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Abstract

Recent progress on flow polytopes indicates many interesting families with prod-
uct formulas for their volume. These product formulas are all proved using analytic
techniques. Our work breaks from this pattern. We define a family of closely related
flow polytopes F(λ,a) for each partition shape λ and netflow vector a ∈ Zn>0. In each
such family, we prove that there is a polytope (the limiting one in a sense) which
is a product of scaled simplices, explaining their product volumes. We also show
that the combinatorial type of all polytopes in a fixed family F(λ,a) is the same.
When λ is a staircase shape and a is the all ones vector the latter results specializes
to a theorem of the first author with Morales and Rhoades, which shows that the
combinatorial type of the Tesler polytope is a product of simplices.

Mathematics Subject Classifications: 52B20, 05C21

1 Introduction

The Catalan numbers, Cn = 1
n+1

(
n
2

)
, n ∈ Z>0, are well known for counting a plethora of

combinatorial objects; see [6, Ex. 6.19] for hundreds of interpretations. Naturally then, if
an integer polytope has volume divisible by a product of consecutive Catalan numbers, one
would hope for a combinatorial explanation of such a phenomenon. The latter sentiment
ran into obstacles with several flow polytopes, namely the (type A) Chan-Robbins-Yuen
polytope [2], its type C and D generalizations [4], as well as the Tesler polytope [5]. Our
work is inspired by the Tesler polytope (which is the flow polytope of the complete graph
with netflow vector all ones) FKn+1(1), which we explain below can be associated with a
staircase partition. Two of the main results known about FKn+1(1) are as follows. We
define FKn+1(1), and flow polytopes in general, in Section 2.

∗Mészáros is partially supported by a National Science Foundation Grant (DMS 1501059).
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Theorem 1. [5, Theorem 1.9] The normalized volume of the Tesler polytope FKn+1(1)
equals

volFKn+1(1) =

(
n
2

)
! · 2(n2)∏n
i=1 i!

= |SY T(n−1,n−2,...,1)| ·
n−1∏
i=0

Ci, (1.1)

where Ci is the ith Catalan number and |SY T(n−1,n−2,...,1)| is the number of standard Young
tableaux of staircase shape (n− 1, n− 2, . . . , 1).

Theorem 2. [5, Corollaries 2.8 & 2.9] The face poset of the Tesler polytope FKn+1(1) is
isomorphic to the face poset of the Cartesian product of simplices ∆1×∆2×· · ·×∆n−1. In
particular, the h-polynomial of the Tesler polytope FKn+1(1) is the Mahonian distribution

(n2)∑
i=0

hix
i = [n]!x = (1 + x)(1 + x+ x2) · · · (1 + x+ x2 + · · ·+ xn−1).

For each partition λ and vector a we construct a family of flow polytopes F(λ,a), which
we define in Section 2.2. The Tesler polytope FKn+1(1) belongs to F((n−1,n−2,...,1),1).

If λ = (λ1, . . . , λk) is a partiton, let `(λ) := k and let |λ| :=
∑k

i=1 λk. For a natural
number n, let [n] = {1, 2, . . . , n}. We prove the following general theorems about the
families F(λ,a). The limiting polytope F lim

(λ,a) is defined in Section 3.

Theorem 8. Let λ be a partition, n > λ1 + `(λ), and a ∈ (Z>0)n a vector of positive
integers. The limiting polytope of F(λ,a) is integrally equivalent to a product of scaled
simplices a1∆λ1 × · · · × al(λ)∆λl(λ) . Consequently, it has Ehrhart polynomial

i(F lim
(λ,a), t) =

∏
j∈[`(λ)]

(
taj + λj
λj

)
(1.2)

and normalized volumed

volF lim
(λ,a) = |λ|!

∏
i∈[`(λ)]

aλii
λi!

(1.3)

Theorem 16. Let λ = (λ1, . . . , λk) be a partition, n an integer such that n− i > λi for all
i ∈ [`(λ)], and a ∈ Zn>0 a netflow vector. The face posets of the polytopes belonging to F(λ,a)

are isomorphic to the face poset of the Cartesian product of simplices ∆λ1×∆λ2×· · ·×∆λk .
In particular, the h-polynomial of the polytopes belonging to F(λ,a) is

|λ|∑
i=0

hix
i =

k∏
i=1

[λi]x =
k∏
i=1

(
λi−1∑
j=0

xj

)
.
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In particular, we see that Theorem 2 is a special case of Theorem 16 for FKn+1(1) which
belongs to F((n−1,n−2,...,1),1). Also notice the similar volumes for FKn+1(1) (Theorem 1)

and F lim
((n−1,n−2,...,1),1) (Theorem 8); they are off by a factor of 2(

n
2)
n!

. We spell this curious
fact out in the next corollary.

Corollary 3. volFKn+1(1) = 2(
n
2)
n!

volF lim
((n−1,n−2,...,1),1)

The outline of this paper is as follows. In Section 2 we cover the necessary background
and define the class F(λ,a). In Section 3 we define the limiting polytope F lim

(λ,a) and prove
Theorem 8. Section 4 is devoted to proving Theorem 16.

2 Background and definitions

2.1 Flow polytopes and Kostant partition functions.

The exposition of this section follows that of [4]; see [4] for more details.
Let G be a (loopless) graph on the vertex set [n + 1] with N edges. To each edge

(i, j), i < j, of G, associate the positive type An root v(i, j) = ei − ej, where ei is the
ith standard basis vector in Rn+1. Let SG := {{v1, . . . ,vN}} be the multiset of roots
corresponding to the multiset of edges of G. Let MG be the (n + 1) × N matrix whose
columns are the vectors in SG. Fix an integer vector a = (a1, . . . , an+1) ∈ Zn+1 which we
call the netflow and for which we require that an+1 = −

∑n
i=1 ai. An a-flow fG on G is

a vector fG = (bk)k∈[N ], bk ∈ R>0 such that MGfG = a. That is, for all 1 6 i 6 n + 1, we
have ∑

e=(g<i)∈E(G)

b(e) + ai =
∑

e=(i<j)∈E(G)

b(e) (2.1)

Define the flow polytope FG(a) associated to a graph G on the vertex set [n+1] and
the integer vector a = (a1, . . . , an+1) as the set of all a-flows fG onG, i.e., FG = {fG ∈ RN

>0 |
MGfG = a}. The flow polytope FG(a) then naturally lives in RN , where N is the number
of edges of G. Note that in order for FG(a) to be nonempty, it must be that

∑n+1
i=1 ai = 0.

For this reason, we also write FG(a1, . . . , an) := FG(a1, . . . , an,−
∑n

i=1 ai). The vertices
of the flow polytope FG(a) are the a-flows whose supports are acyclic subgraphs of G [3,
Lemma 2.1].

Recall that the Kostant partition function KG evaluated at the vector b ∈ Zn+1

is defined as

KG(b) = #
{

(ck)k∈[N ]

∣∣∣ ∑
k∈[N ]

ckvk = b and ck ∈ Z>0

}
, (2.2)

where [N ] = {1, 2, . . . , N}.
The generating series of the Kostant partition function is∑

b∈Zn+1

KG(b)xb =
∏

(i,j)∈E(G)

(1− xix−1
j )−1, (2.3)
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where xb = xb11 x
b2
2 · · · x

bn+1

n+1 . In particular,

KKn+1(b) = [xb]
∏

16i<j6n+1

(1− xix−1
j )−1. (2.4)

Assume that a = (a1, a2, . . . , an) satisfies ai > 0 for i = 1, . . . , n and let
a′ = (a1, a2, . . . , an,−

∑n
i=1 ai). The generalized Lidskii formulas of Baldoni and

Vergne state that for a graph G on the vertex set [n+ 1] with N edges we have

Theorem 4. [1, Theorem 38]

volFG(a′) =
∑
i

(
N − n

i1, i2, . . . , in

)
ai11 · · · ainn ·KG′(i1 − tG1 , i2 − tG2 , . . . , in − tGn ), (2.5)

and

KG(a′) =
∑
i

(
a1 + tG1
i1

)(
a2 + tG2
i2

)
· · ·
(
an + tGn
in

)
·KG′(i1−tG1 , i2−tG2 , . . . , in−tGn ), (2.6)

where both sums are over weak compositions i = (i1, i2, . . . , in) of N−n with n parts which
we denote as i |= N − n, `(i) = n. The graph G′ is the restriction of G to the vertex set
[n]. The notation tGi , i ∈ [n], stands for the outdegree of vertex i in G minus 1.

The notation vol stands for normalized volume. Recall that the Ehrhart polynomial
i(P , t) of an integer polytope P ⊂ Rm counts the number of integer points of dilations of
the polytope, i(P , t) := #(tP∩Zm). Its leading coefficient is the volume of the polytope.
The normalized volume vol(P ) of a d-dimensional polytope P ⊂ Rm is the volume form
which assigns a volume of one to the smallest d-dimensional integer simplex in the affine
span of P . In other words, the normalized volume of a d-dimensional polytope P is d!
times its volume.

2.2 The family F(λ,a)

We start by defining a family of graphs associated to the partition λ. Given a partition
λ, let Y be the right-justified Young diagram corresponding to λ. Pick an integer n such
that n− i > λi for all i ∈ [`(λ)]. We can place Y inside the upper triangle (not including
the diagonal) of an n×n matrix M , with the top and right edges of Y flush with the top
and right edges of M . Now, let Y ′ be the set of entries (i, j) of M that lie inside Y , and
define G(λ, n) to be the directed graph

G(λ, n) :=
(

[n+ 1], {(i, n+ 1) : i ∈ [n]} ∪ Y ′
)
.

Example 5. Construction of G((2, 1, 1), 5)).
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1 2 3 4 5
+ ∗ ∗ 1

+ ∗ 2
+ ∗ 3

+ 4
+ 5

1 2 3 4 5 6

Figure 1: From left to right: the right-justified Young diagram of λ = (2, 1, 1), the diagram
in a 5× 5 matrix, and the corresponding graph on six vertices.

For a fixed partition λ and a fixed vector a ∈ Zm>0 with m > λ1 + `(λ), define the
family

F(λ,a) :=
{
FG(λ,n)(a) : max(λ1, `(λ)) < n ∈ Z

}
.

Note that there is a small abuse of notation in the definition above: if n 6= m, then a will
have too many or too few entries to serve as a netflow for many G(λ, n). When n 6 m,
then we can just use the first n entries of a. For n > m, we show in Section 3 that the
choice of additional entries is irrelevant: any element of Zn>0 whose first m entries match
those of a will product essentially the same polytope. More precisely, we prove that all
the above mentioned polytopes are integrally equivalent. Recall that integer polytopes
P ⊂ Rm and Q ⊂ Rk are integrally equivalent if there is an affine transformation
f : Rm → Rk such that f maps P bijectively onto Q and f maps Zm ∩ aff(P) bijectively
onto Zk∩aff(Q), where aff denotes affine span. If two polytopes are integrally equivalent,
then they have the same combinatorial type as well as the same volume and more generally
the same Ehrhart polynomial.

Observe that for any n ∈ Z>0 and λ = (n− 1, n− 2, . . . , 1), G(λ, n) = Kn+1. Setting
a = 1, it follows that the Tesler polytope FKn+1(1) belongs to F((n−1,n−2,...,1),1).

3 The limiting polytopes of F(λ,a)

In this section we define the limiting polytope of the family F(λ,a) for any partition λ and
netflow vector a. We then establish the combinatorial structure and the volume of these
limiting polytopes.

One can easily see the need to define a limiting polytope of F(λ,a) from the following
data on the normalized volumes of the members of the family F((4,3,2,1),1):

n 5 6 7 8 9 10 11
volFG((4,3,2,1),n)(1) 107520 26580 15120 12600 12600 12600 12600

One immediately notices that the volume of the polytopes in question appears to stabilize
for large n. This is not a coincidence, and is in fact a general feature of polytopes in F(λ,a),
as we show in this section.

For a partition λ and a ∈ Zn>0, define the limiting polytope of the family F(λ,a),
denoted F lim

(λ,a), to be the polytope FG(λ,`(λ)+λ1)(a). We prove in Lemma 6 that for all
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n > `(λ) + λ1 we have that FG(λ,n)(a) and FG(λ,`(λ)+λ1)(a) are integrally equivalent; thus
any one of FG(λ,n)(a) with n > `(λ) + λ1 can be thought of as F lim

(λ,a).

3.1 Structure and Volume of the Limiting Polytope

Given a graph G = G(λ, n), for each vertex i ∈ [n], let

Gi = ([n+ 1], {(i, j) ∈ E(G) : i < j} ∪ {(j, n+ 1) : j ∈ [n]})

be the subgraph of G graph obtained by restricting E(G) to those edges that come out
of vertex i or go to the sink.

Lemma 6. Let λ be a partition, let n > `(λ) + λ1, let G and Gi be as above for i ∈ [n],
and let a ∈ Zn>0. Then FG(λ,n)(a) is integrally equivalent to

∏n
i=1FGi(a):

FG(λ,n)(a) ≡
n∏
i=1

FGi(a).

Proof. Define the map ϕ : FG(a)→
∏n

i=1FGi(a) by

ϕ(f) = (f1, . . . , fn)

where fi : E(Gi)→ R is defined by

fi(p, q) =


f(i, j), (p, q) = (i, j)

ap + f(i, p), q = n+ 1 and (i, p) ∈ E(Gi)

ap, q = n+ 1 and (i, p) 6∈ E(Gi).

The inverse of map ϕ is ϕ−1 :
∏n

i=1FGi → FG defined by ϕ−1(f1, . . . , fn) = f where
f(p, q) = fp(p, q), thus ϕ is a bijection between FG(λ,n)(a) and

∏n
i=1FGi(a). Moreover,

ϕ can be extended to an affine map mapping the integer points of the affine span of
FG(λ,n)(a) bijectively to the integer points of the affine span of

∏n
i=1FGi(a), concluding

the proof.

We now show that the polytopes FGi(a) appearing in Lemma 6 are very special.
Denote by ∆m the standard simplex of dimension m, the convex hull of the standard
basis vectors of Rm+1.

Lemma 7. For i ∈ [`(λ)], a ∈ Zn>0, FGi(a) is integrally equivalent to ai∆λi, a scaled
simplex of dimension λi. For `(λ) < i < n+ 1, FGi(a) is a point.

Proof. Let i ∈ [`(λ)]. Define ϕi : FGi(a) → ai∆λi by ϕi(fi) = v ∈ Rλi+1, where vj =
fi(i, n + 2 − j). To see that this function is well-defined, note that i ∈ V (Gi) has no
incoming edges (see Figure 2), so

∑
(i,j)∈E(Gi)

f(i, j) =
∑

j∈[λi+1] vj = ai. This map is
a projection; it is affine and preserves integer points. It is not hard to see that ϕi is
a bijection between FGi(a) and ai∆λi . Furthermore, the second claim of Lemma 7 is
immediate.
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Lemmas 6 and 7 imply that we can consider any polytope in FG(λ,n)(a) with n >
`(λ) + λ1 as the limiting polytope F lim

(λ,a). Indeed, when n > λ1 + `(λ), it is guaranteed
that the Young diagram of λ will fit in the top right quadrant of an n×n matrix. Figure
2 illustrates the effects of this.

1 2 3 4 5 6
+ ∗ ∗ ∗ 1

+ ∗ ∗ 2
+ ∗ 3

+ 4
+ 5

+ 6
1 2 3 4 5 6 7

1 2 3 4 5 6 7
+ ∗ ∗ ∗ 1

+ ∗ ∗ 2
+ ∗ 3

+ 4
+ 5

+ 6
+ 7

1 2 3 4 5 6 7 8

Figure 2: The Young diagram of λ = (3, 2, 1) in both 6 × 6 and 7 × 7 matrices, and
the corresponding graphs G(λ, 6) and G(λ, 7), with edges to the sink dotted. Observe
that increasing n by 1 adds a single new vertex with a single outgoing edge to the sink.
This underlies the fact that FG(λ,6)(a) and FG(λ,7)(a) are integrally equivalent and have
the same volume. It also justifies our use of a as the netflow vector for both FG(λ,6) and
FG(λ,7): only the first `(λ) entries of the netflow vector matter.

The decomposition of the limiting polytope into simplices also gives us a neat formula
for its volume.

Theorem 8. Let λ be a partition, n > λ1 + `(λ), and a ∈ (Z>0)n a vector of positive
integers. The limiting polytope of F(λ,a) is integrally equivalent to a product of scaled
simplices a1∆λ1 × · · · × al(λ)∆λl(λ). Consequently, it has Ehrhart polynomial

i(F lim
(λ,a), t) =

∏
j∈[`(λ)]

(
taj + λj
λj

)

and normalized volumed

volF lim
(λ,a) = |λ|!

∏
i∈[`(λ)]

aλii
λi!

Proof. It is immediate from Lemmas 6 and 7 that F lim
(λ,a) is integrally equivalent to
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∏
i∈[`(λ)] ai∆λi . From integral equivalence, it follows that

i(F lim
(λ,a), t) =

∏
i∈[`(λ)]

i(ai∆λi , t).

It is well-known that i(ai∆λi , t) =
(
tai+λi
λi

)
, so the Ehrhart polynomial of F lim

(λ,a) is as
claimed.

To prove the stated formula for volume, recall that the unnormalized relative volume
of a polytope is given by the leading coefficient of its Ehrhart polynomial. Computing
the leading coefficient of i(F lim

(λ,a), t) using the formula given above and multiplying it by

(dimF lim
(λ,a))! = |λ|! to normalize it yields a (normalized) volume of

volF lim
(λ,a) = |λ|!

∏
i∈`(λ)

aλii
λi!

.

We note that we can relax the requirement a ∈ (Z>0)n to a ∈ (Z>0)n and obtain
similar results. Indeed, both Lemmas 6 and 7 and their proofs hold verbatim (if ai = 0
then FGi(a) is a point). Thus, the analogues of Lemmas 6 and 7 yield a volume formula
for any F lim

(λ,a), a ∈ (Z>0)n. For simplicity, we will work with a ∈ (Z>0)n throughout the
paper.

3.2 Constant Term Identities

Using the volume formula given in Theorem 8, we can derive a constant term identity.
Let λ be a partition, n an integer such that n − i > λi for all i ∈ [`(λ)], and a ∈ Zn>0.
For convenience, let L = |λ| and let G be the restriction of G(λ, n) to the vertex set [n].
Further, let λ̄ = (λ1, . . . , λ`(λ), 0, . . . , 0, 0) ∈ Zn.

Theorem 9.

CTxn . . .CTx1(a1x1 + · · ·+ anxn)L
∏

i∈[`(λ)]

∏
n+1−λi6j6n

(xi − xj)−1 = L!
∏

i∈[`(λ)]

aλii
λi!

Proof. By Equation (2.5), the volume of F lim
(λ,a) is equal to

volF lim
(λ,a) =

∑
i�L

`(i)=n

(
L

i1, . . . , in

)∏
j∈[n]

a
ij
j

KG(i− λ̄).

Now, let G′ be G with all its edges reversed and observe that KG(i − λ̄) = KG′(λ̄ − i).
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Thus, the above is equal to

=
∑
i�L

`(i)=n

(
L

i1, . . . , in

)∏
j∈[n]

a
ij
j

KG′(λ̄− i)

=
∑
i�L

`(i)=n

(
L

i1, . . . , in

)∏
j∈[n]

a
ij
j

 [xλ̄−i]
∏

(i,j)∈E(G)

(1− xjx−1
i )−1

= CTxn . . .CTx1

∑
i�L

`(i)=n

(
L

i1, . . . , in

)∏
j∈[n]

a
ij
j

xi−λ̄
∏

(i,j)∈E(G)

(1− xjx−1
i )−1.

Since the ith vertex of G has λ̄i edges out of it,∏
(i,j)∈E(G)

(1− xjx−1
i )−1 = xλ̄

∏
(i,j)∈E(G)

(xi − xj)−1.

It follows that the above is equal to

= CTxn . . .CTx1

∑
i�L

`(i)=n

(
L

i1, . . . , in

)∏
j∈[n]

a
ij
j

xi
∏

(i,j)∈E(G)

(xi − xj)−1

= CTxn . . .CTx1(a1x1 + · · ·+ anxn)L
∏

(i,j)∈E(G)

(xi − xj)−1

where the latter equality follows by the multinomial theorem. The product in the last
expression can be rewritten as

∏
i∈[`(λ)]

∏
n+1−λi6j6n(xi − xj)−1. Finally, substituting in

the formula for volF lim
(λ,a) given in Theorem 8 yields the result.

4 The face structure of polytopes in F(λ,a)

In Theorem 8, we showed that for all λ and a ∈ Zn>0, F lim
(λ,a) is integrally equivalent to a

product of simplices, implying that its combinatorial type is that of a product of simplices.
In this section, we show that each element of the family F lim

(λ,a) has the same combinatorial

type as F lim
(λ,a).

4.1 A quick review of results relating subgraphs and the face lattice

Before proceeding, we will review some facts relating the face lattice of a flow polytope
to subgraphs of the graph from which it arises.

Let G be a graph and a a netflow vector. We call a subgraph H of G a-regular (or
just regular when the netflow in question is clear) if there is an a-flow f on G such that
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f is zero on all edges of G that are not in H. We say that a is in generic position with
respect to G if there is no a-flow f such that f is the unique flow on two distinct subtrees
of G. The following two results are implied by [3, Lemma 2.1 & Theorem 2.2] for the
faces of FG(λ,n)

(a).

Lemma 10. The vertices of FG(λ,n)
(a) are the flows on the regular subtrees of G(λ,n).

Theorem 11. If a is in generic position, then the regular subtrees of G(λ,n) are in bijection
with the vertices of FG(λ,n)

(a) and the faces of FG(λ,n)
(a) are in bijection with the regular

subgraphs of G(λ,n).

4.2 Characterization of regular subtrees

Let λ = (λ1, . . . , λ`) be a partition, n an integer such that n − i > λi for all i ∈ [`(λ)],
G = G(λ, n), and let a ∈ Zn>0. In this section, we characterize which subtrees of G are
a-regular for a ∈ Zn>0.

Lemma 12. Let H be a subgraph of G built by picking one outgoing edge from each vertex
i < n+ 1. Then H is an a-regular spanning tree of G for a ∈ Zn>0.

Proof. First we show that H is acyclic and connected. If there were a cycle C ⊂ H, then
there would have to be two outgoing edges from its minimal vertex. Thus, H is acyclic.
To see that H is connected, we note that our graph has n edges, n+ 1 vertices and it has
no cycles.

To see that H is regular, construct an a-flow on it as follows. Let ev ∈ E(H) be the
unique edge out of v in H. Let f(e1) = a1. Assume f(e1), . . . , f(ei) have been assigned
for some i > 1. Then we let f(ei+1) = ai+1 if i + 1 has no incoming edges in H, and
f(ei+1) = ai+1 +

∑
(v,i+1)∈E(H) f(ev) for vertices with incoming edges.

Lemma 13. Every spanning subtree T of G that admits an a-flow for a ∈ Zn>0 has a
single edge out of each of its vertices v < n+ 1.

Proof. Suppose that a spanning subtree T of G has at least two outgoing edges from a
vertex v. Since T has n edges and n + 1 vertices, it follows then that T has two vertices
with no outgoing edges. In particular, there is a v < n + 1 with only incoming edges.
Since av > 0, such a tree cannot admit an a-flow. Thus each spanning subtree T of G
that admits an a-flow has at most one edge out of each of its vertices v < n + 1. Since
we need n edges, it has exactly one edge out of each of its vertices v < n+ 1.

Theorem 14. The a-regular subtrees for a ∈ Zn>0 of G(λ, n) are precisely those that have

exactly one edge out of every vertex. The polytope FG(λ,n)(a) has
∏`(λ)

i=1 (λi + 1) vertices,
independent of n, corresponding to the a-flows on the aforementioned subtrees.

Proof. The first statement follows immediately from Lemmas 12 and 13. We can count
such trees by noting that each vertex i has 1 + λi edges out of it (and 1 edge if i > `), so
there are

∏`
i=1(λi + 1) ways to choose such a tree.
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Now, note that if T is a spanning tree of G that admits a flow fT , then fT must be
nonzero on every edge of T because a’s non-sink entries are all positive. Thus, a is in
generic position and by Lemma 11 there is a bijection between subtrees of G that admit
regular flows and vertices of FG(a).

4.3 The face lattice

We are ready to show that every polytope in F(λ,a) has a face lattice isomorphic to that
of F lim

(λ,a).

Lemma 15. Let λ be a partition, n an integer such that n− i > λi for all i ∈ [`(λ)], and
a ∈ Zn>0. The regular subgraphs of G(λ, n) are precisely those that have at least one edge
out of every non-sink vertex. Furthermore, for H and K regular subgraphs of G(λ, n),
FK(a) ⊂ FH(a) if and only if K is a subgraph of H. Thus, the face lattice of FG(λ,n)(a)
is isomorphic to the poset of regular subgraphs of G(λ, n).

Proof. The entries of a are all positive, so every vertex of a regular subgraph must have
at least one outgoing edge. Conversely, any subgraph that has at least one edge out of
every non-sink vertex contains a regular subtree by Theorem 14 and is therefore regular.

For the second statement, the “if” implication is clear. For the “only if”, observe that
if e is an edge in K that is not in H, then there is a regular subtree T contained in K
such that e ∈ E(T ). Since a is in generic position, the unique flow f on T is nonzero on
e and is therefore not in FH(a), so FK(a) 6⊂ FH(a). The last statement then follows by
Lemma 11 since a is in generic position.

Theorem 16. Let λ = (λ1, . . . , λk) be a partition, n an integer such that n− i > λi for all
i ∈ [`(λ)], and a ∈ Zn>0 a netflow vector. The face posets of the polytopes belonging to F(λ,a)

are isomorphic to the face poset of the Cartesian product of simplices ∆λ1×∆λ2×· · ·×∆λk .
In particular, the h-polynomial of the polytopes belonging to F(λ,a) is

|λ|∑
i=0

hix
i =

k∏
i=1

[λi]x =
k∏
i=1

(
λi−1∑
j=0

xj

)
.

Proof. Let λ̄ = (λ1 + 1, λ2 + 1, . . . , λk + 1) and let Y be the Young diagram of λ̄. Let C
be the poset of subsets C of the boxes of Y such that C contains at least one box from
every row of Y , ordered by inclusion.

For any integer n such that n − i > λi for all i ∈ [`(λ)], define the bijection ϕn :
Y → E(G(λ, n)) by ϕn(i, j) = (i, n + 2 − j). Now, let R(G(λ, n)) be the set of regular
subgraphs of G and define φn : C → R(G(λ, n)) by

C 7→
(

[n+ 1], ϕn(C) ∪ {(i, n+ 1) : n+ 1 > i > `(λ)}
)
.

Every subgraph in the image of φn has an edge out of every vertex besides n + 1, so by
Lemma 15, the image of φn lies in R(G(λ, n)) as claimed. In fact, using the surjectivity
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of ϕn, the image of φn is all of R(G(λ, n)). Finally, injectivity of φn follows from the fact
that ϕn is injective, and it is clear that it preserves inclusion. Therefore, φn is an order
preserving bijection between C and R(G(λ, n)). Applying the second statement of Lemma
15, we have that for any integer n such that n− i > λi for all i ∈ [`(λ)], the face lattice of
FG(λ,n)(a) is isomorphic to C. In particular, the face lattice of F lim

(λ,a) = FG(λ,λ1+`(λ))(a) is
isomorphic to C. The former is isomorphic to the face lattice of ∆λ1 ×∆λ2 × · · · ×∆λk by
Theorem 8. It follows that every element of F(λ,a) has a face lattice isomorphic to this one.
Furthermore, F(λ,a) is of dimension |λ| and its h-polynomial is given by the products of

the h-polynomials of the simplices: h(F(λ,a), x) =
∏k

i=1 h(∆λi , x) =
∏k

i=1[λi]x, as desired.

Remark 17. Since FKn+1(1) is an element of F((n−1,n−2,...,1),1), Theorem 2 is a special case
of Theorem 16.
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