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Abstract

Motivated by work of Gusein-Zade, Luengo, and Melle-Hernández, we study a
specific generating series of arm and leg statistics on partitions, which is known
to compute the Poincaré polynomials of Z3-equivariant Hilbert schemes of points
in the plane, where Z3 acts diagonally. This generating series has a conjectural
product formula, a proof of which has remained elusive over the last ten years. We
introduce a new combinatorial correspondence between partitions of n and {1, 2}-
compositions of n, which behaves well with respect to the statistic in question. As
an application, we use this correspondence to compute the highest Betti numbers
of the Z3-equivariant Hilbert schemes.

Mathematics Subject Classifications: 05A17, 05A19, 14N10

1 Introduction

1.1 Motivation

Let X be a smooth complex surface and let X [n] denote the Hilbert scheme of n points
on X; that is, the moduli space of zero-dimensional, length-n subschemes of X. Then
X [n] is a smooth, quasi-projective variety of complex dimension 2n, and its topology has
a rich structure. In particular, Göttsche proved that the Poincaré polynomials of X [n]

are determined from the Betti numbers of X through a simple product formula [3].
In [4], Gusein-Zade, Luengo, and Melle-Hernández initiated a study of the topology of

equiviariant Hilbert schemes, which can be thought of as parametrizing zero-dimensional
substacks of the finite quotient stack [X/G]. They proved a product formula for Poincaré
polynomials of [C2/Zk][n] where the cyclic group Zk acts anti-diagonally, but the diagonal
action proved more elusive. In the case of the diagonal action of Z3, they discovered the
following conjectural product formula.

Conjecture 1 (Gusein-Zade, Luengo, and Melle-Hernández [4]). Let the cyclic group Z3

act diagonally on C2 and let bk(−) denote the kth topological Betti number. Then

1 +
∑
n>0
k>0

b2k

([
C2/Z3

][n]
)
tkqn =

∏
m>1

1

1− tm−1q3m−2

1

1− tmq3m−1

1

1− tm−1q3m
.

the electronic journal of combinatorics 26(1) (2019), #P1.46 1



In order to study the topology of [C2/G][n], Gusein-Zade, Luengo, and Melle-Hernández
worked with a combinatorial interpretation of the Betti numbers, which we review in
Subsection 1.2 below. This combinatorial approach generalizes methods of Ellingsrud and
Strømme [2] in the case of (C2)[n]. Using the combinatorial formulation, Betti numbers
can easily be computed for small n, and the computations evince the product formula in
Conjecture 1.

One application of the new combinatorial techniques that we develop in this paper is

the verification that Conjecture 1 correctly computes the top Betti number of [C2/Z3]
[n]

for all n, which is the content of the following theorem.

Theorem 2. Let the cyclic group Z3 act diagonally on C2. Then, for all n > 2,

b2n

([
C2/Z3

][2n]
)

= 1, b2n

([
C2/Z3

][2n+1]
)

= 2,

and all higher Betti numbers vanish.

Remark 3. For n = 0 or 1, it is immediate from the combinatorial formulation below

that b0

(
[C2/Z3]

[1]
)

= b2

(
[C2/Z3]

[2]
)

= b2

(
[C2/Z3]

[3]
)

= 1, and all higher Betti numbers

vanish.

1.2 Combinatorial formulation

Concretely, the equivariant Hilbert scheme can be defined as the following set of ideals:[
C2/Z3

][n]
= {I ⊆ C[x, y] : dimC(C[x, y]/I) = n and Z3 · I = I}

=
(
(C2)[n]

)Z3
.

Here, Z3 = 〈ξ3〉 is generated by a primitive third root of unity, and ξ3 · (x, y) = (ξ3x, ξ3y).

The algebraic torus (C∗)2 acts on [C2/Z3]
[n]

, and, upon choosing a general subtorus C∗,
the Bia lynicki-Birula decomposition allows one to compute the Betti numbers of [C2/Z3]

[n]

from knowledge of the C∗-weights on the tangent space at each C∗-fixed point [1]. Since
the C∗-fixed points are monomial ideals, which correspond to partitions, the left-hand
side of Conjecture 1 can be written as a sum over partitions.

To set combinatorial notation, let Λ denote the set of partitions. For each partition
λ ∈ Λ, we represent λ as a (southwest-justified) Young diagram. Let |λ| denote the
number of boxes in λ, and for a given box � ∈ λ, let the arm a(�) and leg l(�) denote
the number of boxes above and to the right of �, respectively; see Figure 1. Define the
Z3-weight of a partition to be

wtZ3(λ) := |{� ∈ λ : l(�) > 0 and a(�) + 1 = l(�) mod 3}| . (1)

A standard analysis of the tangent spaces in the Hilbert schemes, carried out in [4], shows
that Conjecture 1 is equivalent to the following combinatorial formula.

Conjecture 4 (Combinatorial reformulation of Conjecture 1; c.f. [4]). With wtZ3(λ)
defined as in (1),∑

λ∈Λ

q|λ|twtZ3 (λ) =
∏
m>1

1

1− tm−1q3m−2

1

1− tmq3m−1

1

1− tm−1q3m
.
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♥
♥

♦ ♦ ♦

Figure 1: A partition λ and a specified box � ∈ λ with a(�) = #♥ = 2, l(�) = #♦ = 3,
and |λ| = 12.

The condition l(�) > 0 in wtZ3(−) can be cumbersome to work with, so we define a
modified weight function:

w̃tZ3(λ) := |{� ∈ λ : a(�) + 1 = l(�) mod 3}| . (2)

In Section 2, we prove that Conjecture 4 is equivalent to the following formula, which is
more natural from a combinatorial perspective.

Conjecture 5. With w̃tZ3(λ) defined as in (2),∑
λ∈Λ

q|λ|tw̃tZ3 (λ) =
∏
m>1

1

1− tm−1q3m−2

1

1− tmq3m−1

1

1− tmq3m
.

The only difference between the product formulas in Conjectures 4 and 5 is in the third
term in the product. Theorem 2 can then be reformulated combinatorially as follows.

Theorem 6. If we define coefficients b̃k,n by the formula∑
λ∈Λ

q|λ|tw̃tZ3 (λ) =
∑
k,n

b̃k,nt
kqn,

then, for n > 2,
b̃n,2n = 1, b̃n,2n+1 = 3,

and b̃k,n = 0 for all k > n/2.

1.3 Methods

In Proposition 8, we show that every partition of n can be decomposed uniquely into a
{1, 2}-composition of n; that is, a sequence (a1, . . . , ak) where ai ∈ {1, 2} and

∑k
i=1 ai = n.

Given such a composition corresponding to a partition λ, we then prove in Theorem 14
that w̃tZ3(λ) is equal to the number of times 2 appears. Therefore, Conjecture 5 boils
down to understanding exactly which compositions arise from partitions. In general, this
seems to be a very difficult question: partition numbers grow at a much slower and more
mysterious rate than the number of {1, 2}-compositions, which are counted by Fibonacci
numbers. In Proposition 17, we explicitly describe the {1, 2}-compositions that arise
when there is at most one occurrence of 1 in the composition, and Theorem 6 follows.

1.4 Generalizations and relation to work of others

In a forthcoming paper, Paul Johnson has generalized the product formula in Conjecture
1 to quotients of C2 by any finite abelian group [5]. He has also proved that the product
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formula holds asymptotically as q →∞. Since his asymptotic results compute the small
(relative to n) Betti numbers, our methods, in the Z3 case, provide evidence for Conjecture
1 that is orthogonal to his.

Our original goal was to devise methods that would be applicable to more general
actions of finite abelian groups. A natural generalization of the situation studied herein
is the diagonal action of Zk on C2; combinatorially, this amounts to replacing the mod
3 conditions with mod k conditions. In that generality, Proposition 7 and the second
part of Theorem 14 readily generalize, as the reader may check; however, the first part
of Theorem 14 is special to the Z3 case.

1.5 Acknowledgements

The authors are grateful to Federico Ardila, Matthias Beck, and Emily Clader for their
interest in this work and for comments on early drafts of this manuscript, as well as the
Department of Mathematics at San Francisco State University for providing a supportive
and encouraging atmosphere for working on this project. They are also indebted to Paul
Johnson for instructive conversations regarding orbifold Hilbert schemes, and for sharing
his draft [5].

2 Resolving the leg condition

The following theorem allows us to work with the modified weight w̃tZ3(λ), which is more
conducive to our combinatorial methods.

Proposition 7. With wtZ3(λ) and w̃tZ3(λ) defined as in (1) and (2), respectively, we
have ∑

λ∈Λ

q|λ|tw̃tZ3 (λ) =

(∏
m>1

1− tm−1q3m

1− tmq3m

)∑
λ∈Λ

q|λ|twtZ3 (λ)

Proof. The difference between wtZ3(λ) and w̃tZ3(λ) only concerns boxes � ∈ λ where
l(�) = 0 and a(�) + 1 = 0 mod 3. Let Λ′ be the set of partitions that do not contain
any such boxes. In other words, λ ∈ Λ′ if and only if the boundary of λ does not contain
more than 2 consecutive downward steps. By definition,∑

λ′∈Λ′

q|λ
′|tw̃tZ3 (λ′) =

∑
λ′∈Λ′

q|λ
′|twtZ3 (λ′).

Let Λ′′ denote the set of partitions where the size of each column is a multiple of
three. There is a bijection

f : Λ′ × Λ′′ → Λ

defined by inserting the rows of λ′′ ∈ Λ′′ into λ′ ∈ Λ′ at the maximum height so that the
result is still a Young diagram. See Figure 2.

Each � ∈ λ′ has a corresponding � ∈ f(λ′, λ′′), and the statistic a(�) + 1− l(�) mod
3 is the same for both of these boxes because f leaves the leg unchanged and only alters
the arm by a multiple of three. Similarly, for each block of rows in λ′′ that have the same
length, there is a corresponding block of rows in f(λ′, λ′′). The map f leaves the legs of
the boxes in these blocks unchanged, but it can change the arms, which alters the statistic
by adding a constant to each column of the block (mod 3). Since each column in each
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1
1 1
0 0 0 1

× 0 1
1 2
2 0
0 0 1
1 1 2
2 2 0

−→ 1
1 1
2 2
0 0
1 1
1 1 1
2 2 2
0 0 0
0 0 0 1

Figure 2: An example of the map f . All boxes are labeled with the statistic a(�)+1−l(�)
mod 3, and w̃tZ3(−) counts the number of zeros appearing in each diagram.

block has the same number of zeros, ones, and twos, this simply results in a permutation
of the statistic in each column, which preserves the number of zeros. Thus, it follows that

wtZ3(f(λ′, λ′′)) = wtZ3(λ
′) + wtZ3(λ

′′) and w̃tZ3(f(λ′, λ′′)) = w̃tZ3(λ
′) + w̃tZ3(λ

′′).

Since∑
λ′′∈Λ′′

q|λ
′′|tw̃tZ3 (λ′′) =

∏
m>1

1

1− tmq3m
and

∑
λ′′∈Λ′′

q|λ
′′|twtZ3 (λ′′) =

∏
m>1

1

1− tm−1q3m
,

it follows that∑
λ

q|λ|tw̃tZ3 (λ) =

(∑
λ′∈Λ′

q|λ
′|tw̃tZ3 (λ′)

)( ∑
λ′′∈Λ′′

q|λ
′′|tw̃tZ3 (λ′′)

)

=

(∑
λ′∈Λ′

q|λ
′|twtZ3 (λ′)

)( ∑
λ′′∈Λ′′

q|λ
′′|twtZ3 (λ′′)

)(∏
m>1

1− tm−1q3m

1− tmq3m

)

=

(∏
m>1

1− tm−1q3m

1− tmq3m

)∑
λ

q|λ|twtZ3 (λ).

As a corollary, we see that Conjecture 4 is equivalent to Conjecture 5, and Theorem
2 is equivalent to Theorem 6.

3 Partitions and compositions

3.1 Dyson maps

We start by defining two maps on partitions, ρ1 and ψ2, that we will use throughout the
rest of this paper. In [6], these maps are referred to as Dyson maps.

Let λ be a partition, represented as a Young diagram. The map ρ1 removes the first
row of λ, adds one box to it, then inserts these boxes as a new first column. See Figure
3. We must take into consideration that the new column must be at least as big as what
remains of the original first column. If j is the number of boxes in the first row of λ and
k is the number of boxes in the first column, this is equivalent to requiring that j > k−2.

Similarly, let ψ2 be the map that removes the first column of λ, adds two boxes to
it, then inserts these boxes as the new first row. See Figure 4. We must take into
consideration that the new row must be at least as big as what remains of the original
first row, which is equivalent to the condition that j 6 k + 3.
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j

k
ρ1

k
−

1j =

k
−

1

j + 1

j′

Figure 3: The map ρ1 applied to λ, defined whenever j > k − 2.

j

k
ψ2

k

j − 1

=

k + 2

j − 1

k′

Figure 4: The map ψ2 applied to λ, defined whenever j 6 k + 3.

3.2 Decomposing partitions

Since ρ1 increases the size of a partition by 1, and ρ2 increases the size of a partition by
2, the following result relates partitions of size n to {1, 2}-composition of n.

Proposition 8. Every partition can be written uniquely as a sequence of ρ1s and ψ2s
applied to the empty partition.

Proof. Notice that ρ1 and ψ2 have natural inverses ρ−1
1 and ψ−1

2 . The map ρ−1
1 removes

the first column, takes away one box, and inserts it as a new first row, while the map
ψ−1

2 removes the first row, takes away two boxes, and inserts it as a new first column.
We require that the outcomes are Young diagrams, which translates to ρ−1

1 only being
well-defined when j 6 k, and ψ−1

2 only being well-defined when j > k. Thus, one and
only one of these maps is well-defined, and for each λ, there is a unique sequence of ρ−1

1 s
and ψ−1

2 s that, when applied to λ, yield the empty diagram.

Let Pn be the set of partitions of size n and C
{1,2}
n the set of {1, 2}-compositions of n.

Proposition 8 allows us to define an injective map

φ : Pn → C{1,2}n ,

More precisely, after writing λ as a sequence of ρ1s and ψ2s applied to the empty diagram,
φ(λ) is the corresponding sequence of subscripts. This map is far from surjective. In fact,

the size of C
{1,2}
n is the (n + 1)st Fibonacci number, which is known to grow at a much

greater rate than the size of Pn. From our perspective, the important compositions are
those that lie in the image of φ.

Definition 9. A {1, 2}-composition of n is admissible if it is in the image of φ.
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The following example exhibits a subsequence that will never appear in an admissible
composition.

Example 10. For any partition λ, ψ2ψ2ρ1ψ2λ is not a well-defined Young diagram;
see Figure 5. Thus, any {1, 2}-composition containing the subsequence (2, 2, 1, 2) is not
admissible.

j

k

ψ2

k+2

k′
ρ1

k+3

j

ψ2

k′

k+5

ψ2
k′′

k′+2

k+4

Figure 5: The sequence ψ2ψ2ρ1ψ2 is undefined for any λ because k′ 6 k + 1.

3.3 The effect of ρ1 and ψ2 on w̃tZ3(−)

We now study how w̃tZ3(−) behaves with respect to the decomposition in Proposition 8.
In order to do so, we introduce a few preliminary conventions and definitions. Start by
placing each Young diagram in the first quadrant of R2 so that the lower left corner is at
the origin and each box is a unit square.

Definition 11. The boundary sequence of λ is the sequence along the northeast boundary
of λ that is induced by the labeling in Figure 6.

1

2

3

4

5

6

7

2

3

4

5

6

7

8

3

4

5

6

7

8

9

4

5

6

7

8

9

10

5

6

7

8

9

10

11

6

7

8

9

10

11

12

7

8

9

10

11

12

13

8

9

10

11

12

13

14

0

1

2

3

4

5

1

2

3

4

5

6

2

3

4

5

6

7

3

4

5

6

7

8

4

5

6

7

8

9

5

6

7

8

9

10

6

7

8

9

10

11

7

8

9

10

11

12

8

9

10

11

12

13

Figure 6: Line segments in the first quadrant.

The following result shows how the boundary sequence is related to w̃tZ3(−).
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Lemma 12. Let � ∈ λ and let i be the label in the boundary sequence directly above �
and j the label in the boundary sequence directly to the right of �. Then � contributes
to w̃tZ3(λ) (i.e. a(�) + 1 = l(�) mod 3) if and only if i = j mod 3.

Proof. In terms of i and j, a(�) is the number of vertical line segments in the boundary
between i and j, and l(�) is the number of horizontal line segments in the boundary
between i and j. Since i and j are part of the boundary sequence, then taking a walk
along the boundary gives a relation:

i± 1± 1 · · · ± 1± 1− 1 = j,

where each −1 corresponds to a vertical line segment and each +1 corresponds to a
horizontal line segment in the boundary of λ. Thus, we obtain i− a(�) + l(�)− 1 = j,
implying that i− j = a(�)− l(�) + 1.

Example 13. Let λ be the Young diagram in Figure 7. The boundary sequence is
(3, 4, 5, 6, 5, 6, 7, 6), and w̃tZ3(λ) = 4.

3 4 5 6

5
6 7

6

Figure 7: Boundary sequence of λ. The four shaded boxes contribute to w̃tZ3(λ).

We now come to the main result of this section.

Theorem 14. If ρ1λ is defined, then

w̃tZ3(ρ1λ) = w̃tZ3(λ).

If ψ2λ is defined, then
w̃tZ3(ψ2λ) = w̃tZ3(λ) + 1.

Proof. In order to compare w̃tZ3(λ) with w̃tZ3(ρ1λ), it is useful to overlap λ and ρ1λ in
the same diagram. To do so, shift λ to the right by one unit in R2 and shift ρ1λ up by
one unit. See Figure 8, for example.

λ− ρ1λ

λ ∩ ρ1λρ
1
λ
−
λ

Figure 8: An example of λ and ρ1λ overlapping in first quadrant. The bold path is the
boundary of λ ∩ ρ1λ.
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The weight of λ ∩ ρ1λ is independent of which diagram we consider, so we need only
compare the weight of λ− ρ1λ to the weight of ρ1λ− λ. If the length of the first row in
λ is j, define the critical diagonals by

∆i := {x+ y = j + 3i+ 3/2},

and define the critical region Ri to be the region in the first quadrant between ∆i and
∆i+1. In Figure 9, we have depicted the critical diagonals and the region R0 for a general
λ.

λ− ρ1λ

ρ
1
λ
−
λ

R0 . . .

. . .

. . .
...

... ...

... ...

...

1

j

j+1

2 j j+1

j+3 j+4

j+3

j

j+6

j+7

j+1

j+1 j+2

j+1

Figure 9: Critical diagonals and critical region R0 for general λ and ρ1λ. The boundary
of λ ∩ ρ1λ must start at (1, j + 2) and end at (j + 1, 1).

According to the labeling scheme in Figure 6, all of the horizontal crossings of the
critical diagonals are labeled j + 1 mod 3 and all of the vertical crossings of the critical
diagonals are labeled j+ 3 mod 3. Therefore, by Lemma 12, w̃tZ3(ρ1λ−λ) is the number
of times the boundary of λ ∩ ρ1λ crosses one of the critical diagonals vertically, and
w̃tZ3(λ− ρ1λ) is the number of times the boundary of λ ∩ ρ1λ crosses one of the critical
diagonals horizontally. Since, for any λ, the boundary of λ ∩ ρ1λ begins and ends in
the same critical region R0, the number of vertical crossings is equal to the number of
horizontal crossings, implying that w̃tZ3(ρ1λ) = w̃tZ3(λ).

Next, we turn to the case of ψ2. As with the previous case, we overlap λ and ψ2λ in
the same diagram, and we need only compare w̃tZ3(λ − ψ2λ) with w̃tZ3(ψ2λ − λ). We
define critical diagonals in this case by

∆i := {x+ y = k + 3i− 3/2},

where k is the height of the first column in λ, and we define the critical region Ri to be
the region between ∆i and ∆i+1. See Figure 10.

By Lemma 12, w̃tZ3(λ−ψ2λ) is the number of times the boundary of λ∩ψ2λ crosses
one of the critical diagonals vertically, and w̃tZ3(ψ2λ − λ) is the number of times the
boundary of λ ∩ ψ2λ crosses one of the critical diagonals horizontally. Since, for any λ,
the boundary of λ ∩ ψ2λ begins in the critical region R0 and ends in the critical region
R1, the number of horizontal crossings is one more than the number of vertical crossings,
proving that w̃tZ3(ψ2λ) = w̃tZ3(λ) + 1.
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ψ2λ− λ
λ
−
ψ

2
λ

R0 R1. . .. . . . . .
. . .. . . . . .

. . .

...
...

...
...

k+2 k+3 k+6

k+2

k−1

k+5

k+3 k+4

k

k+3

1

k−1

k

2 k+2 k+3

Figure 10: Critical diagonals and critical regions R0 and R1 for general λ and ψ2λ.

4 Computation of highest Betti numbers

By Proposition 8 and Theorem 14, the left-hand side of Conjecture 5 can be written as
a sum over admissible {1, 2}-compositions, where any composition consisting of i ones
and j twos contributes a factor of qi+2jtj. From this, we immediately see that the last
part of Theorem 2 holds: b̃k,n = 0 for all k > n/2. To prove the first part of Theorem
2, we must show that the composition (2, 2, . . . , 2, 2) is admissible. To prove the second
part, we must prove that the three compositions (1, 2, . . . , 2, 2), (2, 1, 2, . . . , 2, 2), and
(2, 2, . . . , 2, 1) are all admissible; Example 10 then shows that these are the only three
admissible compositions contributing to the coefficient of q1+2jtj for j > 2. In order to
prove that these compositions are all admissible, we introduce a new definition.

Definition 15. Let λ denote a Young diagram with columns of height ci, where 1 6 i 6 j.
We say λ has the stair-step property if ci(λ) − 1 6 ci+1(λ) for all i < j. If λ has the
stair-step property, then the landing number of λ is

L(λ) = |{i : 1 6 i < j, ci(λ) = ci+1(λ)}|.

The following result shows that ψ2 preserves the property that L(λ) 6 2.

Lemma 16. If λ has the stair-step property with L(λ) 6 2, then ψ2λ is well-defined and
has the stair-step property with L(ψ2λ) 6 2.

Proof. If j is the number of boxes in the first row of λ and k is the number of boxes in
the first column, then the assumptions imply that k 6 j 6 k + 2. Since j 6 k + 3, ψ2 is
well-defined. Since λ satisfies the stair-step property, then ψ2λ will satisfy the stair-step
property as long as the last step is not a big one; in other words, we need to check that
the last column does not have two boxes. However, the only way that ψ2λ has two boxes
in the last column is if j = k + 3, which is disallowed by our assumptions on λ.

Finally, to verify the condition on the landing sets, we check case-by-case. If L(λ) = 0,
then j = k, and ψ2λ creates a new 3-box landing in the final three columns, so that
L(ψ2λ) = 2. If L(λ) = 1, then j = k + 1, and ψ2λ contains a new 2-box landing in the
final two columns, so L(ψ2λ) ∈ {1, 2} (we take into account that ψ2λ could break up the
landing that already existed in the first two columns of λ, see Figure 11). Similarly, if
L(λ) = 2, then j = k + 3 and ψ2λ does not create any new landings (but it might break
up an old one), so L(ψ2λ) ∈ {1, 2}.
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j = k + 1 k + 2

ψ2

Figure 11: A new landing set when L(λ) = 1. If the old landing set did not occur in the
first two columns, then the new diagram would have two landings.

With Lemma 16 at our disposal, we are ready to prove the admissibility of the four
compositions mentioned above.

Proposition 17. For every n > 0, ψn2∅, ψn2 ρ1∅, ρ1ψ
n
2∅, ψ2ρ1ψ

n
2∅ are well-defined

Young diagrams.

Proof. Since λ = ∅ and λ = ρ1∅ = � both have the stair-step property with L(λ) 6 2,
we can iteratively apply Lemma 16 to prove that ψn2∅ and ψn2 ρ1∅ are well-defined for
all n > 0. Since ψn2∅ satisfies the stair-step property with L(ψn2∅) 6 2, we know that
k 6 j 6 k+ 2. In particular, since j > k− 2, ρ1 can be applied, so ρ1ψ

n
2∅ is well-defined

for any n > 0. After applying ρ1 to ψn2∅, the new first row has length j′ 6 j + 1 and
the new first column has height k′ = j + 1. Since j′ 6 k′ + 3, ψ2 can then be applied, so
ψ2ρ1ψ

n
2 is well-defined for all n > 0.
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