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Abstract

Recently O. Pechenik studied the cyclic sieving of increasing tableaux of shape
2× n, and obtained a polynomial on the major index of these tableaux, which is a
q-analogue of refined small Schröder numbers. We define row-increasing tableaux
and study the major index and amajor index of row-increasing tableaux of shape
2 × n. The resulting polynomials are both q-analogues of refined large Schröder
numbers. For both results we give bijective proofs.

Mathematics Subject Classifications: 05A15, 05E10

1 Introduction

Let n be a positive integer and λ a partition of n. A semistandard (Young) tableau (SSYT)
of shape λ is an array T of positive integers of shape λ that is strictly increasing in every
row and weakly increasing in every column. If an SSYT of shape λ is strictly increasing in
each row and column, and the entries are 1, 2, . . . , n, it is called a standard Young tableau
(SYT). (Note that in many other literatures such as [10], an SSYT is defined to be strictly
increasing in every column and weakly increasing in every row instead, but we prefer to
define it in this way for later convenience.) We denote by SYT(λ) the set of standard
Young tableaux of shape λ. Throughout this paper we will identify a partition λ with its
Young diagram; hence the notations SYT(m× n) and SYT(nm) are equivalent.

A descent of an SSYT T is any instance of i followed by an i+ 1 in a lower row of T ,
and define the descent set D(T ) to be the set of all descents of T . The major index of T
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is defined by maj(T ) =
∑

i∈D(T ) i. Similarly, we define an ascent of T to be any instance

of i followed by an i + 1 in a higher row of T , and define the ascent set A(T ) to be the
set of all ascents of T . The amajor index of T is defined by amaj(T ) =

∑
i∈A(T ) i. For

example, for the tableau T shown in Figure 1, we have D(T ) = {2, 5, 6, 8}, maj(T ) = 21,
A(T ) = {3, 4, 7} and amaj(T ) = 14.

The most well-known result on enumerating the major indices of Young tableaux is
the following q-hook length formula:

Lemma 1. [10, p.376] For any partition λ =
∑

i λi of n, we have∑
T∈SYT(λ)

qmaj(T ) =
qb(λ)[n]!∏
u∈λ h(u)

. (1)

Here b(λ) =
∑

i(i− 1)λi.

Applying the above result to SYTs of shape 2× n, we get the following result.

Cq(n) =
∑

T∈SYT(2×n)

qmaj(T ) =
qn

[n+ 1]

[
2n

n

]
. (2)

The above result is a q-analogue of the well-known result that SYTs of shape 2 × n are
counted by the n-th Catalan number Cn = 1

n+1

(
2n
n

)
. The famous RSK algorithm [10] is a

bijection between permutations of length n and pairs of SYT of order n of the same shape.
Under this bijection, the descent set of a permutation is transferred to the descent set of
the corresponding “recording tableau”. Therefore many problems involving the statistic
descent or major index of pattern-avoiding permutations can be translated to the study
of descent and major index of standard Young tableaux [1, 3].

In this paper we study the major (amajor) index polynomial of increasing and row-
increasing tableaux. An increasing tableau is an SSYT such that both rows and columns
are strictly increasing, and the set of entries is an initial segment of positive integers (if an
integer i appears, positive integers less than i all appear). We denote by Inck(λ) the set
of increasing tableaux of shape λ whose entries are {1, 2, . . . , n− k}, i.e., Inck(λ) denotes
the set of increasing tableaux of shape λ, with exactly k numbers appear twice. Figure 1
shows an increasing tableau T ∈ Inc3(2× 6).

T : 1 2 4 5 6 8

3 4 6 7 8 9

Figure 1: An increasing tableau T ∈ Inc3(2× 6).

In [4] O. Pechenik studied increasing tableaux in Inck(2×n) and obtained the following
result.

Theorem 2. [4, Pechenik] For any positive integer n, and 0 6 k 6 n we have

Sq(n, k) =
∑

T∈Inck(2×n)

qmaj(T ) =
qn+k(k+1)/2

[n+ 1]

[
n− 1

k

][
2n− k
n

]
. (3)
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Note that Inc0(2 × n) = SYT(2 × n), and Equation (3) coincides with Equation (2)
when k = 0. Moreover, setting q = 1, Equeation (3) indicates that the cardinality of
Inck(2× n) is

s(n, k) =
1

n+ 1

(
n− 1

k

)(
2n− k
n

)
. (4)

s(n, k) is sequence A126216 in OEIS [7], which is considered as a refinement of the small
Schröder number (sequence A001003 in OEIS [7]). And s(n, k) also counts the following
sets.

1. Dissections of a convex (n+ 2)-gon into n− k regions;

2. SYTs of shape (n− k, n− k, 1k);

3. Noncrossing partitions of 2n− k into n− k blocks all of size at least 2.

In [9] Stanley gave a bijection between 1 and 2. In [4] Pechenik gave bijections between
2, 3 and increasing tableaux in Inck(2 × n). Moreover, Pechenik’s bijection between
Inck(2×n) and SYT(n− k, n− k, 1k) preserves the descent set, therefore by applying the
q-hook length formula to SYT(n− k, n− k, 1k) Pechenik proved Theorem 2.

In the theory of lattice paths enumeration s(n, k) also counts the number of small
Schröder n-paths with k F (flat) steps. Here a Schröder n-path is a lattice path goes
from (0, 0) to (n, n) with steps (0, 1)(U), (1, 0)(D) and (1, 1)(F ) and never goes below the
diagonal line y = x. If a Schröder path contains no F steps on the diagonal line, it is
called a small Schröder path. There is an obvious bijection between SSYTs in Inck(2×n)
and small Schröder n-paths with k flat steps: read the numbers in a tableau from 1 to
2n− k in increasing order, if i appears only in row 1 (2), it corresponds to a U (D) step;
if i appears in both rows, it corresponds to an F step. Increasing rectangular tableaux
and m-Schröder paths are also studied in [5, 8].

Note that the above bijection works for all Schröder n-paths, and an F step on the
diagonal line corresponds to a column with identical numbers in a tableau of shape 2×n.
Motivated by Pechenik’s results and the above observation, we define and study row-
increasing tableaux. Here a row-increasing tableau is an SSYT with strictly increasing
rows and weakly increasing columns, and the set of entries is a consecutive segment of
positive integers. Given positive integer n, nonnegative integers k,m, and λ a partition
of n, we denote by RIncmk (λ) the set of row-increasing tableaux of shape λ with set of
entries {m + 1,m + 2, . . . ,m + n − k}. We will also denote RInc0k(λ) as RInck(λ). It is
obvious that Inck(λ) ⊆ RInck(λ).

It is not hard to see (will be explained in Section 4) that RInck(2× n) is in bijection
with Schröder n-paths with k F steps, and these two sets are both counted by

r(n, k) =
1

n− k + 1

(
2n− k
k

)(
2n− 2k

n− k

)
. (5)

Here r(n, k) is considered as a refinement of the large Schröder number and is the sequence
A006318 in OEIS [7].
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Our main results are the following formulas involving major index and amajor index
of SSYTs in RInck(2× n).

Theorem 3. For any positive integer n, and 0 6 k 6 n we have

Rq(n, k) =
∑

T∈RInck(2×n)

qmaj(T ) =
qn+k(k−3)/2

[n− k + 1]

[
2n− k
k

][
2n− 2k

n− k

]
. (6)

Theorem 4. For any positive integer n, and 0 6 k 6 n we have

R̃q(n, k) =
∑

T∈RInck(2×n)

qamaj(T ) =
qk(k−1)/2

[n− k + 1]

[
2n− k
k

][
2n− 2k

n− k

]
. (7)

Note that when k = 0, we have RInc0(2 × n) = SYT(2 × n). Therefore Theorem 3
indicates Equation (2) and Theorem 4 indicates the following result.

Corollary 5. For any positive integer n, we have

C̃q(n) =
∑

T∈SYT(2×n)

qamaj(T ) =
1

[n+ 1]

[
2n

n

]
. (8)

The organization of the paper is as follows. In Section 2 we give a bijection between
row-increasing tableaux in RInck(2×n)\Inck(2×n) and increasing tableaux in Inck−1(2×
n). While this bijection does not preserve the descent set, by considering the change of the
descent sets, we get a recurrence formula for Rq(n, k) in terms of Sq(n, k), and hence prove
Theorem 3 by applying Theorem 2. In Section 3 we give a bijection Φ : RInck(2× n) 7→
RInck(2× n) such that for any T ∈ RInck(2× n),

maj(Φ(T )) = amaj(T ) + n− k.

Thus we proved Theorem 4 by showing that∑
T∈RInck(2×n)

qmaj(T ) = qn−k ·
∑

T∈RInck(2×n)

qamaj(T ).

Finally in Section 4 we review some related work on enumerating major index of Schröder
paths.

2 Counting major index for RInck(2 × n)

Theorem 6. For any positive integers n, k, we have

r(n, k) = s(n, k) + s(n, k − 1). (9)
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Proof. Note that RInck(2×n) can be split into two disjoint sets: those that are increasing
tableaux (Inck(2 × n)) and those that contains at least one column of identical entries
(RInck(2× n) \ Inck(2× n)). By definition the former one is counted by s(n, k). And we
will prove (9) by providing a bijection between RInck(2×n)\Inck(2×n) and Inck−1(2×n).

For any SSYT T , we use Ti,j to denote the entry in row i and column j of T . Now we
define f : RInck(2 × n) \ Inck(2 × n) −→ Inck−1(2 × n) as follows. Given T ∈ RInck(2 ×
n) \ Inck(2× n), find the minimal integer j such that T1,j = T2,j, i.e., the j-th column is
the leftmost column of T with two identical entries. Now we first delete the entry T2,j,
then move all the entries on the right of T2,j one box to the left and set the last entry as
2n − k + 1, and define the resulting tableau to be f(T ). Note that for any i, 1 6 i 6 n,
T1,i 6 T2,i < T2,i+1, therefore in f(T ), we have f(T )1,i < f(T )2,i, and there are only k− 1
number appear twice in f(T ). Hence f(T ) ∈ Inck−1(2× n).

The map f is reversible. Given S ∈ Inck−1(2× n). Find the rightmost column j′ such
that S1,j′+1 = S2,j′ + 1. (If such a column does not exist, then set j′ = 0.) Now we first
delete the entry S2,n, then move all the entries S2,j′+1, S2,j′+2, . . . , S2,n−1 one box to the
right, and set S2,j′+1 = S1,j′+1. We denote the resulting tableau as T . It is obvious that
T = f−1(S) ∈ RInck(2× n) \ Inck(2× n).

Figure 2 shows an example of f with T ∈ RInc3(2 × 5) \ Inc3(2 × 5) and f(T ) ∈
Inc2(2× 5).

T : 1 3 4 5 6

2 3 4 6 7
7→ f(T ) : 1 3 4 5 6

2 4 6 7 8

Figure 2: An example of f with T ∈ RInc3(2× 5) \ Inc3(2× 5) and f(T ) ∈ Inc2(2× 5).

Theorem 7. For any positive integers n, k with k < n, we have

Rq(n, k) = Sq(n, k) + Sq(n, k− 1) + (1− q2n−k)(Sq(n− 1, k− 1) + Sq(n− 1, k− 2)). (10)

Proof. Given T ∈ RInck(2 × n). We have either T ∈ Inck(2 × n) or T ∈ RInck(2 × n) \
Inck(2× n). The sum of qmaj(T ) over all SSYTs in Inck(2× n) is exactly Sq(n, k). For all
SSYTs in RInck(2× n) \ Inck(2× n), there are two cases.

1. If T1,n = T2,n. In this case we have T1,n = T2,n = 2n−k and 2n−k /∈ D(T ). We will
show that the sum of qmaj(T ) over all these tableaux is Sq(n−1, k−1)+Sq(n−1, k−2).

1) The n-th column is the only column of T with identical entries. In this case
the last column of T consist of two identical entries 2n−k and 2n−k /∈ D(T ).
And the sum of qmaj(T ) over these tableaux is Sq(n− 1, k − 1).

2) There is at least one column with identical entries in T besides the n-th column.
Now let T ′ be the tableau obtained by deleting the last column from T . Clearly
we have T ′ ∈ RInck−1(2× (n− 1)) \ Inck−1(2× (n− 1)). There are two cases
for the last column of T ′.
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a) If T ′1,n−1 6= T ′2,n−1, then f(T ′) ∈ Inck−2(2 × (n − 1)) with f(T ′)1,n−1 <
2n− k − 1, and maj(T ) = maj(T ′) = maj(f(T ′));

b) If T ′1,n−1 = T ′2,n−1, we have T1,n−1 = T2,n−1 = 2n − k − 1. Since T1,n =
T2,n = 2n− k, we have 2n− k− 1 ∈ D(T ) but 2n− k− 1 /∈ D(T ′), and all
the other descents of T ′ are also descents of T . Thus

maj(T ′) = maj(T )− (2n− k − 1). (11)

Moreover when we apply f to T ′ we have 2n − k − 1 ∈ D(f(T ′)) but
2n − k − 1 /∈ D(T ′), and all the other descents of T ′ are also descents of
f(T ′). Therefore we have

maj(f(T ′)) = maj(T ′) + (2n− k − 1). (12)

Combining (11) and (12) we know that f(T ′) ∈ Inck−2(2 × (n − 1)) with
f(T ′)1,n−1 = 2n− k − 1, and maj(f(T ′)) = maj(T ).

Thus the sum of qmaj(T ) over these tableaux of case a) and b) is Sq(n−1, k−2).

2. If T1,n 6= T2,n. In this case applying f to T obtains a tableau in Inck(2 × n) in
which T1,n 6= 2n − k. The sum of qmaj(T ) over all these tableau is Sq(n, k) less
q2n−k times the sum of qmaj(T ) over tableau in Inck−1(2× n) with T1,n = 2n− k. If
we remove the last column of such a tableau (which is a reversible operation since
T2,n = 2n−k+1) we obtain a tableau in either Inck−2(2×(n−1)) if T2,n−1 = 2n−k,
or in Inck−1(2× (n− 1)) if T2,n−1 = 2n− k − 1. Therefore we have that the sum of
qmaj(T ) over these talbeaux is Sq(n, k−1)− q2n−k(Sq(n−1, k−1) +Sq(n−1, k−2)).

Combining Case 1) and Case 2) we have∑
T∈RInck(2×n)\Inck(2×n)

qmaj(T ) = Sq(n, k−1) + (1− q2n−k)(Sq(n−1, k−1) +Sq(n−1, k−2)).

Hence (10) is proved.

Proof of Theorem 3: From Theorem 2 we have

Sq(n, k) + Sq(n, k − 1) =
qn+k(k−1)/2

[n− k + 1]

[
2n− k
k

][
2n− 2k

n− k

]
.

Applying the above equation to Theorem 7 we have

Rq(n, k) =
qn+k(k−1)/2

[n− k + 1]

[
2n− k

k

][
2n− 2k

n− k

]
+ (1− q2n−k)

qn−1+(k−1)(k−2)/2

[n− k + 1]

[
2n− k − 1

k − 1

][
2n− 2k

n− k

]
=

qn+k(k−3)/2

[n− k + 1]

[
2n− k

k

][
2n− 2k

n− k

]
.
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3 Counting amajor index for RInck(2 × n)

In this section we will prove Theorem 4 by showing that∑
T∈RInck(2×n)

qmaj(T ) = qn−k ·
∑

T∈RInck(2×n)

qamaj(T ).

Our main idea is to establish a bijection Φ : RInck(2 × n) 7→ RInck(2 × n) which
satisfies

maj(Φ(T )) = amaj(T ) + n− k.
Before establishing the map we need some definitions. We say a row-increasing tableau

T is prime if for each integer j satisfies T1,j+1 = T2,j + 1, T2,j+1 also appears in row 1 in
T . We use pRIncmk (λ) to denote the set of all prime row-increasing tableaux in RIncmk (λ).

For each T ∈ pRIncmk (2× n), we define two k-element sets A and B as the following:
A = {a1, a2, . . . , ak}6 is the set of numbers that appear twice in T . B = {b1, b2, . . . , bk},
here bi is the the number appears immediately left of ai in the second row of T in cyclic
order (if a1 = T2,1, then bk = T2,n(= m + 2n − k)). Let g(T ) be the tableau of shape
2× n obtained by first deleting all elements in A from the first row and then inserting all
elements in B into the first row and list them in increasing order, and keep the entries in
row 2 unchanged. (See Figure 3 and Figure 4 for examples.)

Lemma 8. The map g is an injection from pRIncmk (2×n) to RIncmk (2×n) which satisfies
the following:

1) If T2,1 appears only once in T , then g(T )1,i+1 6 g(T )2,i for each i, 1 6 i 6 n− 1;

2) T2,1 appears twice in T if and only if g(T )1,n = g(T )2,n.

Proof. It is obvious that the map g is invertible. Next we will prove that for any T ∈
pRIncmk (2× n), g(T ) ∈ RIncmk (2× n) and satisfies corresponding conditions according to
the following cases.

1. T2,1 appears only once in T .

In this case for each i, 1 6 i 6 n, bi is immediately to the left of ai in the second
row of T , hence bi < ai. Note that it is impossible that T1,i+1 > T2,i + 1 (in
which case there will be no place for the number T2,i + 1), we now first prove that
g(T )1,i+1 6 g(T )2,i for each i, 1 6 i 6 n− 1 according to the following two cases.

a) If T1,i+1 6 T2,i, we have g(T )1,i+1 6 T1,i+1 6 T2,i = g(T )2,i, for each i, 1 6 i 6
n− 1.

b) If T1,i+1 = T2,i+1, according to the definition of prime row-increasing tableaux
we know that in this case T2,i+1 appears twice in T . Suppose there are exactly
x numbers among T2,2, T2,3, . . . , T2,i that appear twice in T (x could be 0), then
under the map g, exactly x numbers are deleted from the left of T1,i+1 in the
first row and then x + 1 numbers (including T2,i) are inserted to the left of
T1,i+1, therefore we have g(T )1,i+1 = T2,i = g(T )2,i for each i, 1 6 i 6 n− 1.
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Moreover, since g(T )1,i < g(T )1,i+1 for each i, 1 6 i 6 n − 1, we know that g(T ) is
strictly increasing in each column. And it is easy to check that T1,1 = g(T )1,1 since
T is prime. Therefore we have g(T ) ∈ RIncmk (2×n) and g(T )1,i+1 6 g(T )2,i for each
i, 1 6 i 6 n− 1. (See Figure 3 for an example.)

T : 5 7 8 10 11 12

6 8 9 12 13 14
g−→ g(T ) : 5 6 7 9 10 11

6 8 9 12 13 14

Figure 3: An example of the map g with T ∈ pRInc42(2× 6) and T2,1 appears only once.

2. T2,1 appears twice in T .

In this case we have a1 = T2,1 and b1 = T2,n. Let T̃ be the tableau of shape 2 × n
obtained from T by first deleting {a2, . . . , ak} from the first row and then inserting
{b2, . . . , bk} into the first row and list them in increasing order, and keep the entries
in row 2 unchanged. (See Figure 4 for an example.)

T : 1 2 4 5 6 9

2 3 6 7 8 9
g−→ g(T ) : 1 3 4 5 8 9

2 3 6 7 8 9

T̃ : 1 2 3 4 5 8

2 3 6 7 8 9

Figure 4: An example of the map g with T ∈ pRInc02(2× 6) and T2,1 appears twice.

Suppose T2,1 = T1,j, 1 6 j 6 n, then we have g(T )1,i = T̃1,i for each i, 1 6 i 6 j − 1;
g(T )1,i = T̃1,i+1 for each i, j 6 i 6 n − 1; and g(T )1,n = T2,n = g(T )2,n. Similar to
the argument in case 1, we can prove that T̃1,i+1 6 T̃2,i = T2,i for each i, 1 6 i 6
n − 1. Hence we have that g(T )1,i 6 g(T )2,i for each i, 1 6 i 6 n − 1, i.e., g(T ) is
weakly increasing in each column. And it is obvious from the definition of g that
g(T )1,n = g(T )2,n = T2,n if and only if T2,1 appears twice in T .

Proposition 9. For each T ∈ pRIncmk (2× n) we have

maj(g(T )) =

{
amaj(T ) + n− k, if T1,1 = T2,1;

amaj(T ) +m+ n− k, if T1,1 6= T2,1.
(13)

Proof. Given T ∈ pRIncmk (2× n), let T 0 be the skew shape tableau obtained by deleting
the numbers in A from row 1 of T and “push” all the remaining numbers to the right,
and keep the second row unchanged. (See Example 10 for an example.) We will prove
Equation (13) by verifying the following facts.

1. D(g(T )) \D(T 0) = A(T ) \ A(T 0), and therefore

maj(g(T ))−maj(T 0) = amaj(T )− amaj(T 0);
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For each i, 1 6 i 6 n, i ∈ A(T ) \ A(T 0) if and only if that in T i appears in row 2
and i+1 appears in both rows. In this case i is immediately to the left of i+1 in row
2 in T and is inserted to the first row of T 0 to get g(T ), hence i ∈ D(g(T )) \D(T 0).

On the other hand, for each i, 1 6 i 6 n, i ∈ D(g(T ))\D(T 0) if only if that in g(T ),
i+ 1 appears in row 2 and i appears in both rows. In this case i+ 1 is immediately
to the right of i in g(T ), and hence i + 1 appears in both rows of T and i appears
in row 2 of T , therefore we have i ∈ A(T ) \ A(T 0).

2. We first prove the case when T1,1 6= T2,1, maj(T 0) = amaj(T 0) +m+ n− k.
Suppose |D(T 0)| = d for some positive integer d, then we have |A(T 0)| = d − 1.
Moreover, suppose the descents of T 0 appears in columns k+ x1, k+ x2, . . . , k+ xd
in row 1, and the ascents of T 0 appears in columns y1, y2, . . . , yd−1 in row 2. Here
d, x1, . . . , xd, y1, . . . yd−1 are all positive integers and xd = n − k. It is not hard to
check that T 0 is uniquely determined by the two sets X = {x1, x2, . . . , xd}6 and
Y = {y1, y2, . . . , yd−1}6. And we have

D(T 0) = {m+ x1,m+ x2 + y1, . . . ,m+ xd + yd−1};
A(T 0) = {m+ x1 + y1,m+ x2 + y2, . . . ,m+ xd−1 + yd−1}.

Therefore we have

maj(T 0)− amaj(T 0) = m+ xd = m+ n− k.

Similarly we can prove that when T1,1 = T2,1, maj(T 0) = amaj(T 0) + n− k.

Combining the above two facts we get Equation (13).

Example 10. Figure 5 shows an example of T , T 0 and g(T ) with n = 6, m = 4, and k = 2.
Here we have A(T ) = {7, 8, 12}, A(T 0) = {8}, D(T 0) = {6, 10}, D(g(T )) = {6, 7, 10, 12},
d = 2, X = {2, 4} and Y = {2}.

T : 5 6 8 9 10 13

7 8 11 12 13 14
g−→ g(T ) : 5 6 7 9 10 12

7 8 11 12 13 14

T 0 : 5 6 9 10

7 8 11 12 13 14

Figure 5: An example of the map g with T ∈ pRInc42(2× 6).

Now we are ready to prove the general case.

Theorem 11. There is a bijection Φ : RInck(2 × n) ` RInck(2 × n) such that for any
T ∈ RInck(2× n), the second row of Φ(T ) is identical with the second row of T , and

maj(Φ(T )) = amaj(T ) + n− k. (14)
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Proof. Given T ∈ RInck(2 × n), there is a unique way to decompose T into prime row-
increasing tableaux: suppose i1, i2, . . . , il−1 are all the positive integers such that T2,ij +1 =
T1,ij+1 and T2,ij+1 appear only once in T , we break T between column ij and ij + 1
and get a decomposition T1T2 · · ·Tl of T into prime row-increasing tableaux. Now set
Φ(T ) = g(T1)g(T2) · · · g(Tl) (see Example 12).

From Lemma 8 we know that Φ(T ) ∈ RInck(2× n). Next we show that Equation 14
holds. Suppose Tj ∈ pRInc

mj

kj
(2× nj) for integers mj, kj, nj with mj, kj > 0, and nj > 0.

Then we have
n1 + n2 + · · ·+ nl = n, k1 + k2 + · · ·+ kl = k.

The smallest entry of Ti is mi + 1 with m1 = 0, and

mj = 2(n1 + n2 + · · ·+ nj−1)− (k1 + k2 + · · ·+ kj−1), 2 6 j 6 l.

And the largest entry of Tj is mj+1 for each j, 1 6 j 6 l − 1,
It is easy to check that

A(T ) = A(T1) ∪ A(T2) ∪ · · · ∪ A(Tl) ∪ {m2,m3, . . . ,ml}

and

amaj(T ) =
l∑

j=1

amaj(Tj) +
l∑

j=2

mj.

Moreover we have

D(Φ(T )) = D(g(T1)) ∪D(g(T2)) ∪ · · · ∪D(g(Tl)).

From the definition of prime row-increasing tableaux we know it is impossible that
the two numbers of the first column of Tj is identical when j > 1. Moreover, since
T ∈ RInck(2 × n) we have m1 = 0. Hence from Proposition 9 we know that for each
j, 1 6 j 6 l,

maj(g(Tj)) = amaj(Tj) +mj + nj − kj,

always holds. Therefore we have

maj(Φ(T )) =
l∑

j=1

maj(g(Tj)) =
l∑

j=1

(amaj(Tj) +mj + nj − kj)

=
l∑

j=1

amaj(Tj) +
l∑

j=1

mj + n− k

= amaj(T ) + n− k.

It remains to show that Φ is a bijection. Since g is an injection from pRIncmk (2 × n)
to RIncmk (2 × n), it is sufficient to show that given S = Φ(T ) ∈ RInck(2 × n), we can
decompose S at the right places to get S1S2 · · ·Sl such that Si = g(Ti) for each i, 1 6 i 6 l.
And the decomposition is as follows, we first find the largest number j such that S1,j = S2,j,
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i.e., column j is the rightmost column with identical entries. If such a column does not
exist, we set j = 0. Now for each i, j 6 i 6 n − 1, we break S between column i and
i + 1 if S1,i+1 > S2,i (Note that when 0 < j < n, S1,j+1 = S2,j + 1 always holds) and get
a decomposition S1S2 · · ·St of S. From Lemma 8 it is clear that such a decomposition
guarantees t = l and Si = g(Ti) for each i, 1 6 i 6 l. Therefore we proved that Φ is a
bijection.

Example 12. Let n = 13, k = 6, and l = 3. Figure 6 shows an example of the map Φ.
Here we have

A(T ) = {3, 8, 9, 11, 13, 15, 17, 19},

A(T 0
1 ) = {3}, A(T 0

2 ) = {11, 13}, A(T 0
3 ) = ∅,

D(T 0
1 ) = {1, 5}, D(T 0

2 ) = {10, 12, 14}, D(T 0
3 ) = {18}.

and

D(Φ(T )) = {1, 5, 8, 10, 12, 14, 15, 18, 19}, amaj(T ) = 95,maj(Φ(T )) = 102.

T : 1 2 4 5 6 9 10 12 13 14 16 18 20

2 3 6 7 8 9 11 13 15 16 17 19 20

1 4 5 10 12 14 18

2 3 6 7 8 9 11 13 15 16 17 19 20

Φ(T ) : 1 3 4 5 8 9 10 11 12 14 15 18 19

2 3 6 7 8 9 11 13 15 16 17 19 20

Figure 6: An example of the map Φ with n = 13, k = 6, and l = 3.

4 Major index of Schröder n-paths

Let P be a Schröder n-path that goes from the origin (0, 0) to (n, n) with k F steps, we
can associate with P a word w = w(P ) = w1w2 · · ·w2n−k over the alphabet {0, 1, 2} with
exactly k 1’s. (See Firgure 7.)

We say that w has a descent in position i, 1 6 i 6 n− 1, if wi > wi+1. The descent set
of w is the set of all positions of the descents of w, D(w) = {i : 1 6 i 6 n− 1, wi > wi+1}.
The major index of w is defined as maj(w) =

∑
i∈D(w) i. And define maj(P ) = maj(w(P )).

In [2], Bonin, Shapiro and Simion study the major index for Schröder paths and gave
the following result: ∑

qmaj(P ) =
1

[n− k + 1]

[
2n− k
k

][
2n− 2k

n− k

]
, (15)
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(0, 0)

(8, 8)

Figure 7: A Schröder P with ω(P ) = 00100021222022.

here the sum is over all Schröder n-paths with exactly k F steps.
Note that Equation (15) differs from Equations (6) and (7) only by a factor of a power

of q. Readers might wonder if there is some simple explanation on these relations. In
fact there is an obvious bijection θ between SSYTs in RInck(2 × n) and Schröder words
of length 2n−k that contain exactly k 1’s. Given T ∈ RInck(2×n), we read the numbers
from 1 to 2n − k in increasing order, if i appears only in row 1 (2), we set wi = 0(2),
otherwise we set wi = 1, and define θ(T ) = w1w2 · · ·w2n−k. A naive thinking is that if i is
an ascent of T , then i is a descent of θ(T ), but this is not always true. When i and i+ 1
both appear in row 1 and row 2 of T , then we have i ∈ A(T ) but i /∈ D(θ(T )). It would
be interesting if one can find a simple combinatorial explanation on the relations between
descent (ascent) sets of a row-increasing tableaux in RInck(2× n) and the descent sets of
the correspongding Schröder n-paths with k F steps.
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