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Abstract

A perfect matching cover of a graph G is a set of perfect matchings of G such
that each edge of G is contained in at least one member of it. Berge conjectured
that every bridgeless cubic graph has a perfect matching cover of order at most 5.
The Berge Conjecture is largely open and it is even unknown whether a constant
integer c does exist such that every bridgeless cubic graph has a perfect matching
cover of order at most c. In this paper, we show that a bridgeless cubic graph G
has a perfect matching cover of order at most 11 if G has a 2-factor in which the
number of odd circuits is 2.

Mathematics Subject Classifications: 05C70

1 Introduction

Only finite and simple graphs are considered in this paper. A k-factor of a graph G is a
spanning k-regular subgraph of G. The set of edges in a 1-factor of a graph G is called a
perfect matching of G. A matching of a graph G is a set of edges in a 1-regular subgraph
of G. A near-perfect matching of a graph G is a matching of G which misses exactly one
vertex of G. A perfect matching cover of a graph G is a set of perfect matchings of G
such that each edge of G is contained in at least one member of it. The order of a perfect
matching cover is the number of perfect matchings in it.

One of the first theorems in graph theory, Petersen’s Theorem from 1891 [17], states
that every bridgeless cubic graph has a perfect matching. By Tutte’s 1-factor theorem
from 1947 [20], we can obtain that every edge in a bridgeless cubic graph G is contained
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in a perfect matching of G. This implies that every bridgeless cubic graph has a perfect
matching cover. What is the minimum number k such that every bridgeless cubic graph
has a perfect matching cover of order k? Berge conjectured this number is 5 (unpublished,
see e.g. [6, 7]).

Conjecture 1 (Berge Conjecture). Every bridgeless cubic graph has a perfect matching
cover of order at most 5.

The following stronger conjecture is attributed to Berge in [18], and was first published
in a paper by Fulkerson [3].

Conjecture 2 (Fulkerson Conjecture). Every bridgeless cubic graph has six perfect
matchings such that each edge belongs to exactly two of them.

Conjectures 1 and 2, which are proved to be equivalent by Mazzuoccolo [7], are largely
open in graph theory. The equivalence of these two conjectures does not imply that
Conjecture 2 holds for a given bridgeless cubic graph satisfying Conjecture 1. It is still
an open question whether this holds.

Clearly, Conjectures 1 and 2 hold true for 3-edge-colorable cubic graphs. Conjecture
2 has also been verified for some non-3-edge-colorable cubic graphs, such as flower snarks,
Goldberg snarks and Loupekine snarks [5, 12, 14]. Besides the above snarks, Conjecture
1 has been verified for some special classes of cubic graphs. Steffen [16] showed that
Conjecture 1 holds for bridgeless cubic graphs which have no nontrivial 3-edge-cuts and
have 3 perfect matchings which miss at most 4 edges. It is proved by Hou et al. [10]
that every almost Kotzig graph (defined in [10]) has a perfect matching cover of order at
most 5. In [19], one author of this paper showed that a cubic graph G with n vertices
has a perfect matching cover of order at most 5 if G has a circuit of length n− 1 or has
a 2-factor with exactly two circuits.

Esperet and Mazzuoccolo [2] and Abreu et al. [1] showed respectively that there
are infinite cubic graphs of which every perfect matching cover has order at least 5.
Mazzuoccolo [8] showed that every bridgeless cubic graph G with m edges has 5 perfect
matchings which cover at least d215

231
me edges of G. Esperet and Mazzuoccolo [2] also

proved that the problem that deciding whether a bridgeless cubic graph has a perfect
matching cover of order at most 4 is NP-complete.

As Conjecture 1 is a problem with large challenges, the following weaker problem
(suggested by Berge) maybe should be considered firstly.

Problem 3. Is there a constant integer c such that every bridgeless cubic graph has a
perfect matching cover of order at most c?

Unluckily, this weaker problem is still open. If we don’t restrict such integer c in
Problem 3 to be constant, the best upper bound of c, which was given by Mazzuoccolo
[8], is logarithmic in the number of vertices.

In this paper, we consider the perfect matching covers of bridgeless cubic graphs of
oddness 2. Recall that the oddness of a bridgeless cubic graph G is the minimum number
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of odd circuits in a 2-factor of G. Since oddness is always an even integer and oddness zero
means that the graph is 3-edge-colorable, cubic graphs of oddness 2 constitute a natural
class of graphs with structure close to that of 3-edge-colorable graphs. The famous Cycle
Double Cover Conjecture have been verified for bridgeless cubic graphs of oddness at most
4 [9, 11]. Recently, Máčajová and Škoviera [15] proved that Fan and Raspaud Conjecture
[4], which states that every bridgeless cubic graph has three perfect matchings with empty
intersection, holds for bridgeless cubic graphs of oddness 2.

In this paper, we show that such constant integer c in Problem 3 exists under the
assumption that the oddness of a bridgeless cubic graph is 2. Our result is as follows.

Theorem 4. If G is a connected bridgeless cubic graph of oddness 2, then G has a perfect
matching cover of order at most 11.

2 Notations and two technical lemmas

Some notations and notions will be used in this paper. Let G be a graph with vertex-set
V (G) and edge-set E(G). The order of G is the size of V (G). The degree of a vertex u
of G is the number of edges incident to u in G. For X ⊆ V (G), we denote by G−X the
subgraph of G which is obtained from G by deleting all vertices in X and all edges incident
to a vertex in X. If X = {u}, then G−X is usually written to G− u in short. For two
graphs H1 and H2, we denote by H1 ∪H2 the graph with vertex-set V (H1) ∪ V (H2) and
edge-set E(H1) ∪ E(H2). For a positive integer n, we denote by [n] the set {1, 2, . . . , n}.
For two set Y1 and Y2, we denote by Y14 Y2 the set (Y1\Y2) ∪ (Y2\Y1).

For a path P in G, we denote by V0(P ) the set consisting of the two ends of P and
denote by E0(P ) the set of the edges in P which have an end in V0(P ). For X1, X2 ⊆ V (G)
with X1 ∩ X2 = ∅, we say that a path P in G is from X1 to X2 if V0(P ) ∩ Xi 6= ∅ for
i = 1, 2 and (V (P )\V0(P ))∩ (X1∪X2) = ∅. For F1, F2 ⊆ E(G), a path or a circuit in G is
called F1-F2 alternating if its edges are alternating in F1 and in F2. An F1-F2 alternating
path (or circuit) P is called F1-alternating if F2 = E(G)\F1. An F1-F2 alternating path
P is called F1-F2-F1 alternating if E0(P ) ⊆ F1. An F1-F2-F1 alternating path P is called
an F1-F2-F1 ear of a subgraph H of G if V (P ) ∩ V (H) = V0(P ) and E(P ) ∩ E(H) = ∅.

Now we present two technical lemmas.

Lemma 5. Let G be a graph of odd order which has a hamiltonian circuit C and let X
be the set of vertices of degree 2 in G. Suppose |X| > 3 and that every vertex in G has
degree at most 3. For a vertex u in X, let M1 be the perfect matching of C − u. Then
G has three near-perfect matchings M2, M3 and M4 such that E(C)\M1 ⊆

⋃4
i=2Mi, M2

misses u and each of M3 and M4 misses a vertex in X\{u}.

Proof. Set E1:=E(C)\M1 and E2:=E(G)\E(C). Let H be the subgraph of G with vertex-
set V (G) and edge-set E1 ∪E2. Let D be the component of H which contains u. Noting
that the degree of each vertex in G is 2 or 3, we know that D is a path or a circuit.

Assume that D is a path. We know V0(D) ⊆ X\{u}. Let P1 and P2 be the two
edge-disjoint paths from u to V0(D) in D. We know that both P1 and P2 are E1-E2-E1
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alternating. For i = 1, 2, set Mi+1:=E(Pi)4E1. We know that each of M2 and M3 misses
an end of D and we have E(C)\M1 ⊆ M2 ∪M3. So M1, M2 and M3 are 3 near-perfect
matchings of G which meet the requirements.

Assume that D is a circuit. Set M4:=E(D)4E1. We know E1\M4 = E1 ∩E(D) and
that M4 is a near-perfect matching of G which misses u. As |X| > 3, G has an E1-E2-E1

alternating path P3 with two ends in X\{u}. Let P4 and P5 be the two edge-disjoint
paths from u to V (P3) in C. For i = 4, 5, let P ′i be the path from V0(Pi)\{u} to V0(P3)
in P3 such that Pi ∪ P ′i is E1-alternating. For i = 4, 5, set Mi+1:=E(Pi ∪ P ′i )4 E1. We
know that each of M5 and M6 misses an end of P3. Noting E1\M4 = E1 ∩ E(D) and
E(P4) ∩ E(P5) = ∅, we have E(C)\M1 ⊆ M4 ∪ M5 ∪ M6. So M4, M5 and M6 are 3
near-perfect matchings of G which meet the requirements.

Lemma 6. Let M be a matching of a cubic graph G and let C be an M-alternating
circuit of G. Suppose that P1 and P2 are two vertex-disjoint M-alternating paths of G
such that ∅ 6= E(Pi) ∩ E(C) ⊆ M for i = 1, 2, E0(P1) ⊆ E(C) and V0(P2) ∩ V (C) = ∅.
Then G has two M-alternating paths P3 and P4 from V0(P1) to V0(P2) in C ∪ P1 ∪ P2

such that V0(P3) ∪ V0(P4) = V0(P1) ∪ V0(P2), E0(P3) ∪ E0(P4) = E0(P1) ∪ E0(P2) and
E(P3) ∩ E(P4) ⊆ E(P1) ∪ E(P2).

Proof. Noting E(P1) ∩ E(C) ⊆ M and E0(P1) ⊆ E(C), we have E0(P1) ⊆ M . Add two
new vertices u1,1 and u1,2 such that u1,1 is incident with an end of P1 and u1,2 is incident
with the other end of P1. Extend P1 to a new path P ′1 such that V0(P

′
1) = {u1,1, u1,2} and

V (P ′)\V0(P ′1) = V (P1). It suffice to show that there are two M -alternating paths P3 and
P4 from V0(P

′
1) to V0(P2) in C ∪ P ′1 ∪ P2 such that V0(P3) ∪ V0(P4) = V0(P

′
1) ∪ V0(P2),

E0(P3)∪E0(P4) = E0(P
′
1)∪E0(P2) and E(P3)∩E(P4) ⊆ E(P ′1)∪E(P2). This is because

P3 − V0(P ′1) and P4 − V0(P ′1) are two paths that we need find if such P3 and P4 exist.
Let J1, J2, . . . , Jr be the (inclusionwise) maximal M -(E(C)\M)-M alternating paths

in C which have both ends in V (P ′1) and contain no edges in E(P2) ∩ E(C). Let J ′1, J
′
2,

. . . , J ′r be the (inclusionwise) maximal paths in C which have both ends in V (P2) and
contain no edges in E(P ′1) ∩ E(C). We know that the paths in {J1, J2, . . . , Jr} and the
paths in {J ′1, J ′2, . . . , J ′r} appear alternately in C. (See Fig. 1(a) for an example of J1, J2,
. . . , Jr and J ′1, J

′
2, . . . , J

′
r.)

For each i ∈ [r], we construct two paths Ji,1 and Ji,2 as follows. For each i ∈ [r],
we know E0(Ji) ⊆ E(P ′1) ∩ E(C) ⊆ M and let P ′′i be the path between the two ends of
Ji in P ′1. If the length of P ′′i is odd, then for j = 1, 2, we denote by Ji,j the path from
u1,j to V0(Ji) in P ′1 such that E0(Ji,j) ∩ E0(Ji) 6= ∅. Next we assume that the length of
P ′′i is even. We know that P ′1 has an end u1,α such that the path from u1,α to V0(Ji)
in P ′1 contains no edges in E0(Ji). Let P ′′i,1 be the path from u1,α to V (Ji) in P ′1 and
P ′′i,2 be the M -(E(C)\M)-M alternating path from V0(P

′′
i,1) ∩ V (Ji) to V0(Ji) in Ji. Set

Ji,α:=P ′′i,1 ∪ P ′′i,2. Let β be the number in {1, 2}\{α}. Let Ji,β be the path from u1,β to
V0(Ji)\V0(J1,α) in P ′1.

We can see that for each i ∈ [r], Ji,1 and Ji,2 are two M -alternating path from V0(P
′
1) to

V0(Ji) in P ′1 ∪ Ji such that u1,j ∈ V0(Ji,j) for i = 1, 2, (V0(Ji,1)∪V0(Ji,2))\V0(P ′1) = V0(Ji),
E0(Ji,1) ∪ E0(Ji,2) = E0(P

′
1) ∪ E0(Ji) and E(Ji,1) ∩ E(Ji,2) ⊆ E(P ′1).
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Figure 1: An example for the proof of Lemma 6. In this example, the edges in M are
drawn as thick lines. In (b), P3 = J1,1 ∪ P ′′′1 ∪ J ′2,1 and P4 = J2,2 ∪ P ′′′2 ∪ J ′1,2.

Let u2,1 and u2,2 be the two ends of P2. Similarly as the above statement, we can
know that for each i ∈ [r], G has two M -alternating paths J ′i,1 and J ′i,2 from V0(P2) to
V0(J

′
i) in P2∪J ′i such that u2,j ∈ V0(J ′i,j) for j = 1, 2, (V0(J

′
i,1)∪V0(J ′i,2))\V0(P2) = V0(J

′
i),

E0(J
′
i,1) ∪ E0(J

′
i,2) = E0(P2) ∪ E0(J

′
i) and E(J ′i,1) ∩ E(J ′i,2) ⊆ E(P2).

For each i ∈ [r] and each j ∈ {1, 2}, let wi,j be the end of Ji,j in C and w′i,j be the end
of J ′i,j in C. We know V0(Ji) = {wi,1, wi,2} and V0(J

′
i) = {w′i,1, w′i,2} for each i ∈ [r].

let P ′′′1 be the path from w1,1 to V (P2) in C such that E(P ′′′1 ) ∩ E(P ′1) = ∅. We know
V0(P

′′′
1 )\{w1,1} ⊆ V0(J

′
p1

) for some p1 ∈ [r]. Let w′p1,q1 be the end of P ′′′1 in V0(J
′
p1

) and let
q2 be the number in {1, 2}\{q1}. Noting that the paths in {J1, J2, . . . , Jr} and the paths
in {J ′1, J ′2, . . . , J ′r} appear alternately in C, we have that G has a path P ′′′2 in C which
contains no edges in E(P ′1)∪E(P2) and has an end in {w1,2, w2,2, . . . , wr,2} and the other
end in {w′1,q2 , w

′
2,q2
, . . . , w′r,q2}. (See Fig. 1(b) for an example of P ′′′2 .) Let wp2,2 and w′p3,q2

be the ends of P ′′′2 .
Set P3:=J1,1 ∪P ′′′1 ∪ J ′p1,q1 and P4:=Jp2,2 ∪P ′′′2 ∪ J ′p3,q2 . (See Fig. 1(b) for an example of

P3 and P4.) We know that P3 and P4 are two M -alternating paths from V0(P
′
1) to V0(P2)

in C∪P ′1∪P2 such that V0(P3)∪V0(P4) = V0(P
′
1)∪V0(P2) and E0(P3)∪E0(P4) = E0(P

′
1)∪

E0(P2). If p2 6= 1, we know E(J1,1) ∩E(Jp2,2) ⊆ E(P ′1), noting that E(J1,j) ⊆ E(P ′1 ∪ Jj)
for j = 1, p2 and E(J1) ∩ E(Jp2) = ∅. Noting also E(J1,1) ∩ E(J1,2) ⊆ E(P ′1), we have
E(J1,1)∩E(Jp2,2) ⊆ E(P ′1). Similarly, we can obtain E(J ′p1,q1)∩E(J ′p3,q2) ⊆ E(P2). Noting
also E(P ′′′1 ) ∩ E(P ′′′2 ) = ∅, we have E(P3) ∩ E(P4) ⊆ E(P ′1) ∪ E(P2). So P3 and P4 are
two paths meeting the requirements.
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Figure 2: Examples of Hs and Y1Y2· · ·Yn. In these examples in Fig. 2 and Fig. 3, the
edges in M0, M1 and M2 are drawn as dotted lines, thick lines and thin lines, respectively.
In (a) and (b), the value of r is 0 when Hs is constructed by Algorithm 1. In (c), the
value of r is 1 when Hs is constructed by Algorithm 1. In (d), G2 has no directed edge
Yi→Yj in Y1Y2· · ·Yn such that both Yi and Yj are M1-M2 alternating circuits. In (e) and
(f), G2 has an directed edge Yi→Yj in Y1Y2 · · ·Yn such that both Yi and Yj are M1-M2

alternating circuits.

3 Proof of Theorem 4

In this section, we present the proof of Theorem 4.
Suppose that G is a connected bridgeless cubic graph of oddness 2. We know that G

has a 2-factor K such that there are exactly two odd circuits in K. Let C1 and C2 be
the two circuits in K. We know that E(K)\(E(C1) ∪ E(C2)) can be decomposed into
two matchings M1 and M2 of G. Set M0:=E(G)\K. Next we will show that the edges in
E(C1) ∪M1 can be covered by at most 5 perfect matchings of G.

Let P1 be the set of M0-M1-M0 ears of C1 ∪ C2. Set H1:=C1 ∪ C2 ∪ (
⋃
P∈P1

P ). Set
P ′

1:={P ∈ P1 : V0(P ) ⊆ V (C1)}. For every P ∈ P ′
1, let fP be an edge which has the

same ends as P and does not belong to E(G). Set F :={fP : P ∈P ′
1}.

Assume that H1 is bridgeless. Let G1 be a new graph with vertex-set V (C1) and edge-
set E(C1)∪F . Let X be the set of vertices of degree 2 in G1. Noting that H1 is bridgeless
and C1 is an odd circuit, we have |X| > 3. Choose a vertex v in X. Let N1 be the perfect
matching of C1 − v. By Lemma 5, G1 has three near-perfect matchings N2, N3 and N4

such that E(C1)\N1 ⊆
⋃4
i=2Ni, N2 misses v and each of N3 and N4 misses a vertex in
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X\{v}. For each i ∈ [4], let Pi be the path in P1 which is from the vertex missed by Ni

in V (C1) to V (C2) and let N ′i be the perfect matching of C2− (V0(Pi)∩V (C2)). For each
i ∈ [4], set Qi:={P ∈P ′

1 : fP ∈ F ∩Ni}. For each i ∈ [4], set

Mi+2 := (Ni ∩ E(C1)) ∪ (E((
⋃
P∈Qi

P ) ∪ Pi)4M1) ∪N ′i .

Noting E(C1)\N1 ⊆
⋃4
i=2Ni and E(P1)∩E(P3) = ∅, we can obtain that M3, M4, M5 and

M6 are 4 perfect matchings of G which cover all the edges in E(C1) ∪M1.

Algorithm 1 Constructing a connected bridgeless subgraph Hs of G.

1: set s:=1, t:=2, r:=0, H ′1:=H1 − V (P0) and U1:=V (H ′1);
2: while Hs has a bridge do
3: if r = 0 then
4: if H ′s has an Mt-M1-Mt ear with both ends in Us then
5: let Ps+1 be the set of Mt-M1-Mt ears of H ′s which have both ends in Us;
6: set H ′s+1:=H

′
s ∪ (

⋃
P∈Ps+1

P ) and Us+1:=V (
⋃
P∈Ps+1

P )\V (P0);
7: else
8: set r:=1 and t:=2;
9: end if
10: end if
11: if r=1 then
12: let Ps+1 be the set of Mt-M1-Mt ears of Hs;
13: end if
14: set Hs+1:=Hs ∪ (

⋃
P∈Ps+1

P ) and s:=s+ 1;
15: let t′ be the number in {0, 2}\{t} and set t:=t′;
16: end while
17: return s, r and Hs;

Next we assume that H1 has a bridge. We know that G has a unique M0-M1-M0

alternating path P0 from V (C1) to V (C2). Let u1 and u2 be the ends of P0 such that
u1 ∈ V (C1) and u2 ∈ V (C2). We need construct a bridgeless subgraph Hs of G such that
H1 ⊆ Hs and Hs has 5 M1-alternating paths from V (C1) to V (C2) with no common edges,
which can be used to constructed 5 perfect matchings of G which cover E(C1) ∪M1. We
construct the subgraph Hs of G by Algorithm 1.

From Algorithm 1, we know that the subgraph Hs of G is constructed by adding the
paths in P2, P3, · · · , Ps to H1. If r = 0 when Algorithm 1 ends, we know that for all
i ∈ [s]\{1}, Pi is the set of M0-M1-M0 or M2-M1-M2 ears of H ′i−1 with both ends in Ui−1.
If r = 1 when Algorithm 1 ends, we know that there is some integer k such that Pi is the
set of M0-M1-M0 or M2-M1-M2 ears of H ′i−1 with both ends in Ui−1 for all i ∈ [k]\{1}
and Pi is the set of M0-M1-M0 or M2-M1-M2 ears of Hi−1 for all i ∈ [s]\[k]. If r = 1, we
also know that Pk+1 is the set of M2-M1-M2 ears of Hk with both ends in V (P0). (See
Fig. 2(a, b, c) for some examples of Hs.)
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For each i ∈ [s]\{1}, we know that the edge-induced subgraph G[E(
⋃
P∈Pi

P ) ∪M1,i]
of G consists of vertex-disjoint circuits of G such that either all of them are M0-M1

alternating or all of them areM1-M2 alternating, whereM1,i is the set of edges in E(Hi−1)∩
M1 which are incident with an end of a path in Pi. Let C be the set of circuits of Hs

which are M0-M1 alternating or M1-M2 alternating.
For i = 1, 2 and a path or circuit Z in (P1\{P0})∪C , if E(Z)∩E(P0) 6= ∅, let P i

Z be
the path from ui to a vertex of Z in P0 such that E(Z) ∩ E(P0) ⊆ E(P i

Z); otherwise, let
P i
Z be the graph with no vertices and edges. For two vertices u and v in P0, we denote

by Puv the path from u to v in P0 if u 6= v and denote by Puv the graph with vertex-set
{u} and edge-set ∅ if u = v.

Let G2 be a new directed graph with vertex-set (P1\{P0}) ∪ C such that for two
distinct vertices S and T in G2, G2 has a directed edge from S to T , denoted by S→T ,
if and only if V (S) ∩ V (T ) 6= ∅ or V (P 1

S) ∩ V (P 2
T ) 6= ∅.

Noting that Hs is bridgeless. It follows that G2 has a directed path from P ′
1 to

P1\(P ′
1∪{P0}). Let Y1Y2 . . . Yn be a shortest directed path from P ′

1 to P1\(P ′
1∪{P0})

in G2. By the minimality of Y1Y2 . . . Yn, we know that G2 has no directed edge Yi→Yj if
j − i > 2. That is, E(Yi) ∩ E(Yj) = ∅ and E(P 1

Yi
) ∩ E(P 2

Yj
) = ∅ for any i, j ∈ [n] with

j− i > 2. Let Yy(1), Yy(2), . . . , Yy(m) be the M1-M2 alternating circuits in {Y1, Y2, . . . , Yn},
where y(1) < y(2) < · · · < y(m). We know y(1) = 2 and y(m) = n− 1.

For any two distinct M0-M1 alternating circuits S and T in C , we know V (S)∩V (T ) =
∅ and V (P 1

S) = ∅. It implies that G2 has no directed edge Yi→Yi+1 such that both Yi and
Yi+1 are M0-M1 alternating circuits. Hence y(i+1) = y(i)+2 or y(i+1) = y(i)+1 for each
i ∈ [m−1]. If y(i+1) = y(i)+2, we know that Yy(i)+1 is an M0-M1 alternating circuit and
we have V (Yy(i)+1) ∩ V (Yy(i)) 6= ∅ and V (Yy(i)+1) ∩ V (Yy(i+1)) 6= ∅. If y(i + 1) = y(i) + 1,
we have V (P 1

Yy(i)
) ∩ V (P 2

Yy(i+1)
) 6= ∅

For each i ∈ [m], if G2 has a directed edge Yy(j−1)→Yy(j) for some j larger than i, we
denote by wi the vertex in V0(P

2
Yy(ki)

)\{u2}, where ki is the minimum integer larger than

i such that G2 has a directed edge Yy(ki−1)→Yy(ki); otherwise, let wi be the vertex u2.
Clearly, we know wm = u2. (See Fig. 2(d, e, f) for examples of Y1, Y2, . . . , Yn and w1, w2,
. . . , wm.)

Claim 1. It holds that V (Pu1wi
) ⊆ V (Pu1wj

) if i < j.
Choose i, j ∈ [m] with i < j. Clearly, Claim 1 holds if wj = u2 or wi = wj. So

we assume wj 6= u2 and wi 6= wj. As i < j, we know ki < kj, wi ∈ V0(P
2
Yy(ki)

)\{u2}
and wj ∈ V0(P 2

Yy(kj)
)\{u2}. Noting that G2 has a directed edge Yy(ki−1)→Yy(ki), we have

V (P 1
Yy(ki−1)

)∩V (P 2
Yy(ki)

) 6= ∅, which implies wi ∈ V (P 1
Yy(ki−1)

). We also know V (P 1
Yy(ki−1)

)∩
V (P 2

Yy(kj)
) = ∅ by the minimality of Y1Y2 . . . Yn. So V (Pu1wi

) ⊆ V (Pu1wj
) and Claim 1

holds.

Claim 2. E(P 1
Yj

) ⊆ E(Pu1wi
) for each i ∈ [m] and each j ∈ [y(i)− 1].

Choose i ∈ [m] and j ∈ [y(i) − 1]. Clearly, Claim 2 holds if wi = u2. So we assume
wi 6= u2. We know wi ∈ V0(P 2

Yy(ki)
)\{u2}. As y(ki) > y(i) > j, we have y(ki) − j > 2.

Hence we know V (P 1
Yj

) ∩ V (P 2
Yy(ki)

) = ∅ by the minimality of Y1Y2 . . . Yn. So E(P 1
Yj

) ⊆
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E(Pu1wi
) and Claim 2 holds.

Set P ′′
1 :={P ∈ P ′

1 : V (P ) ∩ V (Y2) = ∅}. Let G3 be a new graph with vertex-set
V (C1) and edge-set E(C) ∪ {fP : P ∈ P ′′

1 }. Let X ′ be the set of vertices of degree 2 in
G3. We know u1 ∈ X ′. Noting also Y1 ∈P ′

1\P ′′
1 , we have |X ′| > 3. Let N5 be the perfect

matching of C1 − u1. By Lemma 5, G3 has three near-perfect matchings N6, N7 and N8

such that E(C1)\N5 ⊆
⋃8
i=6Ni, N6 misses u1 and each of N7 and N8 misses a vertex in

X ′\{u1}. Let u3 and u4 be respectively the vertex missed by N7 and N8 in V (C1). We
know that for i = 3, 4, there is a path Pi+2 in P ′

1\P ′′
1 which has ui as an end. (It is

possible that P5 and P6 are the same path.) Let u5 be the vertex in V0(P6)\{u4}.
Now we will construct five M1-alternating paths from V (C1) to V (C2) such that they

have no edges in common. We construct these five paths, step by step, along the path
Y1Y2 · · ·Yn of G2 and the path P0 of G. The construction of these five paths is as follows.

Let J1,1 be the path from u4 to V (Yy(1)) in P6 and J1,2 be the path from u5 to V (Yy(1))
in P6. Let J1,3 be the path from u3 to V (Yy(1)) in P5. Set J1,j:=Pu1w1 for j = 4, 5. Next
we will extend J1,1, J1,2, J1,3, J1,4 and J1,5 to five M1-alternating paths from V (C1) to
V (C2) such that they have no edges in common.

Let J1,6 be the path from V (J1,1) to V (J1,2) in P6. For an integer p with 2 6 p 6 m+1,
we suppose that Jp−1,1, Jp−1,2, Jp−1,3, Jp−1,4, Jp−1,5 and Jp−1,6 have been constructed. The
construction of Jp,1, Jp,2, Jp,3, Jp,4, Jp,5 and J1,6 will be discussed in the following three
cases.

Case 1. p 6 m and y(p) = y(p− 1) + 2.
We know that Yy(p)−1 is an M0-M1 alternating circuit and we have V (Yy(p)−1) ∩

V (Yy(p−1)) 6= ∅ and V (Yy(p)−1) ∩ V (Yy(p)) 6= ∅. Let P ′1 be a path from V0(Jp−1,3)\V (C1)
to V (Yy(p)) in Yy(p−1) ∪ Yy(p)−1 such that Jp−1,3 ∪ P ′1 is M1-alternating. Let Jp,6 be
the (inclusionwise) maximal M1-M0-M1 alternating path in Yy(p)−1 such that V0(P

′
1) ∩

V (Yy(p)) ⊆ V0(Jp,6), E0(Jp,6) ⊆ E(Yy(p)−1) ∩ E(Yy(p)) and E(Jp,6) ∩ E(Yy(p−1)) = ∅. Let
Jp−1,7 be the (inclusionwise) maximal M0-M1-M0 alternating path in Yy(p)−1 such that
V0(Jp,6)\V0(P ′1) ⊆ V0(Jp−1,7) and E(Jp−1,7) ∩ E(Yy(p)) = ∅. (See Fig. 3(a) for an example
of Jp,6 and Jp−1,7.) By the maximality of Jp,6 and Jp−1,7, we know V0(Jp−1,7) ⊆ V (Yy(p))
and E(Jp−1,7) ∩ E(Yp−1) 6= ∅.

By Lemma 6, G has twoM1-alternating paths P ′2 and P ′3 from V0(Jp−1,6) to V0(Jp−1,7) in
Yy(p−1)∪Jp−1,6∪Jp−1,7 such that V0(P

′
2)∪V0(P ′3) = V0(Jp−1,6)∪V0(Jp−1,7), E0(P

′
2)∪E0(P

′
3) =

E0(Jp−1,6) ∪ E0(Jp−1,7) and E(P ′2) ∩ E(P ′3) ⊆ E(Jp−1,6) ∪ E(Jp−1,7). Without loss of
generality, we assume that P ′2 has an end in V0(Jp−1,7) ∩ V0(Jp,6) and P ′3 has an end in
V0(Jp−1,7)\V0(Jp,6). Let α1 be the number in {1,2} such that V0(J1,α1) ∩ V0(P ′2) 6= ∅. Let
α2 be the number in {1, 2}\{α1}.

Set Jp,1:=Jp−1,3∪P ′1, Jp,2:=Jp−1,α1 ∪P ′2, Jp,3:=Jp−1,α2 ∪P ′3 and Jp,j:=Jp−1,j for j = 4, 5.
(See Fig. 3(a) for an example of Jp,1, Jp,2 and Jp,3.)

Case 2. p 6M and y(p) = y(p− 1) + 1.
We know V (P 1

Yy(p−1)
) ∩ V (P 2

Yy(p)
) 6= ∅ and wp−1 ∈ V0(P

2
Yy(p)

)\{u2}. Let P ′′1 be the

path from V0(Jp−1,3) ∩ V (Yy(p−1)) to V (P 2
Yy(p)

) in Yy(p−1) such that Jp−1,3 ∪ P ′′1 is an M1-

alternating path. Let v1 be the end of P ′′1 in V (P 2
Yy(p)

). We will construct Jp,1, Jp,2, . . . ,
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Figure 3: Examples for the proof of Theorem 4. These are examples for showing how to
extend the paths Jp−1,1, Jp−1,2, . . . , Jp−1,5 to the paths Jp,1, Jp,2, . . . , Jp,5.

Jp,6 in the following two subcases.
Subcase 2.1. P ′′1 ∪ Pwp−1v1 is an M1-alternating path.

Let P ′′2 be the path from v1 to V (Yy(p)) in Pwp−1v1 . Let v2 be the vertex in V0(P
′′
2 )\{v1}.

Let Jp−1,7 be the path from wp to V (Yy(p)) ∩ V (P 1
Yy(p−1)

) in Pwp−1wp . By Claim 2, we have

E(P 1
Yy(p−1)

) ⊆ E(Pu1wp). Noting also V (P 1
Yy(p−1)

) ∩ V (P 2
Yy(p)

) 6= ∅, we know E(Jp−1,7) ∩
E(Yy(p−1)) 6= ∅. (See Fig. 3(b) for an example of Jp−1,7, v1 and v2.)

By Lemma 6, G has two M1-alternating paths P ′′3 and P ′′4 from V0(Jp−1,6) to V0(Jp−1,7)
in Yy(p−1) ∪ Jp−1,6 ∪ Jp−1,7 such that V0(P

′′
3 ) ∪ V0(P ′′4 ) = V0(Jp−1,6) ∪ V0(Jp−1,7), E0(P

′′
3 ) ∪

E0(P
′′
4 ) = E0(Jp−1,6) ∪ E0(Jp−1,7) and E(P ′′3 ) ∩ E(P ′′4 ) ⊆ E(Jp−1,6) ∪ E(Jp−1,7). Without

loss of generality, we assume that P ′′3 has one end in V (Yp) and P ′′4 has wp as an end. Let
β1 be the number in {1,2} such that V0(Jp−1,β1) ∩ V0(P ′′3 ) 6= ∅. Let β2 be the number in
{1, 2}\{β1}.

Set Jp,1:=Jp−1,3∪P ′′1 ∪P ′′2 , Jp,2:=Jp−1,4, Jp,3:=Jp−1,β1∪P ′′3 , Jp,4:=Jp−1,β2∪P ′′4 , Jp,5:=Jp−1,5
∪ Pwp−1wp and Jp,6:=Pwp−1v2 . (See Fig. 3(b) for an example of Jp,1, Jp,2, . . . , Jp,6.)
Subcase 2.2. P ′′1 ∪ Pv1wp is an M1-alternating path.

Let Jp,6 be the (inclusionwise) maximal M1-M0-M1 alternating path in Pwp−1wp such
that wp−1 ∈ V0(Jp,6) ⊆ V (Yy(p)) and E(Jp,6) ∩ E(Yy(p−1)) = ∅. Let v3 be the vertex in
V0(Jp,6)\{wp−1}. Let Jp−1,7 be the path from v3 to V (Yy(p)) ∪ {wp} in Pv3wp such that
E(Jp−1,7) ∩ E(Jp,6) = ∅. By the maximality of Jp,6, we know E(Jp−1,7) ∩ E(Yy(p−1)) 6= ∅.
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((See Fig. 3(c, d) for two examples of Jp,6 and Jp−1,7.)
By Lemma 6, G has two M1-alternating paths P ′′5 and P ′′6 from V0(Jp−1,6) to V0(Jp−1,7)

in Yy(p−1) ∪ Jp−1,6 ∪ Jp−1,7 such that V0(P
′′
5 ) ∪ V0(P ′′6 ) = V0(Jp−1,6) ∪ V0(Jp−1,7), E0(P

′′
5 ) ∪

E0(P
′′
6 ) = E0(Jp−1,6)∪E0(Jp−1,7) and E(P ′′5 )∩E(P ′′6 ) ⊆ E(Jp−1,6)∪E(Jp−1,7). Without loss

of generality, we assume that P ′′5 has v3 as one end and P ′′6 has an end in V0(Jp−1,7)\{v3}.
Let γ1 be the number in {1,2} such that V0(Jp−1,γ1) ∩ V0(P ′′5 ) 6= ∅. Let γ2 be the number
in {1, 2}\{γ1}.

Set Jp,1:=Jp−1,4, Jp,2:=Jp−1,γ1 ∪ P ′′5 and Jp,5:=Jp−1,3 ∪ P ′′1 ∪ Pv1wp . If the end of Jp−1,7
which is different from v3 is in V (Yy(p)), we set Jp,3:=Jp−1,γ2∪P ′′6 and Jp,4:=Jp−1,5∪Pwp−1wp .
(See Fig 3(c) for an example of Jp,1, Jp,2, . . . , Jp,5 in this case.) If wp ∈ V0(Jp−1,7), we set
Jp,3:=Jp−1,5 and Jp,4:=Jp−1,γ2 ∪ P ′′6 . (See Fig. 3(d) for an example of Jp,1, Jp,2, . . . , Jp,5 in
the case that wp ∈ V0(Jp−1,7).)
Case 3. p = m+ 1.

Set Jp−1,7:=Yn. Let P ′′′1 be a path from V0(Jp−1,3) ∩ V (Yy(m)) to V0(Yn) in Yy(m) ∪ Yn
such that Jp−1,3∪P ′′′1 is M1-alternating. By Lemma 6, G has two M1-alternating paths P ′′′2
and P ′′′3 from V0(Jp−1,6) to V0(Jp−1,7) in Yy(m)∪Jp−1,6∪Jp−1,7 such that V0(P

′′′
2 )∪V0(P ′′′3 ) =

V0(Jp−1,6)∪V0(Jp−1,7), E0(P
′′′
2 )∪E0(P

′′′
3 ) = E0(Jp−1,6)∪E0(Jp−1,7) and E(P ′′′2 )∩E(P ′′′3 ) ⊆

E(Jp−1,6) ∪ E(Jp−1,7). Without loss of generality, we assume that P ′′′2 has an end in
V0(Jp−1,1) and P ′′′3 has an end in V0(Jp−1,2).

Set Jp,1:=Jp−1,1 ∪ P ′′′2 , Jp,2:=Jp−1,2 ∪ P ′′′3 , Jp,3:=Jp−1,3 ∪ P ′′′1 and set Jp,j=Jp−1,j for
j = 4, 5.

By the above construction, we can construct five M1-alternating paths Jm+1,1, Jm+1,2,
Jm+1,3, Jm+1,4 and Jm+1,5 from V (C1) to V (C2). Next we will show

⋂5
j=1E(Jm+1,j) = ∅.

For each i ∈ [m], let πi be a one-to-one correspondence from [5] to [5] such that Ji,j is
a subgraph of Ji+1,πi(j) for each j ∈ [5]. We know that for each i ∈ [m] and each j ∈ [5],
Ji,j is extended to Ji+1,π(j).

Claim 3. For each i ∈ [m], Ji,1, Ji,2 and Ji,3 are three M1-alternating paths from V (C1)
to V (Yy(i)) in G and Ji,4, Ji,5 are two M1-alternating paths from V (C1) to wi in G, such

that
⋃5
j=1E(Ji,j) ⊆ E(P5 ∪ P6) ∪ E(Y2 ∪ Y3 ∪ · · · ∪ Yy(i)−1) ∪ E(Pu1wi

).
We prove Claim 3 by induction on i. Clearly, Claim 3 holds for i = 1. Choose a

number p ∈ {2, 3, . . . ,m}. We suppose that Claim 3 holds for i = p− 1. At first, we can
easily see, from the construction in the above three cases, that Jp,1, Jp,2 and Jp,3 are three
M1-alternating paths from V (C1) to V (Yy(p)) in G and Jp,4, Jp,5 are two M1-alternating
paths from V (C1) to wp in G.

Now we consider the set
⋃5
j=1E(Jp,j). From the construction of Jp,1, Jp,2, Jp,3, Jp,4 and

Jp,5, we know E(Jp,πp−1(j))\E(Jp−1,j) ⊆ E(Jp−1,6)∪E(Yy(p)−2)∪E(Yy(p)−1) for each j ∈ [5]
if y(p) = y(p − 1) + 2 and we know E(Jp,πp−1(j))\E(Jp−1,j) ⊆ E(Jp−1,6) ∪ E(Yy(p)−1) ∪
E(P 1

Yy(p)−1
) ∪ E(Pu1wp) for each j ∈ [5] if y(p) = y(p − 1) + 1. From the construction of

Jp−1,6, we know E(Jp−1,6) ⊆ E(P6) if p = 2, we know E(Jp−1,6) ⊆ E(Yy(p−1)−1) if p > 3
and y(p−1) = y(p−2)+2, and we know E(Jp−1,6) ⊆ E(Pwp−2wp−1) if p > 3 and y(p−1) =
y(p− 2) + 1. Noting also E(Pu1wp−1) ⊆ E(Pu1wp) by Claim 1 and E(P 1

Yy(p)−1
) ⊆ E(Pu1wp)

by Claim 2, we have E(Jp,j) ⊆ E(P5 ∪P6)∪E(Y2 ∪ Y3 ∪ · · · ∪ Yy(p)−1)∪E(Pu1wp) for each
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j ∈ [5] and hence Claim 3 holds for i = p. Claim 3 is proved.

Claim 4.
⋂6
j=3E(Jp,j) = ∅ and (

⋂6
j=4E(Jp,j)) ∩ E(Yy(p)) = ∅ for each p ∈ [m].

Noting that E(J1,6) ⊆ E(P6), E(J1,4) ⊆ E(P0) and E(P6) ∩ E(P0) = ∅, we have⋂6
j=3E(J1,j) = ∅ and E(J1,4) ∩ E(J1,5) ∩ E(J1,6) ∩ E(Yy(1)) = ∅. So Claim 4 holds for

p = 1. Now we consider the case that 2 6 p 6 m.
Assume y(p) = y(p − 1) + 2. We know from the construction of Jp,4 and Jp,6 in

Case 1 that Jp,4 = Jp−1,4 and E(Jp,6) ⊆ E(Yy(p)−1). By Claim 3, we know E(Jp−1,4) ⊆
E(P5 ∪ P6) ∪ E(Y2 ∪ Y3 ∪ · · · ∪ Yy(p−1)−1) ∪ E(Pu1wp−1). Noting that Yy(p)−1 is an M0-M1

alternating circuit in C and P0, P5 and P6 are M0-M1-M0 alternating paths in P1, we
have E(Yy(p)−1) ∩ E(P5 ∪ P6 ∪ Pu1wp−1) = ∅. By the minimality of Y1Y2 · · ·Yn, we know
V (Yj)∩V (Yy(p)−1) = ∅ for every integer j with 2 6 j 6 y(p−1)−1. So E(Jp,6)∩E(Jp,4) =

∅. Hence
⋂6
j=3E(Jp,j) = ∅ and E(Jp,4) ∩ E(Jp,5) ∩ E(Jp,6) ∩ E(Yy(p)) = ∅.

Assume y(p) = y(p − 1) + 1 and that Jp,3, Jp,4, Jp,5 and Jp,6 are constructed in
Subcase 2.1. We know Jp,3:=Jp−1,β1 ∪ P ′′3 , Jp,4:=Jp−1,β2 ∪ P ′′4 , E(Jp,6) ⊆ E(Pwp−1wp) and

E(Pp,6) ∩ E(Jp−1,7) = ∅. We firstly show
⋂6
j=3E(Jp,j) = ∅. From the construction of

Jp−1,6, we know that either E(Jp−1,6) ⊆ E(Pu1wp−1) or Jp−1,6 is a subgraph of P6 or
a subgraph of an M0-M1 alternating circuit in C . So E(Jp,6) ∩ E(Jp−1,6) = ∅. By
Claims 1, 2 and 3, we can obtain E(Jp,6) ∩ (E(Jp−1,1) ∪ E(Jp−1,2)) = ∅. Noting also
E(P ′′3 ) ∩ E(P ′′4 ) ⊆ E(Jp−1,6) ∪ E(Jp−1,7) and E(Pp,6) ∩ E(Jp−1,7) = ∅, we have

6⋂
j=3

E(Jp,j) ⊆ E(Jp,6) ∩ E(Jp,3) ∩ E(Jp,4)

= E(Jp,6) ∩ E(P ′′3 ) ∩ E(P ′′4 )

⊆ E(Jp,6) ∩ (E(Jp−1,6) ∪ E(Jp−1,7))

= (E(Jp,6) ∩ E(Jp−1,6)) ∪ (E(Jp,6) ∩ E(Jp−1,7))

= ∅

Now we show E(Jp,4) ∩ E(Jp,5) ∩ E(Jp,6) ∩ E(Yy(p)) = ∅. From the construction of
Jp,4, we know E(Jp,4) ⊆ E(Jp−1,β2)∪E(Jp−1,6)∪E(Yy(p−1))∪E(Jp−1,7). We already know
E(Jp,6)∩ (E(Jp−1,1)∪E(Jp−1,2)) = ∅, E(Jp,6)∩E(Jp−1,6) = ∅ and E(Pp,6)∩E(Jp−1,7) = ∅.
So E(Jp,6) ∩ E(Jp,4) ⊆ E(Yy(p−1)). Noting that both Yy(p−1) and Yy(p) are distinct M1-
M2 alternating circuits in C , we have E(Yy(p−1)) ∩ E(Yy(p)) = ∅. So E(Jp,6) ∩ E(Jp,4) ∩
E(Yy(p)) = ∅. Hence E(Jp,4) ∩ E(Jp,5) ∩ E(Jp,6) ∩ E(Yy(p)) = ∅.

Assume y(p) = y(p−1)+1 and that Jp,3, Jp,4, Jp,5 and Jp,6 are constructed in Subcase
2.2. We know from the construction that E(Jp,6) ⊆ E(Pwp−1wp), Jp,5=Jp−1,3 ∪ P ′′1 ∪ Pv1wp

and E(Jp,6)∩E(P ′′1 ∪Pv1wp) = ∅. By Claims 1, 2 and 3, we can obtain E(Jp,6)∩E(Jp−1,3) =

∅. So E(Jp,6) ∩ E(Jp,5) = ∅. Thus
⋂6
j=3E(Jp,j) = ∅ and E(Jp,4) ∩ E(Jp,5) ∩ E(Jp,6) ∩

E(Yy(p)) = ∅.
Claim 4 is proved.

Claim 5. E(Jp−1,6) ∩ (
⋂5
j=3E(Jp,πp−1(j))) = ∅ for each p ∈ {2, 3, . . . ,m+ 1}.

Choose a number p ∈ {2, 3, . . . ,m + 1}. From the construction of Jp,πp−1(3), we know
E(Jp,πp−1(3)) ⊆ E(Jp−1,3) ∪ E(Yy(p−1)) ∪ E(Yy(p)−1) ∪ E(Pwp−1wp) if p 6 m and we know
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E(Jp,πp−1(3)) ⊆ E(Jp−1,3)∪E(Yy(p−1))∪E(Yn) if p = m+1. From the construction of Jp−1,6,
we know E(Jp−1,6) ⊆ E(P6), E(Jp−1,6) ⊆ E(Pu1wp−1), or that Jp−1,6 is a subgraph of the
M0-M1 alternating circuit Yy(p−1)−1 when y(p − 1) = y(p − 2) + 2 holds. Hence we have
E(Jp−1,6)∩E(Pwp−1wp) = ∅ and E(Jp−1,6)∩E(Yn) = ∅. If p 6 m and y(p) = y(p−1)+2, we
know that Yy(p)−1 is an M0-M1 alternating circuit and we have E(Jp−1,6)∩E(Yy(p)−1) = ∅.
So E(Jp−1,6) ∩ E(Jp,πp−1(3)) = (E(Jp−1,6) ∩ E(Jp−1,3)) ∪ (E(Jp−1,6) ∩ E(Yy(p−1))).

From the construction of Jp,πp−1(4) and Jp,πp−1(5), we know Jp,πp−1(4) = Jp−1,4 and ei-
ther Jp,πp−1(5) = Jp−1,5 or Jp,πp−1(5) = Jp−1,5 ∪ Pwp−1wp . We already know E(Jp−1,6) ∩
E(Pwp−1wp) = ∅. Now we have

E(Jp−1,6) ∩ E(Jp,πp−1(3)) ∩ E(Jp,πp−1(4)) ∩ E(Jp,πp−1(5))

=
(
(E(Jp−1,6) ∩ E(Jp−1,3)) ∪ (E(Jp−1,6) ∩ E(Yy(p−1)))

)
∩ E(Jp−1,4) ∩ E(Jp−1,5)

=
( 6⋂
j=3

E(Jp−1,j)
)
∪
(
(

6⋂
j=4

E(Jp−1,j)) ∩ E(Yy(p−1))
)
.

By Claim 4, we know
⋂6
j=3E(Jp−1,j) = ∅ and (

⋂6
j=4E(Jp−1,j)) ∩ E(Yy(p−1)) = ∅. So

E(Jp−1,6) ∩ E(Jp,πp−1(3)) ∩ E(Jp,πp−1(4)) ∩ E(Jp,πp−1(5)) = ∅ and Claim 5 holds.

Claim 6. E(Jp−1,7) ∩ E(Jp,πp−1(4)) = ∅ for each p ∈ {2, 3, . . . ,m+ 1}.
Choose a number p ∈ {2, 3, . . . ,m + 1}. We know Jp,πp−1(4) = Jp−1,4 from the con-

struction of Jp,πp−1(4). From the construction of Jp−1,7, we know E(Jp−1,7) ⊆ E(Yn) if
p = m + 1, we know E(Jp−1,7) ⊆ E(Yy(p)−1) if p 6 m and y(p) = y(p − 1) + 2, and we
know E(Jp−1,7) ⊆ E(Pwp−1wp) if p 6 m and y(p) = y(p− 1) + 1. By Claims 1, 2 and 3, we
can obtain E(Jp−1,4)∩E(Pwp−1wp) = ∅. By Claim 3 and the minimality of Y1Y2 · · ·Yn, we
know E(Jp−1,4) ∩ E(Yn) = ∅ if p = m+ 1 and we also know E(Jp−1,4) ∩ E(Yy(p)−1) = ∅ if
p 6 m and y(p) = y(p− 1) + 2. So E(Jp−1,7) ∩ E(Jp,πp−1(4)) = E(Jp−1,7) ∩ E(Jp−1,4) = ∅
and Claim 6 holds.

Claim 7.
⋂5
j=1E(Jp,j) = ∅ for each p ∈ [m+ 1].

We proceed by induction on p. Clearly, Claim 7 holds for i = 1. For an integer p with
2 6 p 6 m+ 1, we suppose

⋂5
j=1E(Jp−1,j) = ∅.

Noting that Jp−1,1 and Jp−1,2 are two paths from V (C1) to V (Yy(p−1)) in G by Claim
3, we have E(Jp−1,j) ∩ E(Yy(p−1)) = ∅ for j = 1, 2. Set E1:=E(Jp,πp−1(1))\E(Jp−1,1) and
E2:=E(Jp,πp−1(2))\E(Jp−1,2). From above, we know Ej ⊆ E(Yy(p−1))∪E(Jp−1,6)∪E(Jp−1,7)
for j = 1, 2 and E1 ∩ E2 ⊆ E(Jp−1,6) ∪ E(Jp−1,7). Now we have

E(Jp,πp−1(1)) ∩ E(Jp,πp−1(2))

= (E(Jp−1,1) ∩ E1) ∪ (E(Jp−1,2) ∩ E2)

= (E(Jp−1,1) ∩ E(Jp−1,2)) ∪ (E(Jp−1,1) ∩ E2) ∪ (E1 ∩ E(Jp−1,2)) ∪ (E1 ∩ E2)

⊆ (E(Jp−1,1) ∩ E(Jp−1,2)) ∪ E(Jp−1,6) ∪ E(Jp−1,7).

From the construction of Jp,πp−1(3), Jp,πp−1(4) and Jp,πp−1(5), we know E(Jp,πp−1(j)) ⊆
E(Jp−1,j) ∪ E(Yy(p−1)) ∪ E(Yy(p)−1) ∪ E(Pwp−1wp) for j = 3, 4, 5 if p 6 m and we know
E(Jp,πp−1(j)) ⊆ E(Jp−1,j) ∪ E(Yy(p−1)) ∪ E(Yn) for j = 3, 4, 5 if p = m+ 1. By Claims 1-3
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and the minimality of Y1Y2 · · ·Yn, we can know E(Jp−1,1)∩ (E(Pwp−1wp)∪E(Yn)) = ∅. We
also can know E(Jp−1,1) ∩ E(Yy(p)−1) = ∅ if p 6 m and y(p) = y(p − 1) + 2. Noting also
E(Jp−1,1) ∩ E(Yy(p−1)) = ∅, we have E(Jp−1,1) ∩ E(Jp,πp−1(j)) = E(Jp−1,1) ∩ E(Jp−1,j) for
j = 3, 4, 5. Hence we have

E(Jp−1,1) ∩ E(Jp−1,2) ∩ (
5⋂
j=3

E(Jp,πp−1(j))) =
5⋂
j=1

E(Jp−1,j) = ∅.

By Claim 5, we know E(Jp−1,6) ∩ (
⋂5
j=3E(Jp,πp−1(j))) = ∅. By Claim 6, we know

E(Jp−1,7) ∩ E(Jp,πp−1(4)) = ∅. Now we have

5⋂
j=1

E(Jp,j) = (E(Jp,πp−1(1)) ∩ E(Jp,πp−1(2))) ∩ (
5⋂
j=3

E(Jp,πp−1(j)))

⊆ ((E(Jp−1,1) ∩ E(Jp−1,2)) ∪ E(Jp−1,6) ∪ E(Jp−1,7)) ∩ (
5⋂
j=3

E(Jp,πp−1(j)))

⊆ (E(Jp−1,1) ∩ E(Jp−1,2) ∩ (
5⋂
j=3

E(Jp,πp−1(j))))

∪ (E(Jp−1,6) ∩ (
5⋂
j=3

E(Jp,πp−1(j)))) ∪ (E(Jp−1,7) ∩ E(Jp,πp−1(4)))

= ∅.

Claim 7 is proved.

By Claim 7, we know
⋂5
j=1E(Jm+1,j) = ∅. At last, we will use these five paths Jm+1,1,

Jm+1,2, Jm+1,3, Jm+1,4 and Jm+1,5 to constructed five perfect matchings of G which cover
E(C1) ∪M1.

Let N9 be the perfect matching of C1 − u5. For each j∈{5, 6, 7, 8, 9}, let N ′j be the
perfect matching of C2−V0(Jm+1,j−4)∩V (C2). Let δ be a one-to-one correspondence from
{5, 6, 7, 8, 9} to {5, 6, 7, 8, 9} such that for each j∈{5, 6, 7, 8, 9}, the vertex in V0(Jm+1,j−4)∩
V (C1) is missed by Nδ(j). For each j∈{5, 6, 7, 8, 9}, set Q′j:={P ∈P ′′

1 : fP ∈ F ∩Nδ(j)}.
Now for each j∈{5, 6, 7, 8, 9}, we set

Mj+2 := (Nδ(j) ∩ E(C1)) ∪ (E((
⋃
P∈Q′j

P ) ∪ Jm+1,j−4)4M1) ∪N ′j.

We know that M7, M8, M9, M10 and M11 are 5 perfect matchings of G. Noting that
E(C1)\N5 ⊆

⋃8
j=6Nj and

⋂5
j=1E(Jm+1,j) = ∅, we have E(C1) ∪M1 ⊆

⋃11
j=7Mj.

By a similar argument as above, we know that the edges in E(C2) ∪M2 can also be
covered by at most 5 perfect matchings of G. These at most 10 perfect matchings of G
together with M0 cover all edges of G.

The proof is complete.
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