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Abstract

The game of best choice, also known as the secretary problem, is a model for
sequential decision making with many variations in the literature. Notably, the
classical setup assumes that the sequence of candidate rankings is uniformly dis-
tributed over time and that there is no expense associated with the candidate inter-
views. Here, we weight each ranking permutation according to the position of the
best candidate in order to model costs incurred from conducting interviews with
candidates that are ultimately not hired. We compare our weighted model with the
classical (uniform) model via a limiting process. It turns out that imposing even
infinitesimal costs on the interviews results in a probability of success that is about
28%, as opposed to 1/e ≈ 37% in the classical case.

Mathematics Subject Classifications: 05A05, 05A16

1 Introduction

The game of best choice, or secretary problem, is a model for sequential decision making.
In the simplest variant, an interviewer evaluates a pool of N candidates one by one.
After each interview, the interviewer ranks the current candidate against all of the can-
didates interviewed so far, and decides whether to accept the current current candidate
(ending the game) or to reject the current candidate (in which case, they cannot be
recalled later). The goal of the game is to hire the best candidate out of N . It turns
out that the optimal strategy for large N is to reject an initial set of N/e candidates
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and hire the next candidate who is better than all of them (or the last candidate if no
subsequent candidate is better). The probability of hiring the best candidate out of N
with this strategy also approaches 1/e. See [GM66] for an introduction to these results.
Many other variations and some history have been given in [Fer89] and [Fre83].

We model interview orderings as permutations. The permutation π of N is expressed
in one-line notation as [π1π2 · · · πN ] where the πi consist of the elements 1, 2, . . . , N
(so each element appears exactly once). In the best choice game, πi is the rank of
the ith candidate interviewed in reality, where rank N is best and 1 is worst. What
the player sees at each step, however, are relative rankings. For example, correspond-
ing to the interview order π = [2516374], the player sees the sequence of permutations
1, 12, 231, 2314, 24153, 241536, 2516374 and must use only this information to determine
when to accept a candidate, thereby ending the game.

Let SN be the set of all permutations of size N . Given some statistic c : SN → N
and a positive real number θ, we define a discrete probability distribution on SN via

f(π) =
θc(π)∑

π∈SN
θc(π)

.

Given a sequence of i distinct integers, we define its flattening to be the unique permuta-
tion of {1, 2, . . . , i} having the same relative order as the sequence. Given a permutation
π, define the ith prefix flattening, denoted π|[i], to be the permutation obtained by flat-
tening the sequence π1, π2, . . . , πi. In the weighted game of best choice, introduced
in [Jon19], some π ∈ SN is chosen randomly, with probability f(π), and each prefix flat-
tening π|[1], π|[2], . . . is presented sequentially to the player. If the player stops at value
N , they win; otherwise, they lose. We are interested in calculating the win probability,
under optimal play, for finite N as well as in the limit as N →∞.

In this note, we follow a suggestion by the first author to let c(π) be the position of the
largest element in π, indexed starting from 0; that is, c(π) = π−1(N) − 1. Equivalently,
this is the number of “wasted” interviews required before we can hire the best candidate.
Setting θ < 1 has the effect of imposing a multiplicative cost of θ on each wasted inter-
view. For example, the best candidate being hired immediately will contribute 1 = θ0

(before normalization) to the win probability, whereas each failed interview reduces the
contribution of an eventually successful hire by a factor of θ. This weighted model is
relevant when the interviews themselves are costly, or if time spent interviewing detracts
from the time spent working productively such as when the position being filled is only
for a limited term or requires a substantial training investment. Also, observe that when
θ = 1, we recover the complete uniform distribution on SN , corresponding to the classical
model.

We obtain some interesting behavior vis-à-vis the classical model. The optimal strat-
egy is still positional, for which we reject about 0.435/(1− θ) initial candidates and select
the next best candidate. As N → ∞ and θ → 1, however, this strategy succeeds about
28% of the time even though we have a 1/e ≈ 37% success rate at θ = 1. That is, the
asymptotically optimal strategy does not vary continuously with the parameter θ which
seems to limit the durability of any “policy advice” derived from the classical model
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(such as e.g. [SV99]). We found a similar discontinuity in the optimal strategy for the
Mallows model in [Jon19], although the success probability there still approached 1/e. In
the present model, both the strategy and probability of success are discontinuous. Evi-
dently, there is a “price” of about 8.6% in the asymptotic success rate for imposing any
wasted interview penalty, no matter how small.

Although there is an established “full-information” version of the game in which the
player observes values from a given distribution, it seems that only a few papers have con-
sidered nonuniform rank distributions for the secretary problem. Pfeifer [Pfe89] considers
the case where interview ranks are independent but have cumulative distribution functions
containing parameters determined by the interview positions. The paper [RF88] consid-
ers an explicit continuous probability distribution that allows for dependencies between
nearby arrival ranks via a single parameter. Inspired by approximation theory, the paper
[KKN15] studies some general properties of non-uniform rank distributions in the secre-
tary problem. Our work also fits into a recent stream of asymptotic results for random
permutations by researchers in algebraic combinatorics such as [MP14, CDE18, ABNP16].

2 The Model

The left-to-right maxima in a permutation π consist of elements πj that are larger in
value than every element πi to the left (i.e. for i < j). In the game of best choice, it is never
optimal to select a candidate that is not a left-to-right maximum. A positional strategy
for the game of best choice is one in which the interviewer transitions from rejection to
hiring based only on the position of the interview (as opposed to adjusting the transition
based on the prefix flattenings that are encountered). More precisely, the interviewer may
play the r-positional strategy on a permutation π by rejecting candidates π1, π2, . . . , πr
and then accepting the next left-to-right maximum thereafter. We say that a particular
interview rank order is r-winnable if transitioning from rejection to hiring after the
rth interview captures the best candidate. For example, 574239618 is r-winnable for
r = 2, 3, 4, and 5. It is straightforward to verify that a permutation π is r-winnable
precisely when position r lies between the last two left-to-right maxima in π.

It follows from the results in [Jon19, Section 3] that the optimal strategy in our game
of best choice is positional 1, and we let

WN(r) =
∑

r-winnable π ∈ SN

θπ
−1(N)−1.

Theorem 1. We have the recurrence

WN(r) = (N − 1)WN−1(r) + r(N − 2)!θN−1

with initial conditions W1(0) = 1 and W1(r) = 0 for all r > 1.
1Briefly, our statistic c(π) = π−1(N)− 1 is essentially prefix equivariant [Jon19, Definition 3.2] in the

sense that c(π)− c(σq · π) = 0 = c(12 · · · k)− c(q) for all eligible prefixes q. This is enough to obtain the
results in [Jon19, Theorem 3.4] and subsequently [Jon19, Theorem 3.7].
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Proof. There are two cases for the r-winnable permutations π of N . If N does not lie in
the last position, then we may view the initial segment of π uniquely as an r-winnable
permutation of N − 1 by flattening. Since there are N − 1 possible values for the last
position, this case contributes (N − 1)WN−1(r) to WN(r). If N lies in the last position,
then π will be winnable if and only if N − 1 lies in one of the first r positions of π. For
each of these choices, we may permute the remaining entries in (N − 2)! ways, so these
contribute r(N − 2)!θN−1 all together.

Corollary 2. We have

WN(r) =

(N − 1)! if r = 0

(N − 1)! r
N−1∑
i=r

θi

i
if 1 6 r 6 N − 1

Proof. This follows from Theorem 1 by induction.

Theorem 3. Fix some positive θ 6= 1. The probability of winning the game of best choice
using the strategy that rejects r initial candidates is

Pr(N, θ) =
r(1− θ)

∑N−1
i=r

θi

i

1− θN

if r > 0 and is 1−θ
1−θN if r = 0.

Proof. By definition, the probability of winning is( ∑
r-winnable π∈SN

θc(π)
) / ( ∑

π∈SN

θc(π)
)

=
WN(r)

(N − 1)!(1 + θ + θ2 + · · ·+ θN−1)
.

The result then follows from the previous corollary.

3 Results

Suppose now that θ < 1, and take the limit as N →∞. Then the probability of success
for the strategy that initially rejects r candidates becomes

Pr(θ) = r(1− θ)
∞∑
i=r

θi

i
.

We obtain a curve for each nonnegative value of r (interpreting P0 as 1 − θ), the first
several of which we have plotted in Figure 1. For each value of θ, one of the curves is
maximal, yielding the optimal strategy and probability of success. For example,

r = 0 1 2 3
is optimal for θ ∈ (0, 0.6321] [0.6321, 0.7968] [0.7968, 0.8609] [0.8609, 0.8945]
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Figure 1: The first few asymptotic curves P0, P1, . . .

Lemma 4. For each i, the intersection of Pi−1 and Pi coincides with the maximum value
of Pi.

Proof. To see this, the derivative of Pr with respect to θ is

r(1− θ)
∞∑
i=r

θi−1 − r
∞∑
i=r

θi

i
= r(1− θ) θ

r−1

1− θ
− r

∞∑
i=r

θi

i
= r

(
θr−1 −

∞∑
i=r

θi

i

)
.

whereas the successive differences Pr−1 − Pr are

(1− θ)

(
((r − 1)− r)

∞∑
i=r

θi

i

)
+ (r − 1)(1− θ) θ

r−1

r − 1
= (1− θ)

(
θr−1 −

∞∑
i=r

θi

i

)
.

Hence,

Pr−1 − Pr =
1− θ
r

dPr
dθ

so the successive differences and derivatives have the same zeros.

The first intersection occurs at θ = 1− 1/e with value P = 1/e. Subsequent intersec-
tions can be estimated numerically but have no elementary closed form:

r d
dθ
Pr solution for d

dθ
Pr = 0 value of Pr

1 ln(−θ + 1) + 1 θ = 1− 1/e ≈ 0.63212 1/e ≈ 0.36788
2 4θ + 2 ln(−θ + 1) θ ≈ 0.796812 0.323805
3 9/2θ2 + 3θ + 3 ln(−θ + 1) θ ≈ 0.860917 0.309256
4 16/3θ3 + 2θ2 + 4θ + 4 ln(−θ + 1) θ ≈ 0.894457 0.302113
5 25/4θ4 + 5/3θ3 + 5/2θ2 + 5θ + 5 ln(−θ + 1) θ ≈ 0.915009 0.297883
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Figure 2: The maximum (α, β) for xE1(x)

Thus, the optimal strategy and probability of success is given by P (θ) = max
r>0

Pr(θ), the

maximum Pr function in the regime determined by θ. By Lemma 4, P (θ) is monotonically
decreasing and bounded below. Hence, there is a limiting value as θ → 1. However, the
limit is clearly bounded away from 1/e, which is the value at θ = 1 according to the
classical analysis. Our goal in this section is to determine limθ→1 P (θ) more precisely.

Recall the exponential integral

E1(x) =

∫ ∞
x

e−t

t
dt

which we view as a function of a positive real variable x (see e.g. [OLBC10]). This is a
standard special function implemented in many mathematical software systems.

For our main result, we consider the maximum value attained by the related function
F (x) = xE1(x) on (0,∞); see Figure 2 for a plot. Although there is no elementary
form for this maximum, it occurs where E1(x) = e−x so can be estimated numerically
to arbitrary precision. Let α and β be defined by F ′(α) = 0 and F (α) = β. Then,
α ≈ 0.43481821500399293 and β ≈ 0.28149362995691674.

We are now in a position to give our main result.

Theorem 5. As θ approaches 1 from the left, the optimal strategy in our asymptotic
weighted game of best choice approaches a positional strategy that rejects α

1−θ initial can-
didates and selects the next candidate better than all of them. This strategy has a success
probability of β.

Proof. We would like to optimize Pr(θ) = r(1 − θ)
∑∞

i=r
θi

i
for large r and θ chosen

appropriately close to 1. We estimate the series by viewing it as a left or right sum for
the corresponding integrals:∫ ∞

t=r

θt

t
dt <

∞∑
i=r

θi

i
<

∫ ∞
t=r

θt−1

t− 1
dt =

∫ ∞
t=r−1

θt

t
dt.
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Hence, we may approximate Pr(θ) by P̃r(θ) = r(1− θ)
∫∞
t=r

θt

t
dt with error less than

r(1− θ) θ
r−1

r − 1
< 4(1− θ)θr

since the integrand is decreasing, r − 1 > r/2, and θ > 1/2.
Next, we change variables from r to c = (1 − θ)r, and from t to u = (1 − θ)t in the

integral. We obtain du = (1− θ) dt so

P̃c(θ) = c

∫ ∞
u=c

(
θ1/(1−θ)

)u
u

du.

and our error estimate for |P − P̃ | becomes 4θc/(1−θ)(1− θ).
Now, we are in a position to take the limit as θ → 1, using limθ→1 θ

1/(1−θ) = 1/e. This

forces P → P̃ by our error estimate, and

P̃c → c

∫ ∞
u=c

e−u

u
du = cE1(c).

Optimizing this function for c ∈ (0,∞) then determines the asymptotically optimal posi-
tional strategy (where we reject r = c

1−θ initial candidates) and probability of success.

We can also solve the model when θ > 1. One interpretation here is that there is some
“trend” in the candidate pool (e.g. due to changes in general economic conditions such
as unemployment or interest rates) that is amplifying the probability of seeing the best
candidate later. Once again, we find that including even an infinitesimal trend completely
changes the optimal asymptotic strategy.

Theorem 6. If θ > 1, the probability of success for the strategy that initially rejects r = N
λ

candidates approaches 1
λ
, as N →∞. Hence, the asymptotic model does not depend on θ.

Proof. Recall Theorem 3; we claim

lim
N→∞

PN/λ(N, θ) = lim
N→∞

N(1− θ)
λ(1− θN)

N−1∑
i=N/λ

θi

i
=

1

λ
.

To see why, consider the “almost telescoping” sum

(1− θ)
N−1∑
i=N/λ

θi

i
=

1

N/λ
θN/λ − 1

N − 1
θN −

N−1∑
i=(N/λ)+1

1

i(i− 1)
θi.

If we divide by −θN and take the limit N →∞ term by term with θ > 1, we find that only
the leading (i.e. middle) term survives. Hence, our limit is limN→∞

N
λ(1−θN )

(
− 1
N−1θ

N
)

=
1
λ
.

Thus, for large N we find that it is optimal to choose the last candidate (and win
almost all of the time!), obtaining another discontinuity with the θ < 1 and classical
models.
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Note added in proof

Although we were unaware of it until after our work was accepted for publication, the
paper [Ras75] solves a very similar problem to the one we are considering. More specifi-
cally, we compute in Theorem 3 the probability of winning the game of best choice under
a non-uniform distribution whereas Rasmussen–Pliska compute in their Equation (2.6)
the expected value of a random variable representing the non-uniform payoff for the game
played on a uniform distribution. For any particular N and θ, these problems are dual
to each other in the sense that their corresponding formulas are off by the multiplicative
constant θ+θ2+θ3+...+θN

N
. Since our weights form a probability distribution, we believe our

model facilitates a clearer comparison with the classical secretary problem.
Rasmussen–Pliska obtain an asymptotic estimate for the optimal strategy that agrees

with ours, using different methods. They also note that, for fixed θ, their expected payoff
tends to 0 as N tends to infinity (because their denominator does not scale with θ). By
contrast, our model has nonzero probabilities, as N tends to infinity, given by the value
of Pr(θ) where r is optimal for the fixed θ.
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