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Abstract

We study the density of fixed strongly connected subtournaments on 5 ver-
tices in large tournaments. We determine the maximum density asymptotically for
five tournaments as well as unique extremal sequences for each tournament. As a
byproduct we also characterize tournaments that are recursive blow-ups of a 3-cycle
as tournaments that avoid three specific tournaments of size 5.

Mathematics Subject Classifications: 68R05, 05C20,05C35

1 Introduction

A locally transitive tournament is a tournament 7" such that the outneighbourhood
NT(v)={w e V(T) :vw € A(T)}

and the inneighbourhood N~ (v) = {w € V(T) : wv € A(T)} of every vertex v € V(7))
are both transitive. Alternatively a locally transitive tournament is a tournament that
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has no occurrences of W, nor of L, where W, and L, are the tournaments of size 4 with
outdegree sequences (1,1, 1,3) and (0, 2,2, 2) respectively. On the other hand, a balanced
tournament is a tournament with an odd number of vertices 2n + 1 where each vertex
has outdegree n. With these definitions, there is only one locally transitive balanced
tournament Ry, of order 2n + 1 up to isomorphism called carousel tournament (see
Figure 1). This tournament is defined by V(Ropi1) = Zon+1 = {0,1,...,2n} and

A(Roni1) ={(v,(v+i) mod (2n+ 1)) : v € V(Ropy1) Ni € [n]},

where [n] ={1,2,...,n}.

Figure 1: Carousel tournaments Ry, 1 for n = 2,3, 4.

In 1964, Colombo [10] proved that the maximum number of oriented 4-cycles in a
tournament of odd size is attained by the carousel tournament Rs,.;. One year later,
Beineke and Harary [3] extended this result by proving that the carousel tournament Ry, 1
also maximizes the number of strongly connected subtournaments of a fixed size in a
tournament of odd size.

The problem of maximizing subtournaments in a tournament of fixed size is in general
a hard problem and determining which tournaments are extremal is an even harder one.
However, in many cases, the easier problem of maximizing the asymptotic density is
completely solvable, that is, not only can we find the value of the maximum asymptotic
density, but we can also characterize all extremal families of tournaments.

Such characterization of an asymptotically extremal family (7,),en generally comes in
the flavour of saying that (7},),en converges to a certain “limit object”, that is, for every
fixed tournament 7', we have

lim p(T;T,) = o(T),

n—oo

where p(T; T;,) denotes the unlabelled density of 7" in T, (which is a number in [0, 1])?.

1Both results also provided a maximizer for even size, but we refrain from defining it here.

20f course that if (T},),eny maximizes the asymptotic density of T, then we will know the value
of lim, 0o p(T; Ty), but the strength of this characterization is that extremality for T forces the densities
of other tournaments 77 # T to converge to specific values.
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There are basically two approaches to defining what is a “limit object”. The first ap-
proach is to define the limit object to be semantically close to the underlying object, which
has been carried out successfully for several combinatorial objects such as graphs [25],
uniform hypergraphs [17], digraphs [16, Section 9]* and permutations [21]. The second
approach is to define the limit object syntactically, that is, to study what sorts of prop-
erties must a sequence (¢(7"))r satisfy if it is obtained as VT, lim,, oo p(T;T,) = ¢(T') for
a sequence of objects (7),)nen. This latter approach is precisely the thrust of the theory
of flag algebras [28] and in what follows we will mostly use this language.

In this paper, we study the problem of maximizing the asymptotic density of a single
fixed strongly connected tournament 7T of size 5, that is, we are interested in computing
Tim max{p(T;Ty,) : |V(T,)| = n},
for T e {T7,T8, T2, T2°, T}, T}?} (see Figure 2)* and characterizing sequences (7,)nen
such that lim,,_,., p(T'; T},) is equal to this value. Note that this differs from the result of

Beineke and Harary in that they proved that for every k£ € N, we have

max { > p(T; Tongr) |V (Tangn)| = 20+ 1} = > p(T; Rant),

TESk TEeSy

where S; denotes the set of all strongly connected tournaments of size k.

A A A
\VX/WW

//\\ //\\ /\\

W R Y

10 11 12
T5 T5 T5

Figure 2: Strongly connected tournaments of size 5.

3 As expected, the limit object for a tournament is just a special case of the limit object for a digraph.
41t is easy to see that the sequence of maximum values has decreasing tail, hence it is convergent.
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For the asymptotic study of tournaments, we have a weaker notion of balanced tourna-
ment. Namely a sequence of tournaments (7}, ),en of increasing sizes is said to be asymp-
totically balanced if all except for o(|T,,|) vertices of T,, have outdegree (1/2 + o(1))|7},].

In the theory of flag algebras, the notion of a limit object is captured by a positive
homomorphism ¢ € Hom™* (A% R) (see Section 3.1) and we have the analogous notion of
a balanced homomorphism, which a homomorphism that is the limit of an asymptotically
balanced sequence of tournaments.

In this paper, we prove extremality theorems involving three important balanced ho-
momorphisms.

The first homomorphism is the quasi-random homomorphism ¢, which is the main
topic of study of the theory of tournament quasi-randomness.

For every n € N, let R, ;/2 be the random tournament of size n where each arc
orientation is present with probability 1/2 independently of all other pairs of vertices. It
is a straightforward exercise in binomial concentration to prove that with probability 1
we have

!

VT tournament, lim p(7; R =E p(T) R =

Nim p(T Rp1y2) = B [p(T; Ryzy2)] A2
that is, the sequence (Ry, 1/2)nen of random tournaments is convergent with probability 1.
The quasi-random homomorphism ¢, is then defined as the almost sure limit of this
sequence.

The theory of quasi-randomness started with the study of quasi-random graphs in
the seminal papers by Thomason [32] and Chung, Graham and Wilson [9] and now has
branches in several other theories such as uniform hypergraphs [7, 6, 4], graph orien-
tations [19], permutations [11, 23] and tournaments [8, 22, 12]. We do not attempt to
provide a detailed review of the theory of quasi-randomness here (see [24] for a survey),
but its main gist is that there are several a priori different properties of a homomor-
phism ¢ € Hom™ (A% R), called quasi-random properties, that force ¢ = @q;.

For instance, an example of a quasi-random property was proven by the first author
and Razborov [13]: for every k > 4, if ¢ minimizes the density of the transitive tournament
of size 4, then ¢ = ¢,

Regarding ¢, we prove the following result.

Theorem 1. We have
lim max{p(T%;T},) : |T,| = n} = E
n—00 57 128

Furthermore, if (T,,)nen is a sequence of tournaments of increasing sizes, then
lim p(T¥,T,) = 15/128
n— o0

if and only if (T,,)nen is quasi-random, that is, if and only if (1),)nen converges to ¢q;.
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The second homomorphism studied is the carousel homomorphism ¢gr, which is the
limit of the sequence (Ra,11)nen of carousel tournaments. Analogously to quasi-random
properties, the quasi-carousel properties [12] are properties of a homomorphism ¢ €
Hom™ (A% R) that force ¢ = ¢g.

In analogy with a locally transitive tournament, a homomorphism ¢ € Hom™*(A° R)
satisfying (W, + L4) = 0 is called locally transitive. Perhaps the most important quasi-
carousel property says that ¢r is the only homomorphism that is both balanced and
locally transitive.

In this paper, we prove the following result involving ¢r.

Theorem 2. We have

5
Tim max{p(T; T) : [T = n} = -
1
lim max{p(T3% T,) : [Ty = n} = — (1)

n—oo

Furthermore, a sequence of tournaments (T,,)nen of increasing sizes is extremal for any
of TY or T? if and only if it is quasi-carousel, that is, if and only if (T )nen converges
to qu.

We remark that (1) confirms the following conjecture proposed by the first author
in [12] for the case n = 2.

Conjecture 3. For every n > 2, a homomorphism ¢ € Hom™ (A", R) maximizes ¢(Rap11)
if and only if ¢ = ¢R.

Finally, the last homomorphism studied is what we call here triangular homomor-
phism ¢g, .

To define ¢, , we must first define recursive blow-ups of the 3-cycle Cs. For every n =
3, let ng > ny = ngy be such that ng +ny +ny = n and n; € {|n/3], [n/?)]} for all i €
{0,1,2}. Define Ag = {1,...,n0}, A1 = {no+1,...,n1} and Ay = {n;+1,...,n2}. Let 03
be the tournament on [n] such that vw € A(C’E) for every v € A; and w € A 41) mod 35
and C3| 4, is isomorphic to C3. for every i = 0,1,2 (see Figure 3).

We define then ¢g, as the limit of the sequence (ég)neN (see Proposition 45 for the
convergence of this sequence).

Our final extremality result concerns ¢g, .

Theorem 4. We have

lim max{p(T3: T,) - [T, = n} = 2,

n—00
1
T max{p(T35T,) T = = o

Furthermore, a sequence of tournaments (T, )nen of increasing sizes is extremal for any
of TP or T2 if and only if it is quasi-triangular, that is, if and only if (T,,)nen converges
to ¢6-:3.
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Figure 3: Typical structure of C3.

Motivated by the definition of C3, we say that a tournament is Cs-decomposable (see
Definition 31) if it has the same structure of (72 but without requiring the parts to be as
equal as possible. And, as an auxiliary result, we prove (Theorem 33) that a tournament
is Cs-decomposable if and only if it has no copies of T8, T2 nor of T2, We then extend
this notion to homomorphisms by saying that a homomorphism ¢ € Hom™ (A% R) is Cs-
decomposable if ¢(T2 + T + T3%) = 0.

As a byproduct of Theorem 4, we prove several quasi-triangular properties (i.e., prop-
erties of a homomorphism ¢ € Hom™ (A% R) that force ¢ = $¢,). One of them, namely Ly,

says that ¢, is the only homomorphism that is both balanced and ég—decomposable.
Let us finally remark that our results fail to cover only one strongly connected tour-
nament of size 5, which is T5°.

The paper is organized as follows. We prove the lower bounds of Theorems 1, 2 and 4
in Section 2. The proof of the upper bounds are given in Section 4 and are an application
of Razborov’s semidefinite method for flag algebras [29] (see also [2, 14, 15, 18, 27] for some
examples). In Section 3, we present a brief overview of flag algebras and this method.
The uniqueness proofs are presented in Section 6. In Section 5, we show how to extract
informations about extremal sequences from the semidefinite method. We postpone the
proof of the characterization of 63—decomposable tournaments to Section 7 and postpone
the proof of a technical lemma on quasi-triangular properties to Section 8.

2 Lower bounds

In this section, we prove the lower bounds in Theorems 2, 1 and 4.
We start by recalling the definition of labelled density in tournaments.

Definition 5. If 7} and 75 are tournaments with |77| < |T3|, then the labelled density
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of T1 in T (denoted t,q(77;T»)) is the probability that an injective mapping from V' (77)
to V(T3) picked uniformly at random is an embedding of T} in T5.

It is easy to see that

Aut(T;
md(Tl;TQ) ’ <,1)| (T1§T2):
T3 |!
where Aut(7}) is the group of automorphisms of T3.
Lemma 6. We have
. 7 ) . 12 1
Tim p(T5; Ronta) = 6 Tim p(T57; Roni1) = 6

Proof. We will prove only the assertion for T4?, since the proof for 77 is very similar.

Fix n > 2 and let f: V(R5) — V(R2,.1) be an embedding of R5 in Ro,y1.

Suppose that the vertex 0 from Rj is mapped to the vertex 0 of R,. If vertex 1 is
mapped to a vertex i, then 1 < ¢ < n and vertex 2 has to be mapped to a vertex j such
that 1 +1 < j < n. Vertex 3 has to be mapped to a vertex k£ such that n+1 < k<i1+n
(since (3, 0) and (1 3) are arcs of Rj). Finally, vertex 4 has to be mapped to a vertex ¢
such that i +n < ¢ < j+n (since (4,1) and (2,4) are arcs of R5). See Figure 4.

ntitn

Figure 4: Possibilities of embedding T3% = Rj in Ro, 1.

Note that, after we fix the images of the vertices 0, 1 and 2, the number of choices for
the vertex 3 becomes ¢ and for the vertex 4 becomes j — ¢ + 1.

From the symmetry of Ry, 1, we know that this is also the case for every other choice
of the image of the vertex 0 of R5. Thus, we have

1 n n
tina(Rs: Ropiy) = ————— - (2n+ 1 i(j—i+1
iz (2n — 2)i* + n(n — 2)i
(2n)4 2

=1

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.44 7



| 1
_3-27+O(E)’

where (£)y =£0({ —1)--- (¢ — k+ 1) denotes the falling factorial.

Therefore
lim p(T12 Ry or) — Tim >t (s Ry) — — =
n1—>11;>lop 5 »4W2n41) — n1—>Holo 5 ind 5y 4ln) — 16
We now prove the lower bounds in Theorem 4.
Lemma 7. We have
lim p(T2;C5,) = S, lim p(T3Y C3.) = i
n—00 573 8’ n—00 503 16

Proof. Again, we will prove only the assertion for 7%, since the proof for T3! is very
similar.
Let T denote the tournament in Figure 5, which is isomorphic to T%.

Figure 5: Tournament isomorphic to 7.

Recall the definition of C3, and let Ay = [3"7], A, = {314+ 1,31 42 ... 2.3}
and Ay = {2-3""1+1,2.3""1 42, ..., 3"}

Let F'(n) be the number of embeddings of 7" in 6§n Every such embedding either maps
all vertices of T' to a single A; or it maps 1 and 5 to some part A;, 3 and 4 to A(i41) mod 3
and 2 to A(i12) mod 3. Thus we have F(1) = 0 and, for every n > 2, we have

gn—1 2 5n—4
F(n):3( 5 )3"_1+3F(n—1)< +3F(n—1).
Therefore, it follows that
n-1 '35(n—i)—4 3pn—4 | _ 3—4n 35n .
F(n) < 3 = . =-——+0(3™).
(n) ; 4 I T-37 3w TOGY
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On the other hand, we have

F(n) > 1 +3F(n—1)
hence
35n n—1 32n 7) 35n
33— —0(3"™) = — — 0(3™).
320 Z (37) 320 (87)
Therefore
- F(n) 3
Y}Lrgop(T5,C3n) Jim 3, 5! 3 O
Finally, we prove the lower bound for 7¢ in Theorem 1.
Lemma 8. We have
15
; 8. —
nh_EIOlOE [p(T5 ) Rn,l/z)} = ES
Proof. From the definition of R, 12, it follows that
3 1
E [tind(T5 ; Rn,1/2)] = 510
for every n > 5, hence
1 15
. 8. _ _

3 Razborov’s semidefinite method for flag algebras

In this section, we briefly review the basics of the flag algebra theory and its semidefinite
method. Although we work here only with the theory of tournaments, we remark that
flag algebras can be defined in the general setting of any universal theory of first-order
(see [28] and [29], see also the surveys [30] and [31]).

3.1 Basic definitions and properties

First recall the definition of 7, as the set of all tournaments of on n vertices up to
isomorphism and define 7" = |J,,cy 7 as the set of all tournaments up to isomorphism on a
finite number of vertices. For every tournament 7', we will denote its size by |T'| = |[V(T)].

A type is a tournament with vertex set [k] = {1,2,...,k} for some £ € N and,
given a type o of size k = |o|, a o-flag is a partially labelled tournament such that the
labelled part is a copy of . Formally, a o-flag is a pair (T, 0), where T' is a tournament
and 0: [k] — V(T) is an embedding of ¢ into 7', that is, the function € is an isomorphism
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between ¢ and the tournament induced by im(f) on 7. We define the size of the o-
flag FF = (T,0) as |F| = |T).

We extend the notion of isomorphism to o-flags declaring that a function f: V(77) —
V(Ty) is an isomorphism between the flags Fy = (11,0;) and Fy = (Ts,05) if it is an
isomorphism between T} and Ty and f o 6; = 6, (i.e., the function f preserves labels).
Naturally, we say that two flags F} and Fy are isomorphic (denoted Fy = F;) if there
exists an isomorphism between them.

This allows us to define F?J as the set of all o-flags of size n up to isomorphism
and F7 = {J, oy Fy as the set of all finite o-flags up to isomorphism.

Let us denote the unique type of size 0 by 0 and note that a 0-flag can be identified
with a tournament. Let us also note that for every type o, the set ]-"|‘;| has only one
element (o,id), which we will denote by 1,.

If F = (T,0) is a o-flag and W C V(T is such that im(¢#) C W (i.e., the set W
contains all labelled vertices), then we define the subflag induced by W on F as the
flag Flw = (T|w,8), where T'|y is the subtournament induced by W on T.

We now extend the notion of density to flags as well and also to a more general setting
of density of several flags.

Definition 9. Let o be a type of size k and ¢, ¢, (5, ..., ¢, > k be integers such that

(£0) e

Let also F' = (M, 0), Fy, Fs, ..., F, € F° be o-flags of sizes ¢, (1, (s, ..., {; respectively.

The joint density of Fy, Fy,...,F; in F, denoted by p(Fy, Fy, ..., F; F), is defined
through the following random experiment.

Pick uniformly at random pairwise disjoint subsets Wy, Wa, ..., Wy of V(F) \ im(6)
subject to |W;| = ¢; — k for every i € [t] and define

p(Fi, Fs,...,F; F) =P Vi € [t], Flimouw,; = F] .
We also extend p linearly in each of its coordinates.

We can (finally) present the flag algebra of a type o.

Proposition 10 (Razborov [28, Lemma 2.4]). Let o be a type of size k and A” = RF7 /K
denote the quotient of the set RF7 of all formal linear combinations of elements of F° by
the linear subspace K° generated by elements of the form

F— > p(F,F)F,

FeFy

where ¢ > |ﬁ .
Define also the linear product - : A7 x A7 — A° through

By B = Z p(Fy, Fo; F)F,

FeFy
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where Fy, Fy € F° and { > |Fy| + |Fy| — k.
Under these conditions, this product is well-defined and the set A° equipped with this
product (and the usual addition) is a commutative associative algebra over R with unity 1,.

Let us denote by Hom(.A%,R) the set of all R-algebra homomorphisms from A7 to R
and define the set of positive homomorphisms as

Hom™ (A%, R) = {¢ € Hom(A’,R) : VF € F7,¢(F) € [0,1]}.
We will now define the notion of a convergent sequence of flags.

Definition 11. Let (F},),en be a sequence of o-flags.

The sequence (F},),en is called increasing if |F,| < |Fj,41]| for every n € N.

The sequence (F,)nen is called convergent if it is increasing and for every fixed o-
flag F' € F7, the sequence (p(F’; F},))nen is convergent.

If ¢ € Hom™* (A%, R) is a homomorphism, we say that the sequence (F},),en converges
to ¢ if it is convergent and

lim p(F; Fy) = 6(F).

n—oo

for every o-flag F' € F°.

It is easy to see (e.g., by a diagonalization argument) that every increasing sequence
of flags has a convergent subsequence. The next theorem says that the set of positive
homomorphisms Hom™ (A7, R) captures precisely the limits of convergent sequences of o-
flags.

Theorem 12 (Lovész—Szegedy [25], Razborov [28, Theorem 3.3]). Every convergent se-
quence of o-flags converges to a positive homomorphism in Hom™ (A%, R) and for every
positive homomorphism ¢ € Hom™ (A7, R) there exists a sequence of o-flags converging

to ¢.

Recall that we are interested in maximizing the density of a fixed tournament T
asymptotically. This means that, in the language of flag algebras, we are interested in the
following problem.

Problem 13. Given a fixed tournament 7' € T, compute
max{¢(T) : ¢ € Hom™ (A7, R)}.

Remark 14. Here, we used max instead of sup because Hom™ (A7, R) is compact.
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3.2 Semidefinite method

Providing lower bounds to Problem 13 is easy. Indeed, every increasing sequence of
tournaments (7},),en provides the lower bound

limsup p(T'; T,,).

n—oo

The hard part of this problem is to compute upper bounds. A first and naive way of
doing so is the following. If ¢ € Hom™ (A%, R) is a homomorphism, then Proposition 10
gives us

$(T) =Y p(T;T)p(T")

< T(;;% (T T’)) > o1 = <§ng% p(T; T’)) o(1o) = (g}g%p(T; T ’)) . (2)

T'eT;
for every ¢ > |T'|, since ¢ is linear and
o= Y T.
TeTy

However, in general this bound is too weak to find extremal values. In what follows,
we will present the semidefinite method, which builds up on this simple argument but can
obtain much better bounds for Problem 13.

Let us start by defining some flag algebra notation that will help us.

Definition 15. Let o be a type. We define the semantic cone of type o as the set
Coem(F7) = {f € A7 : V¢ € Hom™ (A", R), ¢(f) > 0},

that is, the semantic cone is the set of all “positive” elements of A% with respect to positive
homomorphisms.
We define also the ordinary cone of type o as the set

t
C(F7) = {ZF,--ff:tEN/\Fl,FQ,...,Ft EFNF, for s fi eA"}.
i=1
Finally, we define the preorder relation <, over A” through

f<0'g <~ g_fecsem(fv)'

Trivially we have F7 C C(F?) C Csem(F7).
The idea of the semidefinite method is to use elements of Cym(F°) to compensate
large p(T;T") in (2) as follows. If g € Ceem(F?), then

T<T+g= Y (pT;T)+plg;T))T

TeT;
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<o (maxp(T ') +p(g: T") ) > T = <maxp(T T)+p(g;T’)> lo, (3

T
T'eTe

where ¢ € N is large enough (so that we can write g as a combination of tournaments of
size smaller than ¢). Our hope in doing so is to be able to choose g such that p(g;T") is
negative when p(7;T") is large, but taking p(g; T") positive enough to ensure g € Cyern (F°)
when p(T'; T") is small.

In this language, our problem is exactly to prove that clg—T € Cyer(F°) for a certain c.
However, deciding whether an arbitrary ¢ is an element of Cgey, (F7) is hard. In fact, the
flag algebra semidefinite method is part of what is called Cauchy—Schwarz calculus in
flag algebras (see [28, Section §6]), which was proved to be incomplete for the theory of
graphs in [20], that is, in the theory of graphs, there are elements of Cyep (F°) that cannot
be proved to be in Cyp (F°) via Cauchy-Schwarz calculus (hence neither via semidefinite
method).

We will now define the downward operator, which will help us in obtaining elements
of Cyem (FP) from elements of Cyep (F).

Definition 16. Let ¢ be a type of size k and F = (T,0) be a o-flag. We denote the
underlying tournament of I by F|o = T and we define the normalizing factor of F
(denoted ¢, (F")) through the following random experiment.

We pick uniformly at random an injective function 8: [k] — V(Fy) and let

@ (F)=P[(F|o,0) = F].
We also define the downward operator [ - |, by letting
[Fle = ¢ (F)F|ly € A°,

and extending it linearly to combinations of o-flags.

Theorem 17 (Razborov [28, Theorems 2.5 and 3.1a]). The downward operator [ - |, is
well-defined as an operator A — A° and we have

[Coem (F7)]o C Coem(F°).

This theorem allows us to choose g of (3) in the easier set [C(F?)], for some type o.
This reduces the problem to finding a positive semidefinite matrix in the following way.

Fix a type o of size k, a o-flag ' and let ¢ and ¢ be integers such that k£ < ¢
and |F'| + 20 — 2k < £,

If v € R7 is a vector indexed by F7, then let F (v) denote the element

Z UFF € Ao.

g
FE}—Z

Analogously, if @) is a matrix indexed by by ]—}’ X ]—}’ , let F(Q)) denote the element

Y QunnFFe A

F1,Fy G]-—lff
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Note that if @) is positive semidefinite (¢ > 0), then by the Spectral Theorem there
. Fe
exist vectors vy, vs,...,v, € R7¢ such that

r

T

Q - E Uivi )
=1

which means that

T

= F(v)
i=1
Hence we have F' - F(Q) € C(F?) and we can take g in (3) to be equal to
[£"- F(Q)]-
This yields the following semidefinite program
min y

st. p(TT)+ > Y QuepF,F,FiF)p([FlaT) <y VT €Ty
Fery F1,F2€J-'~

FIxXFQe . .. . .
Q € Rt ™77 is positive semidefinite;

whose solutions have values that are upper bounds to the value in Problem 13.
In fact, we can even take g = ", g; in (3), where each g; is of the form

[[F’i, ’ F(Qi)]]ﬂia

for some type o;, some o;-flag F! and some positive semidefinite matrix @); indexed
by FJi X Fi.
We state the resulting semidefinite program in the proposition below.

Proposition 18 ([29]). Let T € T be a tournament, let o1,09,...,0, be types of
sizes ki, ko, ... km respectively and for each t € |[m], let F] € F° be a o;-flag. Let
also U1, 0y, ... L, L be integers such that

kft Eta |Ft/| +2€t_2kt éﬁ,

for every t € [m] and such that |T'| < £
Under these circumstances, every value of every solution of the semidefinite program

min y
st p(TTYV+Y. > S QU pp(F, P Fy F)p([Flei T) <y VT €Ty
t=1 FeF]! P FeFy!
QY e R7e 74 s positive semidefinite Vit € [m]; (4)

is an upper bound to the value in Problem 13, that is, if V' is the value of a solution of (4),
then

max{¢(T) : ¢ € Hom™ (A%, R)} < V.
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In this text, all instances of (4) will be with F,] = 1,, for every ¢ € [m]. Furthermore,
when we use Proposition 18 to give upper bounds to Problem 13, we will denote each of
the Q® in (4) by Q(T, ;) as a reminder of which problem we are solving and of what is
the type involved. Moreover, for each 7" € T,, we define

(Q(T,00);T') =
p([FQT, o)) T =Y, Y QUT.0)nrp(F,Ey; F)p([FlosT')

FeF)t F1,Fy efc’tf
and let
m
o(T; T E (@ T,
t=1

so that (4) becomes

min y
st. p(T,TY+c(T;T)<y NT' €Ty

TT':ZC Q(T,00); T NT' €Ty

t=

AQT,o); T =Y > QUo)mmp(E, Fy F)p([Flo; T');

FG]-—Jt L, FyeF, tt

Q(T,04) € R7e 70 s positive semidefinite ~ Vt € [m)]. (5)

3.3 Tournaments, types and flags used

Throughout this text, we denote the transitive tournament of size k by Try. We also
denote (see Figure 6).

e the 3-cycle by 63;

e the only tournament of size 4 that has a 4-cycle by Ry;

e the only tournament with outdegree sequence (1,1,1,3) by Wy;
e the only tournament with outdegree sequence (0,2,2,2) by Ly.

We will also use the notation of Figure 7 for the non isomorphic tournaments of size 5.
Furthermore, we define the following types (see Figure 6).

e The only type of size 1 is denoted by 1;

e The type of size 2 where the vertex with label 1 beats the vertex with label 2 is
denoted A;
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Tiy Tr, Trs . i A

3 3
> /\ ’/\ 1. 1e—>e2 1./:>\.2 1.’£>\.2
Trs 5{{

o KKK
a 3 Tr, R, W, I

FaNVANNVANV NV ANVA VAN
Try* Cl Try™ Tr§ w Trd
N S 3 e e 3 >3  e—»23 a3 ee——23
1l>—»<I2 1I>—»<I2 1T><T2 11><T2 1l>—»<I2 1T><T2 11><T2 1T><T2
Tr:frg 3 W4Tr§ Tr4Tr3 2 R4Tr3 Lzrg Tr4Tr3 1 R;rrg Tr4Tr3 0
o223 ee—23 ste—23 se—23 s—>23 s—>e3 st—s3 s—>s3
XL L L 11><T2 LKL XL
R 1§ gG2 - gGL RG® G pGz gl

Figure 6: Types and flags of size at most 4 used.

e The type of size 3 isomorphic to Tr3 such that the winner has label 1 and the loser
has label 3 is denoted Tr3;

e The type of size 3 isomorphic to (s such that the vertex with label 1 beats the
vertex with label 2 is denoted C7.

If T is a tournament and o is a type such that there exists exactly one o-flag F
such that F'|g = T, then we denote such flag by 7. Note that this uniquely defines the
following flags.

=1 ~A Try Tr3 @g 5;
Cs;,C5 W, 2, Ly? W, L,

For the remaining flags, we use the notation of Figure 6. Let us only comment the
reasoning behind our notation.
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7 T3 T? 10 T Ti2
(Rs)

Figure 7: Tournaments of size 5. The arcs omitted are all oriented downward.

The notation for the flags O4 and I are meant to be a mnemonic for common
outneighbourhood and common inneighbourhood respectively;

The flag Trj' is not the only A-flag over Trs, but this notation is nevertheless used
since Trg)4 is the only remaining A-flag over Trs;

The Tri;-flags over Try and R, are uniquely determined by the outdegree d of the

unlabelled vertex and as such, we denote them accordingly by Trfrg’d and Rfrg’d;

e The 5§—ﬂags over R, are uniquely determined by the outneighbourhood of the un-
labelled vertex and as such, we denote the accordingly by listing the vertices in the
outneighbourhood of the unlabelled vertex in the superscript.

4 Upper bounds

In this section we prove the upper bounds in Theorems 2, 1 and 4. We use the semidefinite
method of flag algebras as presented in Section 3.

Lemma 19. For every n-vertex tournament T,,,

1
lim p(73% Tn) < =

n—oo 16.

Proof. In order to use the semidefinite method, we need to fix ¢, which is used to define
set 7;. Then we need to define ¢(T;T") for every T" € T; as in (5). To define ¢(T;T"), we
choose how many types m we will use and the types o, we want to use. For each type o,
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we choose an integer /; satisfying ¢, < (€+|0y|)/2 and a positive semidefinite | F;*| x [F7"|
matrix Q(7, oy).

Fix m=3,0=5,0, =3, =03 =4 and let 01 = 1, 05 = T} andogzég‘ be types
as defined in Section 3.3 (see Figure (6)).

Let Q(T42,1), Q(T2%, Tr}) and Q(TQQ,C?;) be the positive semidefinite matrices of

orders Fj x Fs, ]—fr;’ X }fr; and ]_—fgf X ]_—f; respectively shown in Appendix A.1 (note

that |F}| = 4 and |F, ™3| = |FL3| = 8).

To see that Q(T22,1), Q(T12,Tr3) and Q(T22,Cs) are positive semidefinite, we anal-
yse their characteristic polynomials pQ(TE)IQ’l)(ZL‘), pQ(Tg2,T&r§)($) and pQ(T§275§)(x) shown in
Appendix A.2. Since the only negative coefficients of these polynomials are all of odd
order, it follows that all of their roots are non-negative, hence the matrices are positive
semidefinite.

We then compute p(T2%,T) and c¢(Q(T2%,04);T) for every T € T5 (see Figure 7) and
every t € [3].

Finally, by Proposition 18, we have

1
lim p(T3% T,) < erna7>_<{p(T512;T) +e(Ti3T) = —
SYE

n—00 16’

where ¢(T3%T) = ¢(Q(T22,1);T) + c(Q(T22, Tx%); T) + ¢(Q(T22,C5): T) for every T €
Ts. O

Remark 20. All of the matrices in Appendix A.1 were found with the aid of semidefinite
programming solvers CSDP [5] and SDPA [33].

Furthermore, the solution provided by these solvers was rounded to an exact solution
using the rounding method described by Baber [1].

The solutions presented here and the program utilized to produce the semidefinite pro-
gram input, round the solutions provided by the solvers and check their correctness can be
obtained in https://github.com/robertoparente/flag-algebra-program-package.

Finally, the characteristic polynomials in Appendix A.2 were found with the aid of the
symbolic mathematics software Maxima [26].

The proofs of the upper bounds for 77, T8, T9 and TZ! are very similar to the proof
of Lemma 19. We choose how many types m we will use and the types o; we want to
use. For each type o;, we choose an integer ¢; satisfying ¢; < (¢ + |o;])/2 and find positive
semidefinite matrices Q; = Q(T7, o;).

The matrices and their characteristic polynomials are shown in Appendix A. As in the
proof of Lemma 19, the matrices are easily seen to be positive semidefinite since the only
negative coefficients of their characteristic polynomials are all of odd order.

For each j € {7,8,9,11,12}, we then compute ¢(T¢;T) = S." c(Q(T¢,0:); T) and
p(Tg ;T), for every T € Ty, and obtain the desired bounds according to the following
tables.
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73 T3 77 73! 1;*
m 3 m 4 m 2 m 2 m 3
o1 1 o1 1 o1 1 01 1 01
09 TI'; 09 A [ C_;;: g9 C_;ék 02 TI‘;
o3 Cy T3 T 0 5 0 5 o3 Cs
¢ 5 o4 T 0 3 0 3 ¢ 5
61 3 Y4 5 Zg 4 62 4 El 3
12 4 o 3 Q1 Q(ngvl) Q1 Q(Ts)nv}) Ly 4
43 4 62 3 QQ Q(Tga ;:) Q? Q(Tsna Cg) 63 4
Q1| QT7.1) ls 4 Q1 | Q(T32,1)
Q: | QTI,TeE) || ¢4 4 Q2 | Q(T4% Tr3)
Qs | QUT.Ch || @ | QT Qs | Q(T3%,C5)
QQ Q(T§7 A)
Q3 Q(T{§7 TI";)
Q4 Q(TSSa C;:)

5 Extracting more information from the semidefinite method

In this section, we review some techniques in flag algebras to extract information about
extremal homomorphisms of Problem 13 from a tight solution of the semidefinite pro-
gram (4) (see also the more general version (5)). Again, we will work here only with the
theory of tournaments, but these techniques can be used in a more general setting.

The first technique is used to prove that the tournaments 7" corresponding to non-tight
restrictions in (4) must have zero density in the extremal homomorphisms.

Proposition 21. Let T € T be a tournament and let
c = max{¢(T) : ¢ € Hom" (A’ R)}.
If 0 > |T| and g € Coem(F°) are such that
max{p(T +¢;T"): T € T;} = ¢,
and ¢ € Hom™ (A%, R) is extremal for T (that is, if ¢(T) = c), then
¢(T") =0,
for every T" € Ty such that p(T + ¢g;T") < ¢

Proof. Recall the semidefinite method from Subsection 3.2. We know that

c=¢(T)<o(T+g)= > p(T+gT)e(T")

T'eT,

< (T +¢;T") (T") = .
(g}gggp +; )Zqﬁ (lo) = ¢

TeT;
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Hence, we must have equality throughout. In particular, equality in the last inequality
implies that

D pT+gTYe(T) =c ) o(T),
TeTy T'eTy

and since ¢(T") > 0 for every T" € Ty, we have

¢(T")(c = p(T + g;T")) = 0,
for every T" € T;. Therefore, the result follows. m

For the next technique, we will need the notion of a homomorphism extension, so we
recall below the main theorem on the matter.

Theorem 22 (Razborov [28, Theorem 3.5]). If o is a type and ¢ € Hom™ (A’ R) is a
homomorphism such that ¢(o) > 0, then there exists a unique probability distribution of
a random element ¢° of Hom™ (A%, R) (called homomorphism extension) satisfying

B¢ (1) = S

for every f € A°.

The next technique says that if the element [F'- f?], was used in a tight solution of (4),
then we must have ¢?(F - f) = 0 almost surely for every extremal homomorphism ¢ €
Hom™ (A% R).

Proposition 23. With the definitions and notation of Proposition 18, let
c =max{¢(T) : T € Hom™ (A" R)},

suppose that the optimum solution (QY)™, of (4) has value ¢ and write

Tt

QWY = Z @ (U(t))T

=1

for every t € [m].
Under these circumstances, if ¢ € Hom™ (A% R) is extremal for T, that is, if §(T) = c,
then for every t € [m] with ¢(or) > 0 and every i € [ry], we have
¢ (F - F(1") =0

7

almost surely.
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Proof. Recall the semidefinite method from Subsection 3.2. We know that

e =o(1) <O(T) + 3 _o(F - FQ)]s)

=

T'eT,

T:T)+ ) p [[F{'F(Q(“)]]ot;T’)> o(T")
(

(T:T) + Y
S max (p(T;T/) + ;p([[Ft’ - F Q“))HW;T’)) (1)

Hence, we must have equality throughout. In particular, equality in the first inequality
implies that

> ollF, - F@)]) =0,

and since [F/ - F(Q®)]s, € Coom(FP) for every t € [m], we get that
o([F, - F(Q)]x) =0, (6)

for every t € [m].
Fix now t € [m] such that ¢(o;) > 0 and recall that

[ - F(Q)]o = Z[[F' A
This along with (6) implies that
o([F - F(0))]a) = 0.
From Theorem 22, we have
E|¢7(F - F(o")%)] =0,
and since this variable is (almost surely) non-negative, we get
7 (F - F(v) =0

almost surely, as desired. O

6 Uniqueness

In this section, we will prove the uniqueness results. Namely, we will prove that a homo-
morphism ¢ € Hom™ (A% R) maximizes the density of 7% if and only if ¢ is the quasi-
random homomorphism ¢,,. We will also prove that ¢ € Hom™ (A% R) maximizes the
density of TY or of TJ? (Rs) if and only if ¢ is the carousel homomorphism ¢g. Finally,
we will also prove that ¢ € Hom™ (A, ,R) maximizes the density of T? or of T3! if and
only if ¢ is the limit of the sequence (C?),en.
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6.1 Quasi-random uniqueness

First we recall the definition of the quasi-random homomorphism ¢, € Hom™* (A% R) as
the almost sure limit of the sequence of random tournaments (R, 1/2)nen. Alternatively,
the quasi-random homomorphism is defined by

¢!

¢qr(T) = Wa

for every tournament 7" of size ¢ € N, where Aut(7") denotes the group of automorphisms
of the tournament 7.

We also recall the equivalence of the following quasi-random properties in the lemma
below.

Lemma 24 (Chung—Graham [8, Theorem 1]). Let ¢ € Hom™ (A% R) be a homomorphism.
The following are equivalent.

Pl N ¢ = qbqr;
Py: A0 + 1) =1/2 a.s.
Remark 25. Although we will only use two quasi-random properties, let us mention that

Chung and Graham proved equivalence of a total of 11 quasi-random properties (P
to PH).

We are now in condition of proving that the density of 72 is maximized only by the

quasi-random homomorphism.

Theorem 26. If $ € Hom™ (A% R) is a homomorphism, then
15
T8 < —
with equality if and only if ¢ = Pqr.
Proof. By Lemma 8 and by Proposition 18 (see also Section 4), we know that

15
max{¢(T5) : ¢ € Hom™(A°,R)} = 128 Pae(T5)-

Furthermore, we know that the matrices Q(T8,1), Q(T#, A), Q(T8, Tr%) and Q(T8, C%)
from the semidefinite method are an optimum solution with value 15/128.

Since

99
= v’

3200

Q(T3, A)

where v = (1,—1,—1,1) (indexed by (I4,C4,Tr{,04)), Proposition 23 implies that
if ¢ € Hom™ (A% R) is such that ¢(T%) = 15/128, then

¢4 (F(v)) = ¢*(I* = 5! = Trf +0*) = 0 as.
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Since ég‘ +Trg =14 — 04 — I, we get
1
(O + 1) = 5 as,
hence ¢ satisfies Property P, from Lemma 24. Therefore ¢ = ¢;. O

6.2 Quasi-carousel uniqueness

First we recall the definition of the carousel homomorphism ¢r € Hom™ (A% R) as the
limit of the sequence (Ra,11)nen Of carousel tournaments. Analogously to quasi-random
properties, the quasi-carousel properties [12] are equivalent properties over a homomor-
phism ¢ € Hom™ (A% R) that force ¢ = ¢r. We recall two of the carousel properties
below.

Lemma 27 ([12, Lemma 3.2]). Let ¢ € Hom™ (A", R) be a homomorphism. The following
are equivalent.

Sl-. ¢ = QSR;'

So: ¢ is balanced and locally transitive, that is, we have
¢'(a) = @' (B) as; ¢(Wi+ Ly) = 0.
Furthermore, we will need an equivalence regarding balanced homomorphisms.

Lemma 28 (Chung—Graham [8, Theorem 2]). Let ¢ € Hom™ (A% R) be a homomorphism.
The following are equivalent.

Q1: ¢(Trs) = 3/4 and ¢(Cs) = 1/4;
Q4 ¢ is balanced, that is, we have ¢*(a) = d*(B) a.s.

Analogously to Theorem 26, uniqueness for the carousel homomorphism will follow
from quasi-carousel Property Ss.

Theorem 29. If $ € Hom™ (A% R) is a homomorphism, then

5
TN < —
¢( 5) 167
with equality if and only if ¢ = ¢R.
Proof. By Lemma 6 and by Proposition 18 (see also Section 4), we know that

max{6(7]) : ¢ € Hom* (A, R)} = - = 6n(T]).

Our goal is to prove that every ¢ € Hom™ (A% R) such that ¢(77) = 5/16 is balanced
and locally transitive.
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To prove that such ¢ is balanced, we note that the matrices Q(77,1), Q(TY, Tr})
and Q(T7,C%) from the semidefinite method are an optimum solution with value 5/16,
and since

35
QT 1) = EUUT,

where v = (1,—1,—1,1) (indexed by (Tré’L,ég,Tré’M,Tré’W)), Proposition 23 implies

that

S (F(v) = ¢*(Trh" —Cf — TS + i) = @2 ((a — 5)) = 0 as.

Therefore ¢ (a) = ¢p*(B) a.s., that is, the homomorphism ¢ is balanced.
To prove that ¢ is also locally transitive, we will use Proposition 21. Table 1 has the
values of p(Ty + g; T") for T" € T and where

g = [FQTF, D)y + [FQ(TF, Tr)lny + [F(QTF, C5))lg;-

T’ \Tg TP Ty /A A SO - A B
5 7 11 29 7 11 5 13 5 1 109 5
T7 ™= - - = - - ___ - - _= - - _= =
P +9T) |16 ~30 28 240 80 28 16 48 16 16 240 16
Table 1: Values p(7¢ + ¢;T") for T" € T; and where ¢ = [F(Q(TY,1))]: +
[F(Q(TF, Tr3) ]y + [F(Q(TE. C3))] -

Proposition 21 implies that if ¢(7") > 0 for 7" € Ts, then T" € {T2,T7, T, T4}, and
since these four tournaments are the only locally transitive tournaments of size 5 (i.e., the
only tournaments 7" € T5 with p(Wy + Ly; T") = 0), we have ¢p(Wy + Ly) = 0, that is, the
homomorphism ¢ is locally transitive.

Therefore ¢ satisfies quasi-carousel Property Ss, hence ¢ = ¢r by Lemma 27. O]

Theorem 30. If $ € Hom" (A% R) is a homomorphism, then

1
T12 < .

with equality if and only if ¢ = ¢PR.
Proof. By Lemma 6 and by Proposition 18 (see also Section 4), we know that

1

max{¢(T2?) : ¢ € Hom" (A" R)} = 6

= or(T3°).

Again, our goal is to prove that every ¢ € Hom™* (A% R) such that ¢(T4?) = 1/16 is
balanced and locally transitive.
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To prove that such ¢ is balanced, we note that the matrices Q(T432,1), Q(T4?,Tr3)
and Q(T22,C%) from the semidefinite method are an optimum solution with value 1/16,
and since

1
Q(TE}Q, 1) = 1—6va,

where v = (1,—1,—1,1) (indexed by (Tré’L,ég,Tré’M,Tré’W)), Proposition 23 implies
that

S (F(v) = ¢*(Trh" —Cf — TS + i) = @2 ((a — 5)) = 0 as.

Therefore ¢ (a) = ¢p*(B) a.s., that is, the homomorphism ¢ is balanced.
To prove that ¢ is also locally transitive, we will use again Proposition 21. Table 2
has the values of p(T3? + ¢; T") for T" € T5 and where

9= [FQ(T3* )] + [F(Q(T3?, Try)]y + [F(Q(T3%,C5))] g

T T T T, T Ty T 1Y 1) T T TR
11 3 1 1 1 1 1 1 39 1

8 16 16 80 16 16 16 16 16 80 16
Table 2: Values p(Ti? + ¢;T") for T € T; and where g = [F(Q(T3%1))]: +
[F(QTI2, Te5)ng + [F(QTI2, C5))] g

1
T12 _T/ _

Proposition 21 implies that ¢(T2 + T2) = 0.
Now, since we have

Cx 1 Cx
[[(L43>2]]6§ = 2_0T52§ [(w, 3)2]]6§ = _T§9

and since ¢ is balanced, by Lemma 28, we have gb((?;;) = 1/4, hence

Sk —)‘* Sk —i* 1 ¢(T2 + T5>
B [p v+ oafiy] - o MBI
10 ¢(Ch)
which implies that ¢65(Wf§ + Lfg) =0 a.s.
This in turn implies that
ol % Fx 1 W L
O:E[d)Cs(WfS +Lf3) :_¢(4—j_4)7
1 9(Cy)

hence ¢p(Wy + Ly) = 0, that is, the homomorphism ¢ is locally transitive.
Therefore ¢ satisfies quasi-carousel Property Ss, hence ¢ = ¢r by Lemma 27. m
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6.3 Quasi-triangular uniqueness

We start by defining a ég—decomposable tournament inductively, which intuitively are
tournaments similar in structure to C3, but without requiring the “blow-up” to have
parts as balanced as possible.

Definition 31. Define the sequence of sets (B,,)nen inductively as follows.
Let By = Ty and By = 7T; and for n > 2, let B,, C 7T,, be the set of all tournaments 7'
of size n such that there exist sets A, B and C such that

i. The sets A, B and C' are strictly contained in V(T), that is, we have A, B,C' C V(T');
ii. The sets A, B and C' are pairwise disjoint;
iii. We have V(T) = AUBUC;
iv. We have T'|4 € Bjaj, T'|s € Bjp and T'|¢c € Bicy;
v. We have Ax BB x C,C x A C A(T).
Finally, we say that a tournament 7T of size n is C-decomposable if T € B,,.

Remark 32. Note that items (i), (ii) and (iii) together say that {A, B,C} \ {9} is a
partition of V(7T') into either two or three sets.

Furthermore, note that item (ii) actually follows from item (v).

Finally, note that item (iv) is well-defined since max{|A|,|B|,|C|} < n (due to
item (i)).

The next theorem provides a characterization of C’},—decomposable theorems as the

class of tournaments avoiding 7%, T2° and T3?. We defer the proof of this theorem to
Section 7.

Theorem 33. A tournament T is ég—decomposable if and only if it has no copies of TS,
29 nor of T2

Motivated by the theorem above let us say that a homomorphism ¢ € Hom™ (A% R)
in the theory of tournaments is Cs-decomposable if O(TE+ T+ T2 = 0.

Note that the fact that a sequence of tournaments (7;,),en converges to a (jg—decompo—
sable homomorphism does not imply that any of the tournaments is ég—decomposable.
Rather, it only implies that the densities of the tournaments 7¢, 72° and 732 in T}, go to
zero as n goes to infinity.

We now define the notion of a k-equally C’},—decomposable tournament inductively.

Definition 34. A tournament 7' is 0-equally ég—decomposable if it is ég—decomposable.
For k > 0, a tournament T is k-equally C3-decomposable if either |T| < 1 or there
exists (A, B, () as in Definition 31 satisfying also the following properties.
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a. We have

b. The tournaments T4, T|p and T|¢ are (k — 1)-equally Cs-decomposable.

Trivially, every k-equally ég—decomposable tournament is also (k — 1)-equally Cs-
decomposable.

Note also that if n < 3%, then the only k-equally C’G—decomposable tournament of
size m is 62 We claim now that the sequence (62)HGN is convergent, but we defer the
proof of this claim. We will call the limit of this sequence the triangular homomorphism
and denote it by ¢g, .

The next theorem states the equivalence of what we could call quasi-triangular prop-
erties. The equivalence of Properties Ly, Ly and Lz imply that ¢, is the only homomor-
phism that maximizes the density of 7Y and is the only homomorphism that maximizes
the density of T31.

Theorem 35. If $ € Hom™(A° R) is a homomorphism in the theory of tournaments,
then the following are equivalent.

Ly: 9= ¢é3 ;
Ly : ¢ mazximizes the density of T3, that is, we have

O(T3) = max{y(T3) : ¥ € Hom™ (A", R)};
L3 : ¢ mazimizes the density of TS, that is, we have

O(T5") = max{¥(T5") : ¥ € Hom" (A", R)};

Ly : ¢ is balanced and 63—decomp05able, that is, we have
¢ () = ¢ (B) as; (T3 + T3° + T,%) = 0;
Ls : For every k € N, there exists a sequence (Trgk))neN of k-equally C_"g—decomposable
tournaments that converges to ¢.

We will prove Theorem 35 through a series of lemmas. We have already proved in
Sections 2 and 4 that Ly = Lo A Ls.
The next two lemmas follow from the techniques presented in Section 5.

Lemma 36. We have Ly, — Ly.
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Proof. By Lemma 7 and by Proposition 18 (see also Section 4), we know that
3

max{y(T}) : ¥ € Hom™ (A" R)} = 3’

and that the matrices Q(T?,1) and Q(T?,C%) from the semidefinite method are an opti-
mum solution with value 3/8.
Let then ¢ € Hom™ (A% R) be a homomorphism that maximizes the density of 79
Let us prove that ¢ is 63 decomposable. To do this, we will use Proposition 21. Table 3
has the values of p(T3 + ¢;T") for T" € T5 and where
g9 = [F(QT3, )] + [F(QTF. C5))]e:

10 11 12
T5 T5 T5

T T, T3 T3 Ty Te Ty T Ty
oI gry| 3 3 3 3 3 3 3 W 3 3 3 L
’88 8 8 8 8 200 8 200 8 40

for T" € T5 and where g = [F(Q(T2, 1)1 +[F(Q(T?, Cg))]]cd

~—

Table 3: Values p(T2+g; T

Proposition 21 implies that ¢(T8 + T2° + T2?) = 0, that is, the homomorphism ¢

is C_"g—decomposable.
It remains only to prove that ¢ is balanced

We first note that the matrix Q(7?, 1) has eigenvectors

U1=(1 16 +V179 2 — /179 1)_

7 ’ 7
vy — ( L 16— VIT9 24179 )
? 7 7 7 9
M Teb™)) with the eigenvalues 12(16 + +/179) and 12(16 —

(indexed by (TI‘;L,C%’

V' 179) respectively.
By Proposition 23, we know that ¢*(F(v;))

DR [p1(Ch - )] =

@' (F(vy)) = 0 a.s. This implies that

2/ ? (016 - gorma)

=E [¢"(F(v1) = F(v))] =
1/4 (since Cs + Try = 1,), which by Lemma 28, implies that ¢ is

Hence ¢(Cy) =
0

balanced.
Therefore ¢ satisfies Ly.

Lemma 37. We have Ly = L.

28
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Proof. By Lemma 7 and by Proposition 18 (see also Section 4), we know that
1
max{y(Ty') : 1 € Hom" (A%, R)} = —

and that the matrices Q(T2!, 1) and Q(T2',Cy) from the semidefinite method are an
optimum solution with value 1/16.
Let then ¢ € Hom™ (A° R) be a homomorphism that maximizes the density of T3!.
Since

5
Q(Tgl, 1) = EUUT

where v = (1,—1,—1,1) (indexed by (Tr3 ,CP}, lM,Tré’W)), Proposition 23 implies
that

@' (F(v) = ¢ (Try" =5 = Try™ + Try™") = ¢ ((a = 5)°)0 as.

Therefore ¢ () = ¢p*(B) a.s., that is, the homomorphism ¢ is balanced.
It remains only to prove that ¢ is C3-decomposable. To do this, we will use Proposi-
tion 21. Table 4 has the values of p(Td! + ¢;T") for T" € T5 and where

9= [FQT, )] + [FQT, Gl

T N N Y Y O A R
PP 4T | = & & o o e i —e o o
’ 16 16 16 16 16 16 16 400 16 400 16 80

Table 4: Values p(Ti! + ¢;T') for T' € T; and where ¢ = [F(Q(TS, 1)) +
[P(QTY, Cs )]s

Proposition 21 implies that ¢(78 + T2% + T2?) = 0, that is, the homomorphism ¢
is C3-decomposable.
Therefore ¢ satisfies Ly. n

For the next two implications, we will need to use the notion of a C_"g—decomposition
of a C3-decomposable tournament. To make it precise, let us first fix some notation. Let

S = {(o)k, ke NAVi € [k, 0; € [3]}

denote the set of all finite sequences of elements in [3] = {1,2,3} (and let us denote the
empty sequence by €).

As usual, we will denote by o7 the sequence obtained by concatenating 7 € ¥* to the
end of o € ¥* and we will denote the length of a sequence o € ¥* by |o].
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Definition 38. Let T be a C%—decomposable tournament. A ég—decomposition of T is a
family of sets A = (A, )sexn+ indexed by 3* such that

i. We have A, = V(7T);

ii. For every o € ¥* such that |A,| > 2, the triple (A1, A2, Asg) satisfies the items in
Definition 31 for T'|4,;

iii. For every o € ¥* such that |A,| < 1, the sets A1, A2 and A,z are pairwise disjoint
and Ao‘l U AO‘2 U Aa-g = Ao‘-

For every k € N, the k-th level of the ég—decomposition A is the family of sets A,
such that |o| = k. The skewness of the k-th level of A (denoted Ag(A)) is defined as

Ag(A) = max{|A,| : 0 € ¥ N |o| =k} — min{|A,| : 0 € ¥* A|o| = k}.

Note that a tournament is k-equally ég—decomposable if and only if it has a Cs-
decomposition A = (A,)sex+ such that Ay(A) < 1 for every ¢ < k.
Let us now define some notation on tournaments.

Definition 39. Let T be a tournament and A C V(7). We define

Nt (A)={veV(T):Vae A av € A(T)};
N (A)={veV(T):Vae€ Ava € A(T)}.
(

Note that NT(A)UN~(A) is always a subset of V(7T') \ A and may be a proper subset.
We now prove two basic facts about tournaments.

Lemma 40. If (T,,)nen s a sequence of tournaments with lim,,_,|T,| = co and ¢ > 1/2 is
a constant such that all but o(|T,,|) vertices of T,, have indegree greater than (c+o0(1))|T,|,
then ¢ = 1/2.

Proof. Let (T!)nen be a convergent subsequence of (7,),en and let ¢ € Hom™ (A% R) be
its limit and note that ¢*(8) > c a.s.
Since E [¢'(8)] = 1/2, we get ¢ < 1/2. O

Lemma 41. Let (T,,)nen be a sequence of tournaments converging to a balanced homo-
morphism ¢ and for every n € N, let A,, C V(T,,) be such that |A,| = Q(|T,]).
Under these circumstances, if NT(A,) UN~(A,) = V(T,) \ A, for everyn € N, then

INT(An)| = INT(An)| = o(|T))-

Proof. Suppose not. This means that by passing to a subsequence and possibly flipping
all arcs, we may suppose that there exists ¢ > 0 such that

INT(An)| = INT(An)| = €|T],

for every n € N.
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Note that if v € A,,, then we have

|T,| —2d~(v) > dt(v) —d (v) +1
= [NT(An)| +dj, (v) = IN"(An)| — dyy, (v) + 1
> €e|T,| +d} (v) —dy (v)+1
= €| T| + [An| — QdZn(U)
> (L+ )| Ay = 2dy (v),

where d}(v) = |[NT(v) N A| and d(v) = [N~ (v) N Al.
Since ¢ is balanced, we know that all but o(|7},|) vertices of A,, have outdegree (1/2+
0(1))|T}.|, hence, since |A,| = Q(|T,]), if v is one such vertex, we have

1+e¢

03,000 > (F35 o)) |

But this contradicts Lemma 40 for the sequence (7},|4, )nen- O

The next technical lemma says that if a sequence of ég-decomposable tournaments
converges to a balanced homomorphism, then we may suppose that at least two of Ag"),

A or A:())n) have non-negligible size. We defer the proof of this lemma to Section 8.

Lemma 42. If (T),)nen 1S a sequence of 53-decomposable tournaments that converges to
a balanced homomorphism ¢ € Hom™ (A%, R), then there exists a sequence (T)),en of Cs-

decomposable tournaments and for every n € N a Cs-decomposition (Af,”))aez* of T! such
that

e There exists a subsequence (Ty, Jnen of (Tn)nen such that the tournament T) can be
obtained from Ty, by flipping o(|Tk, |?) arcs (hence (T!)nen also converges to ¢);

o We have |A| = Q(|T2|) and |ASY| = Q(TY)).
Lemma 43. We have Ly — Ls.

Proof. Suppose that ¢ is balanced and 63—decomposable. Let TC~3 be the universal the-
ory of 53—decomposable tournaments, that is, the theory of tournaments that have no
copy of T¥, TJ° nor of T2? and note that ¢ can also be thought of as an element
of Hom™ (A°[T, ], R). This means that there exists a sequence (T5 e of Cs-decompo-
sable tournaments that converges to ¢ (which is, by definition, a sequence of 0-equally
63—dec0mposable tournaments). Furthermore, we may also suppose without loss of gen-
erality that \T,(LO)] is a power of 3 for every n € N.

Let us now construct by induction in k& the sequences (Ték))neN of k-equally 63—

decomposable tournaments converging to ¢ and preserving the property that ]Ték)] is
a power of 3 for every n € N.
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Suppose k£ > 0 and that we have already constructed (Tr(bkfl))neN. Applying Lemma 42
a total of 3*~! times to the tournaments induced by the (k — 1)-th level of the Cs-
) we know that there exists a sequence (T nen of Cs-decompo-
sable tournaments and for every n € N there is a @g—decomposition Al = (AS,"))U@*
of T} such that

decompositions of the T, ék_l

e For every t < k — 1, we have A,(A™) = 0;

e There exists a subsequence (T,Sf,:l))neN of (Tékil))neN such that the tournament 77

can be obtained from 7.~ by flipping 0(\T,§f{1)|2) arcs, all completely contained

within one of the sets AY” for some o € $* with |o| = k — 1;

e For every o € ¥* with |o| = k — 1, we have
4G | = QT 45| = QT
Fix 0 € ¥* with |o| = k — 1 and note that

NHAD)YUN=(AY) = v (1) \ ALY

o ol
NH(AB)Y UN— (A% = V(1) \ AL,
Furthermore, since A;(A™) = 0 for every t < k — 1, we also have
INF(AY)] — [N~ (A = |A%)| — 1A%,
INF(AY)] — [N~ (A% = |A%)| —1ALY).
Applying Lemma 41 to (A"),en and (A%),en, we get
1AL — 1A% = o(|T2));
1AL — |AY)| = o(IT2)).

Since o was chosen arbitrarily, we conclude that Ay(A™) = o(|T"|). This means that

we can edit o(|T7|2) arcs of T and obtain a k-equally Cs-decomposable tournament 7; k)
(note that it is crucial that |77 | is a power of 3) and since this doesn’t affect the convergence

of the sequence (T)),en, the sequence (T,&’f))neN also converges to ¢ and we still have
that ]TT(Lk)] is a power of 3. O

Lemma 44. We have Ls — L;.

Proof. For every k € N, let (quk))neN be a sequence of k-equally ég—decomposable tour-
naments converging to ¢.
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Our objective is to diagonalize the family of sequences (Tn(k))neN in a way that the
resulting sequence still converges to ¢. To do this, we let (D;);en be an enumeration of
the set of all finite tournaments 7", we set f(0) = 0, and for every k > 0, we let

_ 1
f(k) = min {u eN:|TP| > |T]Slzk_1;)\ AVt < k,VYm > u, [p(Dy; TW) — ¢(Dy)| < E} .

Note that the fact that (Ty(Lk))neN converges to ¢ guarantees that f(k) < oo for ev-
ery k € N.
Define now the sequence of tournaments (U, )nen by letting U,, = TJS( )) for every n € N.

We claim that (U, )nen also converges to ¢. Indeed, if 77 € T is a tournament, then
there exists ¢ € N such that D; = T”, hence, for every n > ¢, we have

p(DU) = 9(D)] <

which implies that lim,, ., p(Ds; U,) = ¢(Dy). Therefore (U, ),en converges to ¢.
By construction, we know U, is n-equally Cs-decomposable; this means that we can
obtain C\%Jn\ from U, by editing at most

Ual =i (10 _ (10 2 (L=37"Y
arcs of U,.

Therefore the sequence (éﬁJnl)”GN also converges to ¢, and since it is a subsequence
of (éﬁ)neN, we have ¢ = ¢, . a

—

Finally, we prove the convergence of the sequence (C?),en. This proof can be obtained
by reinterpreting the proofs of Lemmas 43 and 44.

Proposition 45. The sequence (C_”f;)neN is convergent.

Proof. Let

—

C={ICN:(C?

%)icr is convergent},

-

and for every I € C, let ¢; denote the limit of (C});e;.
From compactness of [0,1]7, we know that C # @. Even more, from compactness
of [0,1]7, we know that there exists Iy € C such that

In C {3":n €N},

Note that if I € C, then ¢; is Cs-decomposable (since the 52 are ég—decomposable)
and balanced (since all vertices of the C3 have outdegree either [|C?|/2] or [|C?]/2]).
Therefore ¢y satisfies Ly, for every I € C.
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Now we repeat the proof of Lemma 43 for each I € C to obtain sequences (T,Sk))neN

of k-equally C3-decomposable tournaments converging to ¢; for each £k € N. However, we
: (k)

require that these sequences are such that |T,"’| € Iy for every n, k € N.

We proceed then to the proof of Lemma 44 and we get that ¢; is also the limit of a
subsequence of (C%);cy,, hence ¢; = ¢y, for every I € C.

Therefore, every convergent subsequence of (C )neN converges to the same limit ¢y, .
By compactness of [0,1]7 again, this implies that (C Jnen 1s convergent. O]

7 Proof of Theorem 33

For convenience of the reader we state the theorem again below.

Theorem. A tournament T is Cs-decomposable if and only if it has no copies of T8, T2
nor of T32.

Proof. Tt is straightforward to check that T8, T20 and T22 are not Cs-decomposable and
that the property of C3-decomposability is hereditary (i.e., every subtournament of a Cs-
decomposable tournament is also Cs-decomposable). This concludes the proof for one
direction.

We will prove the other direction by induction in the size n of the tournament 7" with
no copies of T2, Td° nor of T2

If n < 2, then trivially T is C’3 decomposable. So let n > 3 and suppose the assertion
is true for tournaments of size smaller than n.

If T is transitive, then we can let A be the singleton consisting of the vertex of T
with maximum outdegree, let B = V(T) \ A and C' = @ and note that (A, B, C) satisfies
the items in Definition 31 (using inductive hypothesis for item (iv)), hence T is Cs-
decomposable.

Suppose then that 7" is not transitive and let a,b,c € V(T') be such that ab,bc, ca €
A(T).

Define the following sets

Vave = {v € V(T) : va,vb,ve € A(T)
(T) : av,vb,vc € A(T)
Vo ={v e V(T) :va,bv,cv € A(T)
(T) : av,bv,vc € A(T)

}; (T) : va,vb,cv € A(T)};
% (T) : va,bv,vc € A(T)};
+ Vi ={veV(T):av,vb,cv € A(T)};
b (T) : av,bv,cv € A(T)};

and note that these sets form a partition of V(7T') \ {a, b, c}.

We may suppose furthermore that (a, b, ¢) is chosen in such a way as to minimize |V;.U
Val.

We claim now the following assertions (see Figure 8).

a. Vay X Vi, Voe X Ve, Ve X Vi C A(T)), otherwise there would exist a copy of T2 in T
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a.\7'vab
bc ®
be
Ce®

10
T5

(a) Copy of T3 in T
in item (a) if vy €
Vi and vpe € Vp. are
such that wvp. beats
Vab-

Vg 0+——0C

g

10
T5

(e) Copy of T2 in T
in item (e) if vgpe €
Ve and v, € V, are
such that v, beats

Vabc-

b 0\47. Vp
L{'
as’
5

(b) Copy of Ti% in
T in item (b) if v, €
V, and v, € V}, are
such that v, beats
Vg

Vab @

Vabc ®

(f) Copy of T® in T in
item (f) if vgpe € Vape
and v, € Vy are
such that v, beats

Vabc-

ce
Vab @
Vg,
a 04\7‘0
be
3

(c) Copy of T8 in T
in item (c) if v, €
V, and v, € Vg, are
such that v,, beats
Vq-

(g) Copy of T8 in T
in item (g) if v, €
V., and vy € V5 are
such that vy beats
Vg

Ve 0—>0C

12
T5

(d) Copy of T3 in T
in item (d) if vy €
V and v, € V, are
such that v. beats
Vab-

be<+——eoq

;

Vab ®

10
T5

(h) Copy of T2% in T
in item (h) if v, €
Ve and vy € Vy are
such that vy beats

Vab-

Figure 8: Contradictions of the proof of Theorem 33 involving arcs between the sets V..,
Vibs Vies Vaes Va, Vi, Ve and V, and forbidden tournaments 7, 5?, T510 and T512. The arcs
omitted are all oriented downward.

b. V, x Vi, Vyy x Vo, V. x V,, C A(T), otherwise there would exist a copy of T3% in T}

c. Vo X Vap, Vi X Ve, Voo X Vi € A(T), otherwise there would exist a copy of 7% in T}

d. Vo X Vi, Vie X Vi, Vi x Viy C A(T), otherwise there would exist a copy of T42 in T

e. Vape X (V,UV,UVL) C A(T), otherwise there would exist a copy of T2 in T

f. Ve X (Vap U Vie U V) C A(T), otherwise there would exist a copy of 79 in T

g (V,UV,UV.) x Vi C A(T), otherwise there would exist a copy of T¢ in T}

h. (Vo U Vi UV,.) x V; C A(T), otherwise there would exist a copy of T2° in T.
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Now we claim that V. x Vi C A(T'). Suppose not, that is, suppose that v € Vipe
and vy € V are such that vgvg. € A(T). Since vgpea, avy € A(T), we have

{v e V(T) : va, vvgpe, vvg € A(T)}
U{v e V(T) : av, vapev, v € A(T)} C (Vape U V) \ {Vabe, Vo },
contradicting the choice of (a, b, c) such as to minimize |V U Vy|. Therefore we must

have Ve x Vi C A(T).

Figure 9 shows all arcs of T' proven so far.

Figure 9: Typical structure of 7" in the proof of Theorem 33.

Finally, we consider three cases.

If Vipe # @, let A = Ve, B = V(T) \ Ve and C = @ and note that (A, B, C)
satisfies the items in Definition 31 (using inductive hypothesis for item (iv)), hence T
is C_"g—decomposable.

fVy#a,let A=V(T)\ Vs, B= "V, and C = @ and note that (A, B, C) satisfies
the items in Definition 31 (using inductive hypothesis for item (iv)), hence T is Cs-
decomposable.
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And finally, if V. UV, = &, let
A= {a} UV, UVy; B={b}UV.UVy; C={cUV,UVy;

and note that (A, B, C) satisfies the items in Definition 31 (using inductive hypothesis for
item (iv)), hence T' is C3-decomposable. O

8 Proof of Lemma 42

For convenience of the reader we state the lemma again below.

Lemma. If (T,)nen is a sequence of ég—deeornposable tournaments that converges to a
balanced homomorphism ¢ € Hom™ (A% R), then there exists a sequence (T7.),en of Cs-

decomposable tournaments and for every n € N a Cs-decomposition (A((,n))(,eg* of T} such
that

e There exists a subsequence (Ty, )Jnen Of (T),)nen such that the tournament 77 can be
obtained from T}, by flipping o(|T}, |*) arcs (hence (T7),en also converges to ¢);

e We have |[A| = Q(|T]) and |A”| = Q(|T7)).

Proof. Suppose the lemma is not true and let (75,),en be a counter-example sequence.
For every n € N, let (B((,"))Jeg* be a C3-decomposition of T;,. Without loss of generality,
we may suppose that

vn e N,Vo € ¥, |B%| > |BY)| A |BY| = |BY).

Before we start the technical part, let us provide some intuition on the structure of the

proof. First, we will prove that since ¢ is balanced, whenever some Bfﬂl has non- negligible

size, by analyzing its outneighborhood and inneighborhood, we get that |B |B
for every t < v (Claim 46).

Since T,, is a counter-example sequence, we know that B§”) and Bén) are small. In
fact, since we are allowed to flip a negligible amount of arcs, for any constant ¢ € N, we

also know that BYZ% and BYZ?)) must be small, otherwise We could ﬁnd the first ¢ when

1t2| 1t3i

one of these are large and flip few arcs involving UC_1 1t2 and U 1t3 to merge them
n)

into Big and Blcg Even more, the same argument works to show that if one of Blu(n) t1g
or Blu(n)+13 is large then ?i%) Bm U Blt3 must be large as well (Claim 47). So we can
collect the vertices in these sets until we have a large amount of vertices by letting v(n)

be the first point when Ut (n) Bi?z) U Bﬁg is large. Since this is the ﬁrst point when this

is large, the set Biv(n) ., 1s also large, hence Ufg]) 119 ) and Ut 5 1t3 ) have approximately

the same Size 1 e., they are both large.

Since U 172) is large, there must exist some w(n) < v(n) such that B,
(Claim 48). By repeating the first part of the argument, the union Ut:O Bi?z) must be
n)

1u(n)2

(n)

Lu(nyy 18 large

large, which implies that B\, is large for some u(n) < w(n) — 1.
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A priori, the set Bium does not need to be asymptotically as large as Biw)(nm, but

|, which implies that B™  has asymptotic

since ¢ is balanced, we have ’Blu(nm‘ ]Blu(n>2 u(n)g

size at least 3|Blw(n)2| (Claim 49). This means that if we started our choice of w(n) as

the first point when Biw)(nu is, say, at least €|T},|, then |B
enough, which is a contradiction.

Let us now formalize the argument above, starting with all the claims.

1u(n)2| 296|Tn| When n iS lal"ge

Claim 46. Suppose u,v: N — N are two functions such that u(n) < v(n) for everyn € N.
[f‘Blv(n +1‘ - (’Tn’), then

v(n)

U Bi| - U B = o(|T]).

t=u(n) t=u(n)
Proof. Note that

v(n) v(n)
1v(n)+1 U Bltga N~ (Bﬁ(nwl) - U ng

t=0

N

Since |B§Z()n>+1\ = Q(|T%]), by Lemma 41, we have

v(n) v(n)

U B - [ B = o(IT.)). (7)

t=0 t=0

Note that, since u(n) < v(n), we have B(v)n>+1 C Biuzn), which implies |B(Zzn>] =
Q(|Ty]), hence we have

u(n)—1
U Big U Blts = o(|T5|), (8)
t=0

analogously to the case with v(n).
The result follows by subtracting equation (8) from equation (7). O

Claim 47. Ifu: N — N is a function such that |Blu(n)+12| = Q(|T.]), then

| Bl = T)).
t=0

Proof. Suppose the claim is not true. This means that there is a subsequence (T, )nen
of (T},)nen such that

u(kn)

U B | = o(ITk|). (9)

t=0
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Let T! be the tournament obtained from T}, by flipping all the arcs in

u(kn)
kn kn
AT | | BE ., U Bl
u(kn)

u U B | x U B
) (k)

U U Blfg B1u7(1kn)+12
t=0

and note that equation (9) and Claim 46 imply that the total of arcs flipped is o(|T}, |?).
Let

u(kn)+1 u(kn)+1

Ag = Biu(k)n)-FQ? Ag ) = U BitQ ) A3 = U Blt3)’
t=0 t=0
and note that |A] + o(|T,|) = 14| = Q(|T2)).
Completing (Ag ),A2 ,A(")) to a Cs-decomposition of T! contradicts the choice of
(T)nen as a counter-example sequence. ]

Claim 48. Ifu: N — N is a function such that |B¥f?n)+l| = Q(|T,|) and

uUBW = Q(|T,)),

1t2

then there ezists a function w: N — N such that w(n) < u(n) and |Blw(n)2| = Q(|75.]).

Proof. For every n € N, let

M(n) = max{|B{)| : w < u<n>};

= max { U Bm

S(n) = max{\Bls3| - |B132| ps <u(n)h

By Claim 46, we know that R(n) = o(|T,|) and S(n) = o(|T,]).

Suppose towards a contradiction that the claim is false. This means that we must
have M(n) # Q(|T,]), that is, there exists a subsequence (T, )nen Of (7))nen such
that M (k,) = o(|Tx,])-
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Note now that if t < wu(k,) and v, € Bitg) (see Figure 10 further ahead for the
neighbourhoods of the set Bgfg)), then

d*(v) = U Bll2 + ‘Blt3 + d+(kn>(vt)
d () = U B§f§ + ‘B1t+1 + d_(kn)(vt)

where d(v) = |[NT(v) N A| and d(v) = [N~ (v) N Al.
Since
5| < Rlkn);

192 143

Biy| < |By’

+ S(kn) < M(ky) + S(ky);
dt () =d i, (0) < B3| < M(k,);

1t2 1t2 12
kn kn
Bi| > | B

1u(kn)+1]

we have

4" () = d () < R(ky) +2M (k) + S(ka) = [BE, 0]

Note that this bound does not depend on t.
. kn)
Since R(kn) = o(|Ti,|), M(kn) = o|Tk, 1), S(kn) = o(|Ty,|) and [B{si), .| = Q(|Tk, ),
this implies that

4 (v) = d () < R(ka) +2M (k) + S(ka) = | BED, 0| < =T |,
for every v € U;‘L’g“ 51::; and n € N large enough, which contradicts the fact that ¢ is
balanced (since || J!) m | =Q(T,))). O
Claim 49. Suppose u,v: N — N are two functions such that u(n) < v(n) for everyn € N.
[f|B1u(n)2| = (|T |) and |Blv(n)2| = (|T’ﬂ|)7 then
AR (n)
|B1u(n)2| =2 U BI?Q + 3|B1Z(n)2| + 0(‘Tn‘)
t=u(n)+1

Proof. By Lemma 41, we know that |[NT(B 1v<n>2)’ — |N~(B 1U(,L)2)| = o(|T,]), that is, we
have (see Figure 10)

U Bm +|B1v(n>3|_ U Blt3 B iz()nHl = o(|To]).
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A
o (n)

Figure 10: Neighbourhoods of B™

1v(n)2”
By Claim 46, this implies that
1By ol = 1Byl = olITa)). (10)
With an analogous argument for u(n), we get
|B$2n)2| - |B£:()n)+1 = 0(|Tn|)7
which implies
) R — () ) )
|Blu(n)2| - U (B1t2 U Bltg) - |Blv(n)+1 - |Blv(n)2| - |Blv(n)3| = O(lTnl)
t=u(n)+1
Since |B§f()n)| > |B§f()n)+1| > |B§f()n)2| = Q(|T,|), two more applications of Claim 46
yield
o) RN )
Biitool =2 | BYa| = 1Byl = 2B, = o(Tl). (11)
t=u(n)+1
Subtracting equation (10) from (11), we get
(n) e (n) (n)
|Blz<n)2| -2 U B1?2 - 3\Blf(n>2| = o(|T|). O

t=u(n)+1
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We are now in condition of finishing the proof of the lemma. For every n € N, let

IT!}

Note that v(n) is well-defined for n > 3 and, by Claim 46, we have ]Ut e 1t2| = Q(|T,]).
Furthermore, note that

v

B B =

t=0

v(n) :min{v eN:

1
|B1v(n)+1 2 §|Tn|§

which, by Claim 48, implies that there exists a function w: N — N with w(n) < v(n) for

every n € N and such that ]Blw<n | = Q(|7}.]), that is, there exists ny € N and € > 0 such
that

|B €T

1w<n>2|

for every n > ny.
For every n € N, let

wo(n) = min {w eN:|B| > e|Tn|}

and note that, for every n > ng, we have that wy(n) is well-defined and wy(n) < w(n).

Since |B1wo ol = Q|T,[), by Claim 47, we know that

wo(n)—1

) BY| =Tl
t=0

Another application of Claim 48 yields then a function u: N — Nwith u(n) < wy(n)—1

for every n € N and such that |Blu(n)2| = Q(|T,.)).
Now, by Claim 49, we have

wo(n)—1
=2 | BW|+3B"

t=u(n)+1

Bl |+ o(|Twl) = 3€[To| + o(|To)),

1u(n)2 1wo(n)9

which implies that for n € N large enough, we have |Blu(n)2| > €|T),|, contradicting the
definition of wy(n). O
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Appendix

A.1 Positive semi-definite matrices used
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eyt G oTebM ™
1 -1 -1 1 1 1 \"'
35 1 1 1 -1 35 | —1 —1
7 —_ . = —
Q5. 1) = 48 -1 1 1 -1 48 -1 -1
1 -1 -1 1 1 1
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Tr4Tr§ ,3 W;rrg Tr4Tr§ ,2 Rzrg 1
1 0 -1 1
0 0 0 0
—1 0 1 -1
1 0 -1 1
7 *\ .
Q(T5 ) TI'3) =9 0 0 0 0
1 0 -1 1
—1 0 1 —1
—1 0 1 —1
1 1\
0
—1 —1
1 1
=5. 0 . 0
1 1
—1 —1
—1 —1
ng’: )3 Lf§ ng )2 Rf§ )1
0 0 0 0
0 1 0 0
0 0 0 0
T AR\ . 0 0 0 0
0 -1 0 0
0 0 0 0
0 0 0 0
0 0\
1 1
0 0
0 0
=12- 0 0
-1 —1
0 0
0 0
Try” Ch
2473 _ 363 _ 757
6400 1600
_ 363 1407
QT3 1) = | _ ¥ HY
2062° W
6400 1600
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1,M
Try
757

OO OO oo oo
W

Tr4Tr§,1 R4Tr;;,2 Tr4Tr§,o
1 —1 —1
0 0 0
—1 1 1
1 —1 —1
0 0 0
1 —1 —1
—1 1 1
-1 1 1
ng ng‘,u ng‘,ls
0 0 0
—1 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
TryW
2007
090
'y
2461
6400
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4 g3
1 -1
99 -1 1
TS, A)= .
1 -1
B
31 43
40 0
3 Bh
ol
. ﬁ]o ﬁO
Q(T5,Tr3) = I TR
200 200
R oF
357 255
00 4
RGP
301 319
100 5
L3 159
20 0
8 Ak 2 —b
Q?(jlsa(jg) = __iég 1?0
& o
K
25 4
RG 5
36 0
0 192
—18 0
= 1 —18 0
9 ¥\ _ .
Q(TES?C?»)_ 5 —18 0
0 —192
—18 0
36 0

-1 1
1 -1
1 -1
-1 1
TE? R
_ 61 9
200 100
_ 131 331
2
B 18?7
Efo _fﬁig
4 25
_1 T
4 25
e _ 223
25 100
1 _ 19
25 100
Gk .2 gx1
R,3 R,3
13 13
2 2
e Ao
50 50
389 13
100 20
13 389
B T
2
(I
4
_ 123 _ 37
50 25
9 _ 123
50 50
eyt Ci
75 =33
—-33 33
—117 33
7 =33
RSS’Q ng’l
—18 —18
0 0
36 —18
—18 36
36 —18
0 0
—18 36
—-18 —18
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—18
—18

~117
75
ws
0
—192
0

0
192

R
—18
0
—18
36

—18

5,12
4

36
—18

c* 13
37
R,

36

—18
—18
—18

—18
36
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Tré’L C% Tré’M Tré’w

1 -1 -1 1 1 1\
5 —1 1 1 —1 5) —1 —1
11 _ 92 _ . .
QT 1) = 16 -1 1 1 -1 16 -1 -1
1 -1 -1 1 1 1
ng 3 Lfg ng 2 ng’j 1 ng 23 Wfé‘ Rf§ 12 ng 13
24 12 6 6 -6 -12 -6 —24
12 25 12 12 —-12 =25 =12 —-12
6 12 27 6 27 —-12 -6 —6
= 1 6 12 6 24 -6 —-12 =24 —6
11 *\ _ .
QT3 C3) = 5 -6 —12 —27 —6 27 12 6 6
—12 =25 —-12 -—12 12 25 12 12
-6 -12 -6 —24 6 12 24 6
—24 —-12 —6 —6 6 12 6 24
e L
1 -1 -1 1 1 1\
1 -1 1 1 -1 1 —1 —1
12 _ - . .
QI5°,1) = 16 -1 1 1 -1 16 -1 -1
1 -1 -1 1 1 1
Tr4Tr§ ,3 W4Tr§ Tr4Tr§ 2 R4Tr§ ,1 L:lrrg Tr}rg 1 Rng ,2 Tr4Tr§ ,0
3 2 -3 3 —2 3 -3 -3
2 3 —2 2 -3 2 -2 -2
-3 —2 3 -3 2 -3 3 3
1 3 2 -3 3 -2 3 -3 -3
12 ¥\ __ .
QLT =51 o 3 2 9 3 2 2 2
3 2 -3 3 -2 3 -3 -3
-3 -2 3 -3 2 -3 3 3
-3 —2 3 -3 2 -3 3 3
ngﬁ,s Lf§ ng 2 ng,l Rf§,23 ngf RfS 12 ngﬁ,ls
7 5 7 7 -7 =5 =7 —7
5) 5) 5) 5) -5 -3 =5 -5
7 5 7 7 -7 =5 =7 —7
7 5 7 7 -7 =5 =7 -7

- 1
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A.2 Characteristic polynomials of matrices used

35
PQ(T57’1)<SL’) = fI?4 — E$3.
Porz e (T) = ¥ — 302"
PQ(Tg,C:;)(x) = 2® — 241"

b (2) = 55 - 3450823 , 255999851
xr)=Tr — —X xr — xZ.
QTS 32 10240000 16384000000
99
PQ(TSS,A)(J“) = x4 — %Ig.
b () — o 25491;_+_6755931ﬁ__ 149230249 ; 133434036319 ,
QIS ) = 100 5000 500000 400000000
1980952353887 3_+_11839377144943 ,  346051162035699
— X xr — xZ.
10000000000 200000000000 50000000000000
) (96)__368__gglxu_50849291_6__159696545Sx5+12575579920:3:64
QT5.CHNY 25 10000 50000 12500000
1934738582639 3+700918768199117 ,  300346502258201
125000000 62500000000 97656250000
48 693
PQ(Tg,l)(x) = $4 — glﬁ + m.ﬁbj.
94608 , 4478976 .
xr — X .

. _ .8 7
PQ(Tg’Cg)(x) =2° —120z" + 5% 15
5!
PQ(Tll,l) (J}) — ZE4 - 1133
12828 327744 565056
8 7 6 5 4
1
Pz (@) = — ng
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