \in[r]$, we know $E_{0}\left(J_{i}\right) \subseteq E\left(P_{1}^{\prime}\right) \cap E(C) \subseteq M$ and let $P_{i}^{\prime \prime}$ be the path between the two ends of J_{i} in P_{1}^{\prime}. If the length of $P_{i}^{\prime \prime}$ is odd, then for $j=1,2$, we denote by $J_{i, j}$ the path from $u_{1, j}$ to $V_{0}\left(J_{i}\right)$ in P_{1}^{\prime} such that $E_{0}\left(J_{i, j}\right) \cap E_{0}\left(J_{i}\right) \neq \emptyset$. Next we assume that the length of $P_{i}^{\prime \prime}$ is even. We know that P_{1}^{\prime} has an end $u_{1, \alpha}$ such that the path from $u_{1, \alpha}$ to $V_{0}\left(J_{i}\right)$ in P_{1}^{\prime} contains no edges in $E_{0}\left(J_{i}\right)$. Let $P_{i, 1}^{\prime \prime}$ be the path from $u_{1, \alpha}$ to $V\left(J_{i}\right)$ in P_{1}^{\prime} and $P_{i, 2}^{\prime \prime}$ be the $M-(E(C) \backslash M)-M$ alternating path from $V_{0}\left(P_{i, 1}^{\prime \prime}\right) \cap V\left(J_{i}\right)$ to $V_{0}\left(J_{i}\right)$ in J_{i}. Set $J_{i, \alpha}:=P_{i, 1}^{\prime \prime} \cup P_{i, 2}^{\prime \prime}$. Let β be the number in $\{1,2\} \backslash\{\alpha\}$. Let $J_{i, \beta}$ be the path from $u_{1, \beta}$ to $V_{0}\left(J_{i}\right) \backslash V_{0}\left(J_{1, \alpha}\right)$ in P_{1}^{\prime}.

We can see that for each $i \in[r], J_{i, 1}$ and $J_{i, 2}$ are two M-alternating path from $V_{0}\left(P_{1}^{\prime}\right)$ to $V_{0}\left(J_{i}\right)$ in $P_{1}^{\prime} \cup J_{i}$ such that $u_{1, j} \in V_{0}\left(J_{i, j}\right)$ for $i=1,2,\left(V_{0}\left(J_{i, 1}\right) \cup V_{0}\left(J_{i, 2}\right)\right) \backslash V_{0}\left(P_{1}^{\prime}\right)=V_{0}\left(J_{i}\right)$, $E_{0}\left(J_{i, 1}\right) \cup E_{0}\left(J_{i, 2}\right)=E_{0}\left(P_{1}^{\prime}\right) \cup E_{0}\left(J_{i}\right)$ and $E\left(J_{i, 1}\right) \cap E\left(J_{i, 2}\right) \subseteq E\left(P_{1}^{\prime}\right)$.

Figure 1: An example for the proof of Lemma 6. In this example, the edges in M are drawn as thick lines. In $(b), P_{3}=J_{1,1} \cup P_{1}^{\prime \prime \prime} \cup J_{2,1}^{\prime}$ and $P_{4}=J_{2,2} \cup P_{2}^{\prime \prime \prime} \cup J_{1,2}^{\prime}$.

Let $u_{2,1}$ and $u_{2,2}$ be the two ends of P_{2}. Similarly as the above statement, we can know that for each $i \in[r], G$ has two M-alternating paths $J_{i, 1}^{\prime}$ and $J_{i, 2}^{\prime}$ from $V_{0}\left(P_{2}\right)$ to $V_{0}\left(J_{i}^{\prime}\right)$ in $P_{2} \cup J_{i}^{\prime}$ such that $u_{2, j} \in V_{0}\left(J_{i, j}^{\prime}\right)$ for $j=1,2,\left(V_{0}\left(J_{i, 1}^{\prime}\right) \cup V_{0}\left(J_{i, 2}^{\prime}\right)\right) \backslash V_{0}\left(P_{2}\right)=V_{0}\left(J_{i}^{\prime}\right)$, $E_{0}\left(J_{i, 1}^{\prime}\right) \cup E_{0}\left(J_{i, 2}^{\prime}\right)=E_{0}\left(P_{2}\right) \cup E_{0}\left(J_{i}^{\prime}\right)$ and $E\left(J_{i, 1}^{\prime}\right) \cap E\left(J_{i, 2}^{\prime}\right) \subseteq E\left(P_{2}\right)$.

For each $i \in[r]$ and each $j \in\{1,2\}$, let $w_{i, j}$ be the end of $J_{i, j}$ in C and $w_{i, j}^{\prime}$ be the end of $J_{i, j}^{\prime}$ in C. We know $V_{0}\left(J_{i}\right)=\left\{w_{i, 1}, w_{i, 2}\right\}$ and $V_{0}\left(J_{i}^{\prime}\right)=\left\{w_{i, 1}^{\prime}, w_{i, 2}^{\prime}\right\}$ for each $i \in[r]$.
let $P_{1}^{\prime \prime \prime}$ be the path from $w_{1,1}$ to $V\left(P_{2}\right)$ in C such that $E\left(P_{1}^{\prime \prime \prime}\right) \cap E\left(P_{1}^{\prime}\right)=\emptyset$. We know $V_{0}\left(P_{1}^{\prime \prime \prime}\right) \backslash\left\{w_{1,1}\right\} \subseteq V_{0}\left(J_{p_{1}}^{\prime}\right)$ for some $p_{1} \in[r]$. Let $w_{p_{1}, q_{1}}^{\prime}$ be the end of $P_{1}^{\prime \prime \prime}$ in $V_{0}\left(J_{p_{1}}^{\prime}\right)$ and let q_{2} be the number in $\{1,2\} \backslash\left\{q_{1}\right\}$. Noting that the paths in $\left\{J_{1}, J_{2}, \ldots, J_{r}\right\}$ and the paths in $\left\{J_{1}^{\prime}, J_{2}^{\prime}, \ldots, J_{r}^{\prime}\right\}$ appear alternately in C, we have that G has a path $P_{2}^{\prime \prime \prime}$ in C which contains no edges in $E\left(P_{1}^{\prime}\right) \cup E\left(P_{2}\right)$ and has an end in $\left\{w_{1,2}, w_{2,2}, \ldots, w_{r, 2}\right\}$ and the other end in $\left\{w_{1, q_{2}}^{\prime}, w_{2, q_{2}}^{\prime}, \ldots, w_{r, q_{2}}^{\prime}\right\}$. (See Fig. $1(b)$ for an example of $P_{2}^{\prime \prime \prime}$.) Let $w_{p_{2}, 2}$ and $w_{p_{3}, q_{2}}^{\prime}$ be the ends of $P_{2}^{\prime \prime \prime}$.

Set $P_{3}:=J_{1,1} \cup P_{1}^{\prime \prime \prime} \cup J_{p_{1}, q_{1}}^{\prime}$ and $P_{4}:=J_{p_{2}, 2} \cup P_{2}^{\prime \prime \prime} \cup J_{p_{3}, q_{2}}^{\prime}$. (See Fig. 1(b) for an example of P_{3} and P_{4}.) We know that P_{3} and P_{4} are two M-alternating paths from $V_{0}\left(P_{1}^{\prime}\right)$ to $V_{0}\left(P_{2}\right)$ in $C \cup P_{1}^{\prime} \cup P_{2}$ such that $V_{0}\left(P_{3}\right) \cup V_{0}\left(P_{4}\right)=V_{0}\left(P_{1}^{\prime}\right) \cup V_{0}\left(P_{2}\right)$ and $E_{0}\left(P_{3}\right) \cup E_{0}\left(P_{4}\right)=E_{0}\left(P_{1}^{\prime}\right) \cup$ $E_{0}\left(P_{2}\right)$. If $p_{2} \neq 1$, we know $E\left(J_{1,1}\right) \cap E\left(J_{p_{2}, 2}\right) \subseteq E\left(P_{1}^{\prime}\right)$, noting that $E\left(J_{1, j}\right) \subseteq E\left(P_{1}^{\prime} \cup J_{j}\right)$ for $j=1, p_{2}$ and $E\left(J_{1}\right) \cap E\left(J_{p_{2}}\right)=\emptyset$. Noting also $E\left(J_{1,1}\right) \cap E\left(J_{1,2}\right) \subseteq E\left(P_{1}^{\prime}\right)$, we have $E\left(J_{1,1}\right) \cap E\left(J_{p_{2}, 2}\right) \subseteq E\left(P_{1}^{\prime}\right)$. Similarly, we can obtain $E\left(J_{p_{1}, q_{1}}^{\prime}\right) \cap E\left(J_{p_{3}, q_{2}}^{\prime}\right) \subseteq E\left(P_{2}\right)$. Noting also $E\left(P_{1}^{\prime \prime \prime}\right) \cap E\left(P_{2}^{\prime \prime \prime}\right)=\emptyset$, we have $E\left(P_{3}\right) \cap E\left(P_{4}\right) \subseteq E\left(P_{1}^{\prime}\right) \cup E\left(P_{2}\right)$. So P_{3} and P_{4} are two paths meeting the requirements.

Figure 2: Examples of H_{s} and $Y_{1} Y_{2} \cdots Y_{n}$. In these examples in Fig. 2 and Fig. 3, the edges in M_{0}, M_{1} and M_{2} are drawn as dotted lines, thick lines and thin lines, respectively. In (a) and (b), the value of r is 0 when H_{s} is constructed by Algorithm 1. In (c), the value of r is 1 when H_{s} is constructed by Algorithm 1. In (d), G_{2} has no directed edge $Y_{i} \rightarrow Y_{j}$ in $Y_{1} Y_{2} \cdots Y_{n}$ such that both Y_{i} and Y_{j} are $M_{1}-M_{2}$ alternating circuits. In (e) and $(f), G_{2}$ has an directed edge $Y_{i} \rightarrow Y_{j}$ in $Y_{1} Y_{2} \cdots Y_{n}$ such that both Y_{i} and Y_{j} are $M_{1}-M_{2}$ alternating circuits.

3 Proof of Theorem 4

In this section, we present the proof of Theorem 4.
Suppose that G is a connected bridgeless cubic graph of oddness 2 . We know that G has a 2-factor K such that there are exactly two odd circuits in K. Let C_{1} and C_{2} be the two circuits in K. We know that $E(K) \backslash\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)$ can be decomposed into two matchings M_{1} and M_{2} of G. Set $M_{0}:=E(G) \backslash K$. Next we will show that the edges in $E\left(C_{1}\right) \cup M_{1}$ can be covered by at most 5 perfect matchings of G.

Let \mathscr{P}_{1} be the set of $M_{0}-M_{1}-M_{0}$ ears of $C_{1} \cup C_{2}$. Set $H_{1}:=C_{1} \cup C_{2} \cup\left(\bigcup_{P \in \mathscr{P}_{1}} P\right)$. Set $\mathscr{P}_{1}^{\prime}:=\left\{P \in \mathscr{P}_{1}: V_{0}(P) \subseteq V\left(C_{1}\right)\right\}$. For every $P \in \mathscr{P}_{1}^{\prime}$, let f_{P} be an edge which has the same ends as P and does not belong to $E(G)$. Set $F:=\left\{f_{P}: P \in \mathscr{P}_{1}^{\prime}\right\}$.

Assume that H_{1} is bridgeless. Let G_{1} be a new graph with vertex-set $V\left(C_{1}\right)$ and edgeset $E\left(C_{1}\right) \cup F$. Let X be the set of vertices of degree 2 in G_{1}. Noting that H_{1} is bridgeless and C_{1} is an odd circuit, we have $|X| \geqslant 3$. Choose a vertex v in X. Let N_{1} be the perfect matching of $C_{1}-v$. By Lemma 5, G_{1} has three near-perfect matchings N_{2}, N_{3} and N_{4} such that $E\left(C_{1}\right) \backslash N_{1} \subseteq \bigcup_{i=2}^{4} N_{i}, N_{2}$ misses v and each of N_{3} and N_{4} misses a vertex in
$X \backslash\{v\}$. For each $i \in[4]$, let P_{i} be the path in \mathscr{P}_{1} which is from the vertex missed by N_{i} in $V\left(C_{1}\right)$ to $V\left(C_{2}\right)$ and let N_{i}^{\prime} be the perfect matching of $C_{2}-\left(V_{0}\left(P_{i}\right) \cap V\left(C_{2}\right)\right)$. For each $i \in[4]$, set $\mathscr{Q}_{i}:=\left\{P \in \mathscr{P}_{1}^{\prime}: f_{P} \in F \cap N_{i}\right\}$. For each $i \in[4]$, set

$$
M_{i+2}:=\left(N_{i} \cap E\left(C_{1}\right)\right) \cup\left(E\left(\left(\bigcup_{P \in \mathscr{Q}_{i}} P\right) \cup P_{i}\right) \triangle M_{1}\right) \cup N_{i}^{\prime} .
$$

Noting $E\left(C_{1}\right) \backslash N_{1} \subseteq \bigcup_{i=2}^{4} N_{i}$ and $E\left(P_{1}\right) \cap E\left(P_{3}\right)=\emptyset$, we can obtain that M_{3}, M_{4}, M_{5} and M_{6} are 4 perfect matchings of G which cover all the edges in $E\left(C_{1}\right) \cup M_{1}$.

```
Algorithm 1 Constructing a connected bridgeless subgraph \(H_{s}\) of \(G\).
    set \(s:=1, t:=2, r:=0, H_{1}^{\prime}:=H_{1}-V\left(P_{0}\right)\) and \(U_{1}:=V\left(H_{1}^{\prime}\right)\);
    while \(H_{s}\) has a bridge do
        if \(r=0\) then
            if \(H_{s}^{\prime}\) has an \(M_{t}-M_{1}-M_{t}\) ear with both ends in \(U_{s}\) then
                let \(\mathscr{P}_{s+1}\) be the set of \(M_{t}-M_{1}-M_{t}\) ears of \(H_{s}^{\prime}\) which have both ends in \(U_{s}\);
                set \(H_{s+1}^{\prime}:=H_{s}^{\prime} \cup\left(\bigcup_{P \in \mathscr{P}_{s+1}} P\right)\) and \(U_{s+1}:=V\left(\bigcup_{P \in \mathscr{P}_{s+1}} P\right) \backslash V\left(P_{0}\right)\);
            else
                set \(r:=1\) and \(t:=2\);
            end if
        end if
        if \(r=1\) then
            let \(\mathscr{P}_{s+1}\) be the set of \(M_{t}-M_{1}-M_{t}\) ears of \(H_{s}\);
        end if
        set \(H_{s+1}:=H_{s} \cup\left(\bigcup_{P \in \mathscr{P}_{s+1}} P\right)\) and \(s:=s+1\);
        let \(t^{\prime}\) be the number in \(\{0,2\} \backslash\{t\}\) and set \(t:=t^{\prime}\);
    end while
    return \(s, r\) and \(H_{s}\);
```

Next we assume that H_{1} has a bridge. We know that G has a unique $M_{0}-M_{1}-M_{0}$ alternating path P_{0} from $V\left(C_{1}\right)$ to $V\left(C_{2}\right)$. Let u_{1} and u_{2} be the ends of P_{0} such that $u_{1} \in V\left(C_{1}\right)$ and $u_{2} \in V\left(C_{2}\right)$. We need construct a bridgeless subgraph H_{s} of G such that $H_{1} \subseteq H_{s}$ and H_{s} has $5 M_{1}$-alternating paths from $V\left(C_{1}\right)$ to $V\left(C_{2}\right)$ with no common edges, which can be used to constructed 5 perfect matchings of G which cover $E\left(C_{1}\right) \cup M_{1}$. We construct the subgraph H_{s} of G by Algorithm 1 .

From Algorithm 1, we know that the subgraph H_{s} of G is constructed by adding the paths in $\mathscr{P}_{2}, \mathscr{P}_{3}, \cdots, \mathscr{P}_{s}$ to H_{1}. If $r=0$ when Algorithm 1 ends, we know that for all $i \in[s] \backslash\{1\}, \mathscr{P}_{i}$ is the set of $M_{0}-M_{1}-M_{0}$ or $M_{2}-M_{1}-M_{2}$ ears of H_{i-1}^{\prime} with both ends in U_{i-1}. If $r=1$ when Algorithm 1 ends, we know that there is some integer k such that \mathscr{P}_{i} is the set of $M_{0}-M_{1}-M_{0}$ or $M_{2}-M_{1}-M_{2}$ ears of H_{i-1}^{\prime} with both ends in U_{i-1} for all $i \in[k] \backslash\{1\}$ and \mathscr{P}_{i} is the set of $M_{0}-M_{1}-M_{0}$ or $M_{2}-M_{1}-M_{2}$ ears of H_{i-1} for all $i \in[s] \backslash[k]$. If $r=1$, we also know that \mathscr{P}_{k+1} is the set of $M_{2}-M_{1}-M_{2}$ ears of H_{k} with both ends in $V\left(P_{0}\right)$. (See Fig. 2(a, b, c) for some examples of H_{s}.)

For each $i \in[s] \backslash\{1\}$, we know that the edge-induced subgraph $G\left[E\left(\bigcup_{P \in \mathscr{P}_{i}} P\right) \cup M_{1, i}\right]$ of G consists of vertex-disjoint circuits of G such that either all of them are $M_{0}-M_{1}$ alternating or all of them are $M_{1}-M_{2}$ alternating, where $M_{1, i}$ is the set of edges in $E\left(H_{i-1}\right) \cap$ M_{1} which are incident with an end of a path in \mathscr{P}_{i}. Let \mathscr{C} be the set of circuits of H_{s} which are $M_{0}-M_{1}$ alternating or $M_{1}-M_{2}$ alternating.

For $i=1,2$ and a path or circuit Z in $\left(\mathscr{P}_{1} \backslash\left\{P_{0}\right\}\right) \cup \mathscr{C}$, if $E(Z) \cap E\left(P_{0}\right) \neq \emptyset$, let P_{Z}^{i} be the path from u_{i} to a vertex of Z in P_{0} such that $E(Z) \cap E\left(P_{0}\right) \subseteq E\left(P_{Z}^{i}\right)$; otherwise, let P_{Z}^{i} be the graph with no vertices and edges. For two vertices u and v in P_{0}, we denote by $P_{u v}$ the path from u to v in P_{0} if $u \neq v$ and denote by $P_{u v}$ the graph with vertex-set $\{u\}$ and edge-set \emptyset if $u=v$.

Let G_{2} be a new directed graph with vertex-set $\left(\mathscr{P}_{1} \backslash\left\{P_{0}\right\}\right) \cup \mathscr{C}$ such that for two distinct vertices S and T in G_{2}, G_{2} has a directed edge from S to T, denoted by $S \rightarrow T$, if and only if $V(S) \cap V(T) \neq \emptyset$ or $V\left(P_{S}^{1}\right) \cap V\left(P_{T}^{2}\right) \neq \emptyset$.

Noting that H_{s} is bridgeless. It follows that G_{2} has a directed path from \mathscr{P}_{1}^{\prime} to $\mathscr{P}_{1} \backslash\left(\mathscr{P}_{1}^{\prime} \cup\left\{P_{0}\right\}\right)$. Let $Y_{1} Y_{2} \ldots Y_{n}$ be a shortest directed path from \mathscr{P}_{1}^{\prime} to $\mathscr{P}_{1} \backslash\left(\mathscr{P}_{1}^{\prime} \cup\left\{P_{0}\right\}\right)$ in G_{2}. By the minimality of $Y_{1} Y_{2} \ldots Y_{n}$, we know that G_{2} has no directed edge $Y_{i} \rightarrow Y_{j}$ if $j-i \geqslant 2$. That is, $E\left(Y_{i}\right) \cap E\left(Y_{j}\right)=\emptyset$ and $E\left(P_{Y_{i}}^{1}\right) \cap E\left(P_{Y_{j}}^{2}\right)=\emptyset$ for any $i, j \in[n]$ with $j-i \geqslant 2$. Let $Y_{y(1)}, Y_{y(2)}, \ldots, Y_{y(m)}$ be the $M_{1}-M_{2}$ alternating circuits in $\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$, where $y(1)<y(2)<\cdots<y(m)$. We know $y(1)=2$ and $y(m)=n-1$.

For any two distinct $M_{0}-M_{1}$ alternating circuits S and T in \mathscr{C}, we know $V(S) \cap V(T)=$ \emptyset and $V\left(P_{S}^{1}\right)=\emptyset$. It implies that G_{2} has no directed edge $Y_{i} \rightarrow Y_{i+1}$ such that both Y_{i} and Y_{i+1} are $M_{0}-M_{1}$ alternating circuits. Hence $y(i+1)=y(i)+2$ or $y(i+1)=y(i)+1$ for each $i \in[m-1]$. If $y(i+1)=y(i)+2$, we know that $Y_{y(i)+1}$ is an $M_{0}-M_{1}$ alternating circuit and we have $V\left(Y_{y(i)+1}\right) \cap V\left(Y_{y(i)}\right) \neq \emptyset$ and $V\left(Y_{y(i)+1}\right) \cap V\left(Y_{y(i+1)}\right) \neq \emptyset$. If $y(i+1)=y(i)+1$, we have $V\left(P_{Y_{y(i)}}^{1}\right) \cap V\left(P_{Y_{y(i+1)}}^{2}\right) \neq \emptyset$

For each $i \in\left[m\right.$], if G_{2} has a directed edge $Y_{y(j-1)} \rightarrow Y_{y(j)}$ for some j larger than i, we denote by w_{i} the vertex in $V_{0}\left(P_{\left.Y_{y\left(k_{i}\right.}\right)}^{2}\right) \backslash\left\{u_{2}\right\}$, where k_{i} is the minimum integer larger than i such that G_{2} has a directed edge $Y_{y\left(k_{i}-1\right)} \rightarrow Y_{y\left(k_{i}\right)}$; otherwise, let w_{i} be the vertex u_{2}. Clearly, we know $w_{m}=u_{2}$. (See Fig. $2(d, e, f)$ for examples of $Y_{1}, Y_{2}, \ldots, Y_{n}$ and w_{1}, w_{2}, \ldots, w_{m}.)
Claim 1. It holds that $V\left(P_{u_{1} w_{i}}\right) \subseteq V\left(P_{u_{1} w_{j}}\right)$ if $i<j$.
Choose $i, j \in[m]$ with $i<j$. Clearly, Claim 1 holds if $w_{j}=u_{2}$ or $w_{i}=w_{j}$. So we assume $w_{j} \neq u_{2}$ and $w_{i} \neq w_{j}$. As $i<j$, we know $k_{i}<k_{j}, w_{i} \in V_{0}\left(P_{Y_{y\left(k_{i}\right)}}^{2}\right) \backslash\left\{u_{2}\right\}$ and $w_{j} \in V_{0}\left(P_{Y_{y\left(k_{j}\right)}}^{2}\right) \backslash\left\{u_{2}\right\}$. Noting that G_{2} has a directed edge $Y_{y\left(k_{i}-1\right)} \rightarrow Y_{y\left(k_{i}\right)}$, we have $V\left(P_{Y_{y\left(k_{i}-1\right)}}^{1}\right) \cap V\left(P_{Y_{y\left(k_{i}\right)}}^{2}\right) \neq \emptyset$, which implies $w_{i} \in V\left(P_{Y_{y\left(k_{i}-1\right)}}^{1}\right)$. We also know $V\left(P_{Y_{y\left(k_{i}-1\right)}}^{1}\right) \cap$ $V\left(P_{Y_{y\left(k_{j}\right)}}^{2}\right)=\emptyset$ by the minimality of $Y_{1} Y_{2} \ldots Y_{n}$. So $V\left(P_{u_{1} w_{i}}\right) \subseteq V\left(P_{u_{1} w_{j}}\right)$ and Claim 1 holds.
Claim 2. $E\left(P_{Y_{j}}^{1}\right) \subseteq E\left(P_{u_{1} w_{i}}\right)$ for each $i \in[m]$ and each $j \in[y(i)-1]$.
Choose $i \in[m]$ and $j \in[y(i)-1]$. Clearly, Claim 2 holds if $w_{i}=u_{2}$. So we assume $w_{i} \neq u_{2}$. We know $w_{i} \in V_{0}\left(P_{Y_{y\left(k_{i}\right)}}^{2}\right) \backslash\left\{u_{2}\right\}$. As $y\left(k_{i}\right)>y(i)>j$, we have $y\left(k_{i}\right)-j \geqslant 2$. Hence we know $V\left(P_{Y_{j}}^{1}\right) \cap V\left(P_{Y_{y\left(k_{i}\right)}}^{2}\right)=\emptyset$ by the minimality of $Y_{1} Y_{2} \ldots Y_{n}$. So $E\left(P_{Y_{j}}^{1}\right) \subseteq$
$E\left(P_{u_{1} w_{i}}\right)$ and Claim 2 holds.
Set $\mathscr{P}_{1}^{\prime \prime}:=\left\{P \in \mathscr{P}_{1}^{\prime}: V(P) \cap V\left(Y_{2}\right)=\emptyset\right\}$. Let G_{3} be a new graph with vertex-set $V\left(C_{1}\right)$ and edge-set $E(C) \cup\left\{f_{P}: P \in \mathscr{P}_{1}^{\prime \prime}\right\}$. Let X^{\prime} be the set of vertices of degree 2 in G_{3}. We know $u_{1} \in X^{\prime}$. Noting also $Y_{1} \in \mathscr{P}_{1}^{\prime} \backslash \mathscr{P}_{1}^{\prime \prime}$, we have $\left|X^{\prime}\right| \geqslant 3$. Let N_{5} be the perfect matching of $C_{1}-u_{1}$. By Lemma 5, G_{3} has three near-perfect matchings N_{6}, N_{7} and N_{8} such that $E\left(C_{1}\right) \backslash N_{5} \subseteq \bigcup_{i=6}^{8} N_{i}, N_{6}$ misses u_{1} and each of N_{7} and N_{8} misses a vertex in $X^{\prime} \backslash\left\{u_{1}\right\}$. Let u_{3} and u_{4} be respectively the vertex missed by N_{7} and N_{8} in $V\left(C_{1}\right)$. We know that for $i=3,4$, there is a path P_{i+2} in $\mathscr{P}_{1}^{\prime} \backslash \mathscr{P}_{1}^{\prime \prime}$ which has u_{i} as an end. (It is possible that P_{5} and P_{6} are the same path.) Let u_{5} be the vertex in $V_{0}\left(P_{6}\right) \backslash\left\{u_{4}\right\}$.

Now we will construct five M_{1}-alternating paths from $V\left(C_{1}\right)$ to $V\left(C_{2}\right)$ such that they have no edges in common. We construct these five paths, step by step, along the path $Y_{1} Y_{2} \cdots Y_{n}$ of G_{2} and the path P_{0} of G. The construction of these five paths is as follows.

Let $J_{1,1}$ be the path from u_{4} to $V\left(Y_{y(1)}\right)$ in P_{6} and $J_{1,2}$ be the path from u_{5} to $V\left(Y_{y(1)}\right)$ in P_{6}. Let $J_{1,3}$ be the path from u_{3} to $V\left(Y_{y(1)}\right)$ in P_{5}. Set $J_{1, j}:=P_{u_{1} w_{1}}$ for $j=4,5$. Next we will extend $J_{1,1}, J_{1,2}, J_{1,3}, J_{1,4}$ and $J_{1,5}$ to five M_{1}-alternating paths from $V\left(C_{1}\right)$ to $V\left(C_{2}\right)$ such that they have no edges in common.

Let $J_{1,6}$ be the path from $V\left(J_{1,1}\right)$ to $V\left(J_{1,2}\right)$ in P_{6}. For an integer p with $2 \leqslant p \leqslant m+1$, we suppose that $J_{p-1,1}, J_{p-1,2}, J_{p-1,3}, J_{p-1,4}, J_{p-1,5}$ and $J_{p-1,6}$ have been constructed. The construction of $J_{p, 1}, J_{p, 2}, J_{p, 3}, J_{p, 4}, J_{p, 5}$ and $J_{1,6}$ will be discussed in the following three cases.
Case 1. $p \leqslant m$ and $y(p)=y(p-1)+2$.
We know that $Y_{y(p)-1}$ is an $M_{0}-M_{1}$ alternating circuit and we have $V\left(Y_{y(p)-1}\right) \cap$ $V\left(Y_{y(p-1)}\right) \neq \emptyset$ and $V\left(Y_{y(p)-1}\right) \cap V\left(Y_{y(p)}\right) \neq \emptyset$. Let P_{1}^{\prime} be a path from $V_{0}\left(J_{p-1,3}\right) \backslash V\left(C_{1}\right)$ to $V\left(Y_{y(p)}\right)$ in $Y_{y(p-1)} \cup Y_{y(p)-1}$ such that $J_{p-1,3} \cup P_{1}^{\prime}$ is M_{1}-alternating. Let $J_{p, 6}$ be the (inclusionwise) maximal $M_{1}-M_{0}-M_{1}$ alternating path in $Y_{y(p)-1}$ such that $V_{0}\left(P_{1}^{\prime}\right) \cap$ $V\left(Y_{y(p)}\right) \subseteq V_{0}\left(J_{p, 6}\right), E_{0}\left(J_{p, 6}\right) \subseteq E\left(Y_{y(p)-1}\right) \cap E\left(Y_{y(p)}\right)$ and $E\left(J_{p, 6}\right) \cap E\left(Y_{y(p-1)}\right)=\emptyset$. Let $J_{p-1,7}$ be the (inclusionwise) maximal $M_{0}-M_{1}-M_{0}$ alternating path in $Y_{y(p)-1}$ such that $V_{0}\left(J_{p, 6}\right) \backslash V_{0}\left(P_{1}^{\prime}\right) \subseteq V_{0}\left(J_{p-1,7}\right)$ and $E\left(J_{p-1,7}\right) \cap E\left(Y_{y(p)}\right)=\emptyset$. (See Fig. 3(a) for an example of $J_{p, 6}$ and $J_{p-1,7}$.) By the maximality of $J_{p, 6}$ and $J_{p-1,7}$, we know $V_{0}\left(J_{p-1,7}\right) \subseteq V\left(Y_{y(p)}\right)$ and $E\left(J_{p-1,7}\right) \cap E\left(Y_{p-1}\right) \neq \emptyset$.

By Lemma $6, G$ has two M_{1}-alternating paths P_{2}^{\prime} and P_{3}^{\prime} from $V_{0}\left(J_{p-1,6}\right)$ to $V_{0}\left(J_{p-1,7}\right)$ in $Y_{y(p-1)} \cup J_{p-1,6} \cup J_{p-1,7}$ such that $V_{0}\left(P_{2}^{\prime}\right) \cup V_{0}\left(P_{3}^{\prime}\right)=V_{0}\left(J_{p-1,6}\right) \cup V_{0}\left(J_{p-1,7}\right), E_{0}\left(P_{2}^{\prime}\right) \cup E_{0}\left(P_{3}^{\prime}\right)=$ $E_{0}\left(J_{p-1,6}\right) \cup E_{0}\left(J_{p-1,7}\right)$ and $E\left(P_{2}^{\prime}\right) \cap E\left(P_{3}^{\prime}\right) \subseteq E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)$. Without loss of generality, we assume that P_{2}^{\prime} has an end in $V_{0}\left(J_{p-1,7}\right) \cap V_{0}\left(J_{p, 6}\right)$ and P_{3}^{\prime} has an end in $V_{0}\left(J_{p-1,7}\right) \backslash V_{0}\left(J_{p, 6}\right)$. Let α_{1} be the number in $\{1,2\}$ such that $V_{0}\left(J_{1, \alpha_{1}}\right) \cap V_{0}\left(P_{2}^{\prime}\right) \neq \emptyset$. Let α_{2} be the number in $\{1,2\} \backslash\left\{\alpha_{1}\right\}$.

Set $J_{p, 1}:=J_{p-1,3} \cup P_{1}^{\prime}, J_{p, 2}:=J_{p-1, \alpha_{1}} \cup P_{2}^{\prime}, J_{p, 3}:=J_{p-1, \alpha_{2}} \cup P_{3}^{\prime}$ and $J_{p, j}:=J_{p-1, j}$ for $j=4,5$. (See Fig. 3(a) for an example of $J_{p, 1}, J_{p, 2}$ and $J_{p, 3}$.)
Case 2. $p \leqslant M$ and $y(p)=y(p-1)+1$.
We know $V\left(P_{Y_{y(p-1)}}^{1}\right) \cap V\left(P_{Y_{y(p)}}^{2}\right) \neq \emptyset$ and $w_{p-1} \in V_{0}\left(P_{Y_{y(p)}}^{2}\right) \backslash\left\{u_{2}\right\}$. Let $P_{1}^{\prime \prime}$ be the path from $V_{0}\left(J_{p-1,3}\right) \cap V\left(Y_{y(p-1)}\right)$ to $V\left(P_{Y_{y(p)}}^{2}\right)$ in $Y_{y(p-1)}$ such that $J_{p-1,3} \cup P_{1}^{\prime \prime}$ is an M_{1} alternating path. Let v_{1} be the end of $P_{1}^{\prime \prime}$ in $V\left(P_{Y_{y(p)}}^{2}\right)$. We will construct $J_{p, 1}, J_{p, 2}, \ldots$,

Figure 3: Examples for the proof of Theorem 4. These are examples for showing how to extend the paths $J_{p-1,1}, J_{p-1,2}, \ldots, J_{p-1,5}$ to the paths $J_{p, 1}, J_{p, 2}, \ldots, J_{p, 5}$.
$J_{p, 6}$ in the following two subcases.
Subcase 2.1. $P_{1}^{\prime \prime} \cup P_{w_{p-1} v_{1}}$ is an M_{1}-alternating path.
Let $P_{2}^{\prime \prime}$ be the path from v_{1} to $V\left(Y_{y(p)}\right)$ in $P_{w_{p-1} v_{1}}$. Let v_{2} be the vertex in $V_{0}\left(P_{2}^{\prime \prime}\right) \backslash\left\{v_{1}\right\}$. Let $J_{p-1,7}$ be the path from w_{p} to $V\left(Y_{y(p)}\right) \cap V\left(P_{Y_{y(p-1)}}^{1}\right)$ in $P_{w_{p-1} w_{p}}$. By Claim 2, we have $E\left(P_{Y_{y(p-1)}}^{1}\right) \subseteq E\left(P_{u_{1} w_{p}}\right)$. Noting also $V\left(P_{Y_{y(p-1)}}^{1}\right) \cap V\left(P_{Y_{y(p)}}^{2}\right) \neq \emptyset$, we know $E\left(J_{p-1,7}\right) \cap$ $E\left(Y_{y(p-1)}\right) \neq \emptyset$. (See Fig. 3(b) for an example of $J_{p-1,7}, v_{1}$ and v_{2}.)

By Lemma 6, G has two M_{1}-alternating paths $P_{3}^{\prime \prime}$ and $P_{4}^{\prime \prime}$ from $V_{0}\left(J_{p-1,6}\right)$ to $V_{0}\left(J_{p-1,7}\right)$ in $Y_{y(p-1)} \cup J_{p-1,6} \cup J_{p-1,7}$ such that $V_{0}\left(P_{3}^{\prime \prime}\right) \cup V_{0}\left(P_{4}^{\prime \prime}\right)=V_{0}\left(J_{p-1,6}\right) \cup V_{0}\left(J_{p-1,7}\right), E_{0}\left(P_{3}^{\prime \prime}\right) \cup$ $E_{0}\left(P_{4}^{\prime \prime}\right)=E_{0}\left(J_{p-1,6}\right) \cup E_{0}\left(J_{p-1,7}\right)$ and $E\left(P_{3}^{\prime \prime}\right) \cap E\left(P_{4}^{\prime \prime}\right) \subseteq E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)$. Without loss of generality, we assume that $P_{3}^{\prime \prime}$ has one end in $V\left(Y_{p}\right)$ and $P_{4}^{\prime \prime}$ has w_{p} as an end. Let β_{1} be the number in $\{1,2\}$ such that $V_{0}\left(J_{p-1, \beta_{1}}\right) \cap V_{0}\left(P_{3}^{\prime \prime}\right) \neq \emptyset$. Let β_{2} be the number in $\{1,2\} \backslash\left\{\beta_{1}\right\}$.

Set $J_{p, 1}:=J_{p-1,3} \cup P_{1}^{\prime \prime} \cup P_{2}^{\prime \prime}, J_{p, 2}:=J_{p-1,4}, J_{p, 3}:=J_{p-1, \beta_{1}} \cup P_{3}^{\prime \prime}, J_{p, 4}:=J_{p-1, \beta_{2}} \cup P_{4}^{\prime \prime}, J_{p, 5}:=J_{p-1,5}$ $\cup P_{w_{p-1} w_{p}}$ and $J_{p, 6}:=P_{w_{p-1} v_{2}}$. (See Fig. 3(b) for an example of $J_{p, 1}, J_{p, 2}, \ldots, J_{p, 6}$.)
Subcase 2.2. $P_{1}^{\prime \prime} \cup P_{v_{1} w_{p}}$ is an M_{1}-alternating path.
Let $J_{p, 6}$ be the (inclusionwise) maximal $M_{1}-M_{0}-M_{1}$ alternating path in $P_{w_{p-1} w_{p}}$ such that $w_{p-1} \in V_{0}\left(J_{p, 6}\right) \subseteq V\left(Y_{y(p)}\right)$ and $E\left(J_{p, 6}\right) \cap E\left(Y_{y(p-1)}\right)=\emptyset$. Let v_{3} be the vertex in $V_{0}\left(J_{p, 6}\right) \backslash\left\{w_{p-1}\right\}$. Let $J_{p-1,7}$ be the path from v_{3} to $V\left(Y_{y(p)}\right) \cup\left\{w_{p}\right\}$ in $P_{v_{3} w_{p}}$ such that $E\left(J_{p-1,7}\right) \cap E\left(J_{p, 6}\right)=\emptyset$. By the maximality of $J_{p, 6}$, we know $E\left(J_{p-1,7}\right) \cap E\left(Y_{y(p-1)}\right) \neq \emptyset$.
((See Fig. 3(c,d) for two examples of $J_{p, 6}$ and $J_{p-1,7 .}$.)
By Lemma 6, G has two M_{1}-alternating paths $P_{5}^{\prime \prime}$ and $P_{6}^{\prime \prime}$ from $V_{0}\left(J_{p-1,6}\right)$ to $V_{0}\left(J_{p-1,7}\right)$ in $Y_{y(p-1)} \cup J_{p-1,6} \cup J_{p-1,7}$ such that $V_{0}\left(P_{5}^{\prime \prime}\right) \cup V_{0}\left(P_{6}^{\prime \prime}\right)=V_{0}\left(J_{p-1,6}\right) \cup V_{0}\left(J_{p-1,7}\right), E_{0}\left(P_{5}^{\prime \prime}\right) \cup$ $E_{0}\left(P_{6}^{\prime \prime}\right)=E_{0}\left(J_{p-1,6}\right) \cup E_{0}\left(J_{p-1,7}\right)$ and $E\left(P_{5}^{\prime \prime}\right) \cap E\left(P_{6}^{\prime \prime}\right) \subseteq E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)$. Without loss of generality, we assume that $P_{5}^{\prime \prime}$ has v_{3} as one end and $P_{6}^{\prime \prime}$ has an end in $V_{0}\left(J_{p-1,7}\right) \backslash\left\{v_{3}\right\}$. Let γ_{1} be the number in $\{1,2\}$ such that $V_{0}\left(J_{p-1, \gamma_{1}}\right) \cap V_{0}\left(P_{5}^{\prime \prime}\right) \neq \emptyset$. Let γ_{2} be the number in $\{1,2\} \backslash\left\{\gamma_{1}\right\}$.

Set $J_{p, 1}:=J_{p-1,4}, J_{p, 2}:=J_{p-1, \gamma_{1}} \cup P_{5}^{\prime \prime}$ and $J_{p, 5}:=J_{p-1,3} \cup P_{1}^{\prime \prime} \cup P_{v_{1} w_{p}}$. If the end of $J_{p-1,7}$ which is different from v_{3} is in $V\left(Y_{y(p)}\right)$, we set $J_{p, 3}:=J_{p-1, \gamma_{2}} \cup P_{6}^{\prime \prime}$ and $J_{p, 4}:=J_{p-1,5} \cup P_{w_{p-1} w_{p}}$. (See Fig $3(c)$ for an example of $J_{p, 1}, J_{p, 2}, \ldots, J_{p, 5}$ in this case.) If $w_{p} \in V_{0}\left(J_{p-1,7}\right)$, we set $J_{p, 3}:=J_{p-1,5}$ and $J_{p, 4}:=J_{p-1, \gamma_{2}} \cup P_{6}^{\prime \prime}$. (See Fig. 3(d) for an example of $J_{p, 1}, J_{p, 2}, \ldots, J_{p, 5}$ in the case that $w_{p} \in V_{0}\left(J_{p-1,7}\right)$.)
Case 3. $p=m+1$.
Set $J_{p-1,7}:=Y_{n}$. Let $P_{1}^{\prime \prime \prime}$ be a path from $V_{0}\left(J_{p-1,3}\right) \cap V\left(Y_{y(m)}\right)$ to $V_{0}\left(Y_{n}\right)$ in $Y_{y(m)} \cup Y_{n}$ such that $J_{p-1,3} \cup P_{1}^{\prime \prime \prime}$ is M_{1}-alternating. By Lemma 6, G has two M_{1}-alternating paths $P_{2}^{\prime \prime \prime}$ and $P_{3}^{\prime \prime \prime}$ from $V_{0}\left(J_{p-1,6}\right)$ to $V_{0}\left(J_{p-1,7}\right)$ in $Y_{y(m)} \cup J_{p-1,6} \cup J_{p-1,7}$ such that $V_{0}\left(P_{2}^{\prime \prime \prime}\right) \cup V_{0}\left(P_{3}^{\prime \prime \prime}\right)=$ $V_{0}\left(J_{p-1,6}\right) \cup V_{0}\left(J_{p-1,7}\right), E_{0}\left(P_{2}^{\prime \prime \prime}\right) \cup E_{0}\left(P_{3}^{\prime \prime \prime}\right)=E_{0}\left(J_{p-1,6}\right) \cup E_{0}\left(J_{p-1,7}\right)$ and $E\left(P_{2}^{\prime \prime \prime}\right) \cap E\left(P_{3}^{\prime \prime \prime}\right) \subseteq$ $E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)$. Without loss of generality, we assume that $P_{2}^{\prime \prime \prime}$ has an end in $V_{0}\left(J_{p-1,1}\right)$ and $P_{3}^{\prime \prime \prime}$ has an end in $V_{0}\left(J_{p-1,2}\right)$.

Set $J_{p, 1}:=J_{p-1,1} \cup P_{2}^{\prime \prime \prime}, J_{p, 2}:=J_{p-1,2} \cup P_{3}^{\prime \prime \prime}, \quad J_{p, 3}:=J_{p-1,3} \cup P_{1}^{\prime \prime \prime}$ and set $J_{p, j}=J_{p-1, j}$ for $j=4,5$.

By the above construction, we can construct five M_{1}-alternating paths $J_{m+1,1}, J_{m+1,2}$, $J_{m+1,3}, J_{m+1,4}$ and $J_{m+1,5}$ from $V\left(C_{1}\right)$ to $V\left(C_{2}\right)$. Next we will show $\bigcap_{j=1}^{5} E\left(J_{m+1, j}\right)=\emptyset$.

For each $i \in[m]$, let π_{i} be a one-to-one correspondence from [5] to [5] such that $J_{i, j}$ is a subgraph of $J_{i+1, \pi_{i}(j)}$ for each $j \in[5]$. We know that for each $i \in[m]$ and each $j \in[5]$, $J_{i, j}$ is extended to $J_{i+1, \pi(j)}$.
Claim 3. For each $i \in[m], J_{i, 1}, J_{i, 2}$ and $J_{i, 3}$ are three M_{1}-alternating paths from $V\left(C_{1}\right)$ to $V\left(Y_{y(i)}\right)$ in G and $J_{i, 4}, J_{i, 5}$ are two M_{1}-alternating paths from $V\left(C_{1}\right)$ to w_{i} in G, such that $\bigcup_{j=1}^{5} E\left(J_{i, j}\right) \subseteq E\left(P_{5} \cup P_{6}\right) \cup E\left(Y_{2} \cup Y_{3} \cup \cdots \cup Y_{y(i)-1}\right) \cup E\left(P_{u_{1} w_{i}}\right)$.

We prove Claim 3 by induction on i. Clearly, Claim 3 holds for $i=1$. Choose a number $p \in\{2,3, \ldots, m\}$. We suppose that Claim 3 holds for $i=p-1$. At first, we can easily see, from the construction in the above three cases, that $J_{p, 1}, J_{p, 2}$ and $J_{p, 3}$ are three M_{1}-alternating paths from $V\left(C_{1}\right)$ to $V\left(Y_{y(p)}\right)$ in G and $J_{p, 4}, J_{p, 5}$ are two M_{1}-alternating paths from $V\left(C_{1}\right)$ to w_{p} in G.

Now we consider the set $\bigcup_{j=1}^{5} E\left(J_{p, j}\right)$. From the construction of $J_{p, 1}, J_{p, 2}, J_{p, 3}, J_{p, 4}$ and $J_{p, 5}$, we know $E\left(J_{p, \pi_{p-1}(j)}\right) \backslash E\left(J_{p-1, j}\right) \subseteq E\left(J_{p-1,6}\right) \cup E\left(Y_{y(p)-2}\right) \cup E\left(Y_{y(p)-1}\right)$ for each $j \in[5]$ if $y(p)=y(p-1)+2$ and we know $E\left(J_{p, \pi_{p-1}(j)}\right) \backslash E\left(J_{p-1, j}\right) \subseteq E\left(J_{p-1,6}\right) \cup E\left(Y_{y(p)-1}\right) \cup$ $E\left(P_{Y_{y(p)-1}}^{1}\right) \cup E\left(P_{u_{1} w_{p}}\right)$ for each $j \in[5]$ if $y(p)=y(p-1)+1$. From the construction of $J_{p-1,6}$, we know $E\left(J_{p-1,6}\right) \subseteq E\left(P_{6}\right)$ if $p=2$, we know $E\left(J_{p-1,6}\right) \subseteq E\left(Y_{y(p-1)-1}\right)$ if $p \geqslant 3$ and $y(p-1)=y(p-2)+2$, and we know $E\left(J_{p-1,6}\right) \subseteq E\left(P_{w_{p-2} w_{p-1}}\right)$ if $p \geqslant 3$ and $y(p-1)=$ $y(p-2)+1$. Noting also $E\left(P_{u_{1} w_{p-1}}\right) \subseteq E\left(P_{u_{1} w_{p}}\right)$ by Claim 1 and $E\left(P_{Y_{y(p)-1}}^{1}\right) \subseteq E\left(P_{u_{1} w_{p}}\right)$ by Claim 2, we have $E\left(J_{p, j}\right) \subseteq E\left(P_{5} \cup P_{6}\right) \cup E\left(Y_{2} \cup Y_{3} \cup \cdots \cup Y_{y(p)-1}\right) \cup E\left(P_{u_{1} w_{p}}\right)$ for each
$j \in[5]$ and hence Claim 3 holds for $i=p$. Claim 3 is proved.
Claim 4. $\bigcap_{j=3}^{6} E\left(J_{p, j}\right)=\emptyset$ and $\left(\bigcap_{j=4}^{6} E\left(J_{p, j}\right)\right) \cap E\left(Y_{y(p)}\right)=\emptyset$ for each $p \in[m]$.
Noting that $E\left(J_{1,6}\right) \subseteq E\left(P_{6}\right), E\left(J_{1,4}\right) \subseteq E\left(P_{0}\right)$ and $E\left(P_{6}\right) \cap E\left(P_{0}\right)=\emptyset$, we have $\bigcap_{j=3}^{6} E\left(J_{1, j}\right)=\emptyset$ and $E\left(J_{1,4}\right) \cap E\left(J_{1,5}\right) \cap E\left(J_{1,6}\right) \cap E\left(Y_{y(1)}\right)=\emptyset$. So Claim 4 holds for $p=1$. Now we consider the case that $2 \leqslant p \leqslant m$.

Assume $y(p)=y(p-1)+2$. We know from the construction of $J_{p, 4}$ and $J_{p, 6}$ in Case 1 that $J_{p, 4}=J_{p-1,4}$ and $E\left(J_{p, 6}\right) \subseteq E\left(Y_{y(p)-1}\right)$. By Claim 3, we know $E\left(J_{p-1,4}\right) \subseteq$ $E\left(P_{5} \cup P_{6}\right) \cup E\left(Y_{2} \cup Y_{3} \cup \cdots \cup Y_{y(p-1)-1}\right) \cup E\left(P_{u_{1} w_{p-1}}\right)$. Noting that $Y_{y(p)-1}$ is an $M_{0}-M_{1}$ alternating circuit in \mathscr{C} and P_{0}, P_{5} and P_{6} are $M_{0}-M_{1}-M_{0}$ alternating paths in \mathscr{P}_{1}, we have $E\left(Y_{y(p)-1}\right) \cap E\left(P_{5} \cup P_{6} \cup P_{u_{1} w_{p-1}}\right)=\emptyset$. By the minimality of $Y_{1} Y_{2} \cdots Y_{n}$, we know $V\left(Y_{j}\right) \cap V\left(Y_{y(p)-1}\right)=\emptyset$ for every integer j with $2 \leqslant j \leqslant y(p-1)-1$. So $E\left(J_{p, 6}\right) \cap E\left(J_{p, 4}\right)=$ \emptyset. Hence $\bigcap_{j=3}^{6} E\left(J_{p, j}\right)=\emptyset$ and $E\left(J_{p, 4}\right) \cap E\left(J_{p, 5}\right) \cap E\left(J_{p, 6}\right) \cap E\left(Y_{y(p)}\right)=\emptyset$.

Assume $y(p)=y(p-1)+1$ and that $J_{p, 3}, J_{p, 4}, J_{p, 5}$ and $J_{p, 6}$ are constructed in Subcase 2.1. We know $J_{p, 3}:=J_{p-1, \beta_{1}} \cup P_{3}^{\prime \prime}, J_{p, 4}:=J_{p-1, \beta_{2}} \cup P_{4}^{\prime \prime}, E\left(J_{p, 6}\right) \subseteq E\left(P_{w_{p-1} w_{p}}\right)$ and $E\left(P_{p, 6}\right) \cap E\left(J_{p-1,7}\right)=\emptyset$. We firstly show $\bigcap_{j=3}^{6} E\left(J_{p, j}\right)=\emptyset$. From the construction of $J_{p-1,6}$, we know that either $E\left(J_{p-1,6}\right) \subseteq E\left(P_{u_{1} w_{p-1}}\right)$ or $J_{p-1,6}$ is a subgraph of P_{6} or a subgraph of an $M_{0}-M_{1}$ alternating circuit in \mathscr{C}. So $E\left(J_{p, 6}\right) \cap E\left(J_{p-1,6}\right)=\emptyset$. By Claims 1, 2 and 3, we can obtain $E\left(J_{p, 6}\right) \cap\left(E\left(J_{p-1,1}\right) \cup E\left(J_{p-1,2}\right)\right)=\emptyset$. Noting also $E\left(P_{3}^{\prime \prime}\right) \cap E\left(P_{4}^{\prime \prime}\right) \subseteq E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)$ and $E\left(P_{p, 6}\right) \cap E\left(J_{p-1,7}\right)=\emptyset$, we have

$$
\begin{aligned}
\bigcap_{j=3}^{6} E\left(J_{p, j}\right) & \subseteq E\left(J_{p, 6}\right) \cap E\left(J_{p, 3}\right) \cap E\left(J_{p, 4}\right) \\
& =E\left(J_{p, 6}\right) \cap E\left(P_{3}^{\prime \prime}\right) \cap E\left(P_{4}^{\prime \prime}\right) \\
& \subseteq E\left(J_{p, 6}\right) \cap\left(E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)\right) \\
& =\left(E\left(J_{p, 6}\right) \cap E\left(J_{p-1,6}\right)\right) \cup\left(E\left(J_{p, 6}\right) \cap E\left(J_{p-1,7}\right)\right) \\
& =\emptyset
\end{aligned}
$$

Now we show $E\left(J_{p, 4}\right) \cap E\left(J_{p, 5}\right) \cap E\left(J_{p, 6}\right) \cap E\left(Y_{y(p)}\right)=\emptyset$. From the construction of $J_{p, 4}$, we know $E\left(J_{p, 4}\right) \subseteq E\left(J_{p-1, \beta_{2}}\right) \cup E\left(J_{p-1,6}\right) \cup E\left(Y_{y(p-1)}\right) \cup E\left(J_{p-1,7}\right)$. We already know $E\left(J_{p, 6}\right) \cap\left(E\left(J_{p-1,1}\right) \cup E\left(J_{p-1,2}\right)\right)=\emptyset, E\left(J_{p, 6}\right) \cap E\left(J_{p-1,6}\right)=\emptyset$ and $E\left(P_{p, 6}\right) \cap E\left(J_{p-1,7}\right)=\emptyset$. So $E\left(J_{p, 6}\right) \cap E\left(J_{p, 4}\right) \subseteq E\left(Y_{y(p-1)}\right)$. Noting that both $Y_{y(p-1)}$ and $Y_{y(p)}$ are distinct $M_{1^{-}}$ M_{2} alternating circuits in \mathscr{C}, we have $E\left(Y_{y(p-1)}\right) \cap E\left(Y_{y(p)}\right)=\emptyset$. So $E\left(J_{p, 6}\right) \cap E\left(J_{p, 4}\right) \cap$ $E\left(Y_{y(p)}\right)=\emptyset$. Hence $E\left(J_{p, 4}\right) \cap E\left(J_{p, 5}\right) \cap E\left(J_{p, 6}\right) \cap E\left(Y_{y(p)}\right)=\emptyset$.

Assume $y(p)=y(p-1)+1$ and that $J_{p, 3}, J_{p, 4}, J_{p, 5}$ and $J_{p, 6}$ are constructed in Subcase 2.2. We know from the construction that $E\left(J_{p, 6}\right) \subseteq E\left(P_{w_{p-1} w_{p}}\right), J_{p, 5}=J_{p-1,3} \cup P_{1}^{\prime \prime} \cup P_{v_{1} w_{p}}$ and $E\left(J_{p, 6}\right) \cap E\left(P_{1}^{\prime \prime} \cup P_{v_{1} w_{p}}\right)=\emptyset$. By Claims 1,2 and 3, we can obtain $E\left(J_{p, 6}\right) \cap E\left(J_{p-1,3}\right)=$ \emptyset. So $E\left(J_{p, 6}\right) \cap E\left(J_{p, 5}\right)=\emptyset$. Thus $\bigcap_{j=3}^{6} E\left(J_{p, j}\right)=\emptyset$ and $E\left(J_{p, 4}\right) \cap E\left(J_{p, 5}\right) \cap E\left(J_{p, 6}\right) \cap$ $E\left(Y_{y(p)}\right)=\emptyset$.

Claim 4 is proved.
Claim 5. $E\left(J_{p-1,6}\right) \cap\left(\bigcap_{j=3}^{5} E\left(J_{p, \pi_{p-1}(j)}\right)\right)=\emptyset$ for each $p \in\{2,3, \ldots, m+1\}$.
Choose a number $p \in\{2,3, \ldots, m+1\}$. From the construction of $J_{p, \pi_{p-1}(3)}$, we know $E\left(J_{p, \pi_{p-1}(3)}\right) \subseteq E\left(J_{p-1,3}\right) \cup E\left(Y_{y(p-1)}\right) \cup E\left(Y_{y(p)-1}\right) \cup E\left(P_{w_{p-1} w_{p}}\right)$ if $p \leqslant m$ and we know
$E\left(J_{p, \pi_{p-1}(3)}\right) \subseteq E\left(J_{p-1,3}\right) \cup E\left(Y_{y(p-1)}\right) \cup E\left(Y_{n}\right)$ if $p=m+1$. From the construction of $J_{p-1,6}$, we know $E\left(J_{p-1,6}\right) \subseteq E\left(P_{6}\right), E\left(J_{p-1,6}\right) \subseteq E\left(P_{u_{1} w_{p-1}}\right)$, or that $J_{p-1,6}$ is a subgraph of the $M_{0}-M_{1}$ alternating circuit $Y_{y(p-1)-1}$ when $y(p-1)=y(p-2)+2$ holds. Hence we have $E\left(J_{p-1,6}\right) \cap E\left(P_{w_{p-1} w_{p}}\right)=\emptyset$ and $E\left(J_{p-1,6}\right) \cap E\left(Y_{n}\right)=\emptyset$. If $p \leqslant m$ and $y(p)=y(p-1)+2$, we know that $Y_{y(p)-1}$ is an $M_{0}-M_{1}$ alternating circuit and we have $E\left(J_{p-1,6}\right) \cap E\left(Y_{y(p)-1}\right)=\emptyset$. So $E\left(J_{p-1,6}\right) \cap E\left(J_{p, \pi_{p-1}(3)}\right)=\left(E\left(J_{p-1,6}\right) \cap E\left(J_{p-1,3}\right)\right) \cup\left(E\left(J_{p-1,6}\right) \cap E\left(Y_{y(p-1)}\right)\right)$.

From the construction of $J_{p, \pi_{p-1}(4)}$ and $J_{p, \pi_{p-1}(5)}$, we know $J_{p, \pi_{p-1}(4)}=J_{p-1,4}$ and either $J_{p, \pi_{p-1}(5)}=J_{p-1,5}$ or $J_{p, \pi_{p-1}(5)}=J_{p-1,5} \cup P_{w_{p-1} w_{p}}$. We already know $E\left(J_{p-1,6}\right) \cap$ $E\left(P_{w_{p-1} w_{p}}\right)=\emptyset$. Now we have

$$
\begin{aligned}
& E\left(J_{p-1,6}\right) \cap E\left(J_{p, \pi_{p-1}(3)}\right) \cap E\left(J_{p, \pi_{p-1}(4)}\right) \cap E\left(J_{p, \pi_{p-1}(5)}\right) \\
& \quad=\left(\left(E\left(J_{p-1,6}\right) \cap E\left(J_{p-1,3}\right)\right) \cup\left(E\left(J_{p-1,6}\right) \cap E\left(Y_{y(p-1)}\right)\right)\right) \cap E\left(J_{p-1,4}\right) \cap E\left(J_{p-1,5}\right) \\
& \quad=\left(\bigcap_{j=3}^{6} E\left(J_{p-1, j}\right)\right) \cup\left(\left(\bigcap_{j=4}^{6} E\left(J_{p-1, j}\right)\right) \cap E\left(Y_{y(p-1)}\right)\right) .
\end{aligned}
$$

By Claim 4, we know $\bigcap_{j=3}^{6} E\left(J_{p-1, j}\right)=\emptyset$ and $\left(\bigcap_{j=4}^{6} E\left(J_{p-1, j}\right)\right) \cap E\left(Y_{y(p-1)}\right)=\emptyset$. So $E\left(J_{p-1,6}\right) \cap E\left(J_{p, \pi_{p-1}(3)}\right) \cap E\left(J_{p, \pi_{p-1}(4)}\right) \cap E\left(J_{p, \pi_{p-1}(5)}\right)=\emptyset$ and Claim 5 holds.
Claim 6. $E\left(J_{p-1,7}\right) \cap E\left(J_{p, \pi_{p-1}(4)}\right)=\emptyset$ for each $p \in\{2,3, \ldots, m+1\}$.
Choose a number $p \in\{2,3, \ldots, m+1\}$. We know $J_{p, \pi_{p-1}(4)}=J_{p-1,4}$ from the construction of $J_{p, \pi_{p-1}(4)}$. From the construction of $J_{p-1,7}$, we know $E\left(J_{p-1,7}\right) \subseteq E\left(Y_{n}\right)$ if $p=m+1$, we know $E\left(J_{p-1,7}\right) \subseteq E\left(Y_{y(p)-1}\right)$ if $p \leqslant m$ and $y(p)=y(p-1)+2$, and we know $E\left(J_{p-1,7}\right) \subseteq E\left(P_{w_{p-1} w_{p}}\right)$ if $p \leqslant m$ and $y(p)=y(p-1)+1$. By Claims 1, 2 and 3, we can obtain $E\left(J_{p-1,4}\right) \cap E\left(P_{w_{p-1} w_{p}}\right)=\emptyset$. By Claim 3 and the minimality of $Y_{1} Y_{2} \cdots Y_{n}$, we know $E\left(J_{p-1,4}\right) \cap E\left(Y_{n}\right)=\emptyset$ if $p=m+1$ and we also know $E\left(J_{p-1,4}\right) \cap E\left(Y_{y(p)-1}\right)=\emptyset$ if $p \leqslant m$ and $y(p)=y(p-1)+2$. So $E\left(J_{p-1,7}\right) \cap E\left(J_{p, \pi_{p-1}(4)}\right)=E\left(J_{p-1,7}\right) \cap E\left(J_{p-1,4}\right)=\emptyset$ and Claim 6 holds.
Claim 7. $\bigcap_{j=1}^{5} E\left(J_{p, j}\right)=\emptyset$ for each $p \in[m+1]$.
We proceed by induction on p. Clearly, Claim 7 holds for $i=1$. For an integer p with $2 \leqslant p \leqslant m+1$, we suppose $\bigcap_{j=1}^{5} E\left(J_{p-1, j}\right)=\emptyset$.

Noting that $J_{p-1,1}$ and $J_{p-1,2}$ are two paths from $V\left(C_{1}\right)$ to $V\left(Y_{y(p-1)}\right)$ in G by Claim 3, we have $E\left(J_{p-1, j}\right) \cap E\left(Y_{y(p-1)}\right)=\emptyset$ for $j=1,2$. Set $E_{1}:=E\left(J_{p, \pi_{p-1}(1)}\right) \backslash E\left(J_{p-1,1}\right)$ and $E_{2}:=E\left(J_{p, \pi_{p-1}(2)}\right) \backslash E\left(J_{p-1,2}\right)$. From above, we know $E_{j} \subseteq E\left(Y_{y(p-1)}\right) \cup E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)$ for $j=1,2$ and $E_{1} \cap E_{2} \subseteq E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)$. Now we have

$$
\begin{aligned}
& E\left(J_{p, \pi_{p-1}(1)}\right) \cap E\left(J_{p, \pi_{p-1}(2)}\right) \\
& \quad=\left(E\left(J_{p-1,1}\right) \cap E_{1}\right) \cup\left(E\left(J_{p-1,2}\right) \cap E_{2}\right) \\
& \quad=\left(E\left(J_{p-1,1}\right) \cap E\left(J_{p-1,2}\right)\right) \cup\left(E\left(J_{p-1,1}\right) \cap E_{2}\right) \cup\left(E_{1} \cap E\left(J_{p-1,2}\right)\right) \cup\left(E_{1} \cap E_{2}\right) \\
& \quad \subseteq\left(E\left(J_{p-1,1}\right) \cap E\left(J_{p-1,2}\right)\right) \cup E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right) .
\end{aligned}
$$

From the construction of $J_{p, \pi_{p-1}(3)}, J_{p, \pi_{p-1}(4)}$ and $J_{p, \pi_{p-1}(5)}$, we know $E\left(J_{p, \pi_{p-1}(j)}\right) \subseteq$ $E\left(J_{p-1, j}\right) \cup E\left(Y_{y(p-1)}\right) \cup E\left(Y_{y(p)-1}\right) \cup E\left(P_{w_{p-1} w_{p}}\right)$ for $j=3,4,5$ if $p \leqslant m$ and we know $E\left(J_{p, \pi_{p-1}(j)}\right) \subseteq E\left(J_{p-1, j}\right) \cup E\left(Y_{y(p-1)}\right) \cup E\left(Y_{n}\right)$ for $j=3,4,5$ if $p=m+1$. By Claims 1-3
and the minimality of $Y_{1} Y_{2} \cdots Y_{n}$, we can know $E\left(J_{p-1,1}\right) \cap\left(E\left(P_{w_{p-1} w_{p}}\right) \cup E\left(Y_{n}\right)\right)=\emptyset$. We also can know $E\left(J_{p-1,1}\right) \cap E\left(Y_{y(p)-1}\right)=\emptyset$ if $p \leqslant m$ and $y(p)=y(p-1)+2$. Noting also $E\left(J_{p-1,1}\right) \cap E\left(Y_{y(p-1)}\right)=\emptyset$, we have $E\left(J_{p-1,1}\right) \cap E\left(J_{p, \pi_{p-1}(j)}\right)=E\left(J_{p-1,1}\right) \cap E\left(J_{p-1, j}\right)$ for $j=3,4,5$. Hence we have

$$
E\left(J_{p-1,1}\right) \cap E\left(J_{p-1,2}\right) \cap\left(\bigcap_{j=3}^{5} E\left(J_{p, \pi_{p-1}(j)}\right)\right)=\bigcap_{j=1}^{5} E\left(J_{p-1, j}\right)=\emptyset .
$$

By Claim 5, we know $E\left(J_{p-1,6}\right) \cap\left(\bigcap_{j=3}^{5} E\left(J_{p, \pi_{p-1}(j)}\right)\right)=\emptyset$. By Claim 6, we know $E\left(J_{p-1,7}\right) \cap E\left(J_{p, \pi_{p-1}(4)}\right)=\emptyset$. Now we have

$$
\begin{aligned}
\bigcap_{j=1}^{5} E\left(J_{p, j}\right)= & \left(E\left(J_{p, \pi_{p-1}(1)}\right) \cap E\left(J_{p, \pi_{p-1}(2)}\right)\right) \cap\left(\bigcap_{j=3}^{5} E\left(J_{p, \pi_{p-1}(j)}\right)\right) \\
\subseteq & \left(\left(E\left(J_{p-1,1}\right) \cap E\left(J_{p-1,2}\right)\right) \cup E\left(J_{p-1,6}\right) \cup E\left(J_{p-1,7}\right)\right) \cap\left(\bigcap_{j=3}^{5} E\left(J_{p, \pi_{p-1}}(j)\right)\right) \\
\subseteq & \left(E\left(J_{p-1,1}\right) \cap E\left(J_{p-1,2}\right) \cap\left(\bigcap_{j=3}^{5} E\left(J_{p, \pi_{p-1}(j)}\right)\right)\right) \\
& \cup\left(E\left(J_{p-1,6}\right) \cap\left(\bigcap_{j=3}^{5} E\left(J_{p, \pi_{p-1}(j)}\right)\right)\right) \cup\left(E\left(J_{p-1,7}\right) \cap E\left(J_{p, \pi_{p-1}(4)}\right)\right) \\
= & \emptyset .
\end{aligned}
$$

Claim 7 is proved.
By Claim 7, we know $\bigcap_{j=1}^{5} E\left(J_{m+1, j}\right)=\emptyset$. At last, we will use these five paths $J_{m+1,1}$, $J_{m+1,2}, J_{m+1,3}, J_{m+1,4}$ and $J_{m+1,5}$ to constructed five perfect matchings of G which cover $E\left(C_{1}\right) \cup M_{1}$.

Let N_{9} be the perfect matching of $C_{1}-u_{5}$. For each $j \in\{5,6,7,8,9\}$, let N_{j}^{\prime} be the perfect matching of $C_{2}-V_{0}\left(J_{m+1, j-4}\right) \cap V\left(C_{2}\right)$. Let δ be a one-to-one correspondence from $\{5,6,7,8,9\}$ to $\{5,6,7,8,9\}$ such that for each $j \in\{5,6,7,8,9\}$, the vertex in $V_{0}\left(J_{m+1, j-4}\right) \cap$ $V\left(C_{1}\right)$ is missed by $N_{\delta(j)}$. For each $j \in\{5,6,7,8,9\}$, set $\mathscr{Q}_{j}^{\prime}:=\left\{P \in \mathscr{P}_{1}^{\prime \prime}: f_{P} \in F \cap N_{\delta(j)}\right\}$. Now for each $j \in\{5,6,7,8,9\}$, we set

$$
M_{j+2}:=\left(N_{\delta(j)} \cap E\left(C_{1}\right)\right) \cup\left(E\left(\left(\bigcup_{P \in \mathscr{Q}_{j}^{\prime}} P\right) \cup J_{m+1, j-4}\right) \triangle M_{1}\right) \cup N_{j}^{\prime} .
$$

We know that $M_{7}, M_{8}, M_{9}, M_{10}$ and M_{11} are 5 perfect matchings of G. Noting that $E\left(C_{1}\right) \backslash N_{5} \subseteq \bigcup_{j=6}^{8} N_{j}$ and $\bigcap_{j=1}^{5} E\left(J_{m+1, j}\right)=\emptyset$, we have $E\left(C_{1}\right) \cup M_{1} \subseteq \bigcup_{j=7}^{11} M_{j}$.

By a similar argument as above, we know that the edges in $E\left(C_{2}\right) \cup M_{2}$ can also be covered by at most 5 perfect matchings of G. These at most 10 perfect matchings of G together with M_{0} cover all edges of G.

The proof is complete.

Acknowledgements

The authors are grateful to the referees for their valuable suggestions in improving this paper.

References

[1] M. Abreu, T. Kaiser, D. Labbate and G. Mazzuoccolo, Treelike snarks, Electron. J. Combin. 23(3):\#P3.54, 2016.
[2] L. Esperet and G. Mazzuoccolo, On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings, J. Graph Theory 77:144-157, 2014.
[3] D. R. Fulkerson, Blocking and antiblocking pairs of polyhedra, Math. Program 1:168194, 1971.
[4] G. Fan and A. Raspaud, Fulkerson's Conjecture and circuit covers, J. Combin. Theory Ser. B 61 (1994) 133-138.
[5] J. L. Fouquet and J. M. Vanherpe, On Fulkerson conjecture, Discuss. Math. Graph Theory 31(2):253-272, 2011.
[6] J. L. Fouquet and J. M. Vanherpe, On the perfect matching index of bridgeless cubic graphs, arXiv:0904.1296, 2009.
[7] G. Mazzuoccolo, The equivalence of two conjectures of Berge and Fulkerson, J. Graph Theory 68:125-128, 2011.
[8] G. Mazzuoccolo, Covering a cubic graph with perfect matchings, Discrete Math. 313:2292-2296, 2013.
[9] A. Huck and M. Kochol, Five cycle double covers of cubic graphs, J. Combin. Theory Ser. B 64:119-125, 1995.
[10] X. Hou, H.-J. Lai and C.-Q. Zhang, On the perfect matching coverings and even subgraph coverings, J. Graph Theory 81:83-91, 2016.
[11] R. Häggkvist and S. McGuinness, Double covers of cubic graphs with oddness 4, J. Combin. Theory Ser. B 93:251-277, 2005.
[12] R. Hao, J. Niu, X. Wang, C.-Q. Zhang, and T. Zhang, A note on Berge-Fulkerson colorings, Discrete Math. 309:4235-4230, 2009.
[13] D. A. Holton and J. Sheehan, The Petersen Graph, Australian Mathematical Society Lecture Series 7. Cambridge University Press, 1993.
[14] K. Karam and C.N. Campos, Fulkerson's Conjecture and Loupekine snarks, Discrete Math. 326:20-28, 2014.
[15] E. Máčajová and M. Škoviera, Sparsely intersecting perfect matchings in cubic graphs, Combinatorica 34(1):61-94, 2014.
[16] E. Steffen, 1-Factor and cycle covers of cubic graphs, J. Graph Theory 78:195-206, 2015.
[17] J. Peterson, Die Theorie der reguären graphs, Acta Mathematica 15:193-220, 1891.
[18] P. D. Seymour, On multicolorings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. 38(3):423-460, 1979.
[19] W. Sun, Covering a cubic graph by 5 perfect matchings, Discrete Math. 340 (2017) 1889-1896.
[20] W.T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22:107-111, 1947.

[^0]: *Supported by Shandong Provincial Natural Science Foundation of China grant ZR2017PA012 and by NSFC grant 11701332.
 ${ }^{\dagger}$ Supported by NSFC grant 11501282

