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Abstract

We introduce a formal definition of a pattern poset which encompasses several
previously studied posets in the literature. Using this definition we present some
general results on the Möbius function and topology of such pattern posets. We
prove our results using a poset fibration based on the embeddings of the poset,
where embeddings are representations of occurrences. We show that the Möbius
function of these posets is intrinsically linked to the number of embeddings, and in
particular to so called normal embeddings. We present results on when topolog-
ical properties such as Cohen-Macaulayness and shellability are preserved by this
fibration. Furthermore, we apply these results to some pattern posets and derive
alternative proofs of existing results, such as Björner’s results on subword order.

Mathematics Subject Classifications: 06A07, 06A08, 05A05

1 Introduction

Pattern occurrence, or more generally the presence of substructures, has been studied on
a wide range of combinatorial objects with many different definitions of a pattern; see
[Kit11] for an overview of the field. In many of these cases we can use the notion of pattern
containment to define a poset on these objects, for example the classical permutation
poset. Whilst many such pattern posets have been studied in isolation, there is no general
framework for the study of these posets. Yet many of the known results follow a similar
theme. By introducing a formal definition of a pattern poset we develop tools for studying
these posets, which leads to some general results that helps in understanding why different
pattern posets often have a similar structure.

∗This research was supported by the EPSRC Grant EP/M027147/1.
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We say a word α occurs as a ρ-pattern in a word β if there is a subsequence of β satis-
fying certain conditions ρ with respect to α, and we call this subsequence an occurrence of
α. We can define a binary relation α 6ρ β if α occurs as a ρ-pattern in β. If 6ρ satisfies
the partial order conditions, then we can define a pattern poset on the set of words in
question. A variety of different pattern posets have been studied in the literature, where
the main focus is to answer questions on the structure and topology of a pattern poset P
and its intervals, that is, the induced subposets [α, β] = {λ ∈ P |α 6 λ 6 β}.

The topology of a poset is considered by mapping the poset to a simplicial complex,
called the order complex, whose faces are the chains of the poset, that is, the totally
ordered subsets. We refer the reader to [Wac07] for an overview of poset topology. A
poset is shellable if its maximal chains can be ordered in a certain way. Shellability
implies a poset has many nice properties, such as Cohen-Macaulayness. We define a
poset P to be Cohen-Macaulay if the order complex of P , and of every interval of P , is
homotopically equivalent to a wedge of top-dimensional spheres.

The study of patterns in words has received a lot of attention. Perhaps the simplest
type of pattern in a word is that of subword order, that is, u = u1 . . . ua occurs as a
pattern in w = w1 . . . wb if there is a subsequence wi1 . . . wia such that wij = uj for
all j = 1, . . . , a. Björner [Bjö90] presented a formula for the Möbius function of the poset
of words with subword order and showed that this poset is shellable. The poset of words
with composition order has the partial order u 6 w if there is a subsequence wi1 . . . wia
such that uj 6 wij for all j = 1, . . . , a. A formula for the Möbius function of this poset
is given by Sagan and Vatter in [SV06]. Furthermore, the poset of generalised subword
order is considered by Sagan and Vatter in [SV06] and McNamara and Sagan in [MS12].
There are many other examples of studies of patterns in words and word-representable
objects, such as in permutations, set partitions, trees, mesh patterns and more.

Perhaps the most studied pattern posets in recent years is that of permutation pat-
terns, where a permutation is a word on the alphabet of nonnegative integers with no
repeated letters. The classical, and most studied, definition of a pattern in a permutation
says that σ occurs as a pattern in the permutation π if there is a subsequence of π whose
letters have the same relative order of size as the letters of σ. For example, 213 occurs
as a pattern in 35142 in the subsequence 314. The permutation pattern poset has been
studied extensively but a complete understanding has proved elusive due to its complex
nature. Some formulas for the Möbius function of certain classes of permutations and
certain properties of the topology have been given in [SV06, ST10, BJJS11, Smi14, MS15,
Smi16, Smi17].

Many of the known results on the Möbius function of pattern posets, including those
mentioned above, depend on the number of normal embeddings, defined in various but
similar ways. For example, they play an important role in the study of many different
classes of intervals of the classical permutation poset. We define an embedding of α in β
as a sequence of dashes and the letters of α, such that the positions of the non-dash letters
give an occurrence of α in β and deleting all the dashes results in α. The definition of
when an embedding is normal varies, but all follow a similar theme. Perhaps the simplest
definition is that of Björner’s for subword order [Bjö90], where the normal condition is
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that the only positions that can be dashes are the leftmost positions in the maximal
consecutive sequences of equal letters. For example, 1 − 2 − 1 is a normal embedding of
121 in 12211.

We introduce a simple definition for normal embeddings which extracts the common
theme from those in the literature. Using this definition we prove that the Möbius function
of a pattern poset, satisfying certain restrictions, equals the number of normal embeddings,
plus an extra term that we describe explicitly. This extra term embodies the variations in
the many definitions of normal embeddings. Intriguingly, this extra term often vanishes,
or can be shown to be zero, which allows us to compute the Möbius function in polynomial
time. Furthermore, our general result can be used to prove many of the existing results
on the Möbius function of various pattern posets.

Poset fibrations are instrumental to our results. A fibration of a poset Q consists
of another poset P , called the total space, and a rank and order preserving surjective
map f : P → Q. Poset fibrations were first studied by Quillen in [Qui78] and a good
overview is given in [BWW05]. It was shown by Quillen that Cohen-Macaulayness is
maintained across a poset fibration satisfying certain conditions. We prove that in some
case shellability can also be preserved in a similar manner.

We introduce a poset fibration on an interval [α, β] of a pattern poset. The total space
of this fibration is built from the embeddings of λ in β, for all λ ∈ (α, β). This total
space has a much nicer structure than the original poset, which allows us to compute the
Möbius function and topology of the total space. We can then use known results on poset
fibrations to get results for the original interval.

It is known that a poset is not shellable if it contains a disconnected subinterval of
rank greater than 2, see [Bjö80]. We say an interval is zero split if its set of embeddings
can be partitioned into two parts A and B such that no position appears as a dash in an
embedding from A and in an embedding from B. In [MS15] it is shown that an interval
of the classical permutation poset is disconnected if and only if it satisfies a slightly
stronger condition than being zero split. We introduce a definition of strongly zero split
which generalises this result to pattern posets. This implies that if an interval contains a
strongly zero split subinterval of rank greater than 2, then it is not shellable.

In Section 2 we introduce some notation used throughout the paper and in Section 3
we introduce pattern posets. In Section 4 we introduce two poset fibrations on pattern
posets. In Section 5 we apply these poset fibrations to prove some results on the Möbius
function and topology of pattern posets. In Section 6 we apply these results to the poset
of words with subword order, which provides an alternative proof of Björner’s result on
the Möbius function of this poset. We also consider the consecutive permutation pattern
poset and provide an alternative proof for the results on the Möbius function given in
[BFS11] and [SW12]. Finally, in Section 7 we propose some question for future work.

2 Notation and Preliminaries

We begin by introducing some necessary notation on words and posets. For further
background on words see [Kit11] and for further background on posets see [Sta12, Chapter
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3].

Definition 1. A word is a sequence of letters from an alphabet Σ. The length of a word
w, denoted |w|, is the number of letters in the word and we use wi to denote the letter in
position i of w. We denote the set of words on the alphabet Σ by Σ∗.

Example 2. If Σ = {0, 1} then 01001 is a word of length 5 on the alphabet Σ.

Note that we use the convention that the first position is number 1, not 0. We can
apply many different restrictions to words to get different combinatorial objects. We are
particularly interested in permutations, which can be defined in the following way:

Definition 3. A permutation is a word with no repeated letters on the alphabet of positive
integers. The reduced form of a permutation σ is the permutation red(σ), where if σi is
the k’th largest valued letter then red(σ)i = k. Two permutations are considered to be
the same if they have the same reduced form.

Example 4. If σ = 264, then red(σ) = 132.

When studying the Möbius function or topology of a poset it is often necessary that
there is a unique minimal and unique maximal element, called the bottom and top ele-
ments, respectively.

Definition 5. A poset P is bounded if it has a unique bottom and top element, which
we denote 0̂ and 1̂, respectively. If P is not bounded we create the bounded poset P̂
by adding a bottom and top element. The interior of a bounded poset is obtained by
removing the bottom and top elements.

Many of the posets that we look at are infinite, so it makes sense to limit our investi-
gation to smaller subposets.

Definition 6. An interval of a poset P is an induced subposet [σ, π] := {λ ∈ P |σ 6
λ 6 π}. We denote the interior of an interval by (σ, π) and the half open intervals by
[σ, π) = [σ, π] \ {π} and (σ, π] = [σ, π] \ {σ}.

We also recall some general poset terminology that is used throughout.

Definition 7. Let P be a bounded poset. A chain c, of length |c| = `− 1, in P is a totally
ordered subset of elements c1 < c2 < · · · < c`. The rank of an element α ∈ P , denoted
rkP (α) or rk(α) when the poset is clear, is the length of the longest chain from 0̂ to α.
The rank of P is given by rk(P ) = rk(1̂). A poset is pure if all the maximal chains have
the same length.

The join, if it exists, of any two elements α and β of a poset is the smallest element
that lies above both α and β, and is denoted α∨ β. An element α is covered by β, which
we denote by αl β, if α < β and there is no κ such that α < κ < β.

In this paper all posets are assumed to be pure. Two questions often asked of any
poset are “What is the Möbius function?” and “Is it shellable?”. A poset is shellable if
the maximal chains can be ordered in a “nice” way; see [Wac07] for a formal definition.
Shellability has many interesting consequences for the structure and topology of a poset.
The Möbius function is defined as follows:
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Figure 1: The Hasse diagram of a disconnected bounded pure poset P with rank rk(P ) = 4
and Möbius function µ(P ) = 1, where each element α is labelled by the value of µ(0̂, α).

Definition 8. The Möbius function on a poset P is defined recursively, where for any
elements a, b ∈ P we have µ(a, a) = 1, µ(a, b) = 0 if a 66 b and if a < b then:

µ(a, b) = −
∑
c∈[a,b)

µ(a, c).

The Möbius function of bounded poset P is µ(P ) = µ(0̂, 1̂) and the Möbius number of a
poset P is µ̂(P ) := µ(P̂ ).

We are also interested in looking at the structure of the poset. For example, it is
known that a poset is not shellable if it has any disconnected subintervals of rank greater
than 2, where disconnected is defined by:

Definition 9. A bounded poset is disconnected if the interior can be split into two disjoint
sets, which we call components, such that every pair of elements from separate components
are incomparable.

See Figure 1 for an example of a disconnected bounded pure poset. In order to study
these properties of a poset we use poset fibrations, which where first introduced by Quillen
in [Qui78] and have many nice properties; see [BWW05] for a good overview.

Definition 10. A poset fibration is a rank and order preserving surjective map between
posets.

Remark 11. Poset fibrations are sometimes defined without the surjectivity condition,
such as in [Wal81] and [Bac77]. However, in Sections 5.3 and 5.4 we use results from
[Qui78] and [BWW05], which require a poset fibration to be surjective.

Much of the terminology used here comes from poset topology, where we represent
a poset P as a simplicial complex ∆(P ) whose faces are the chains of P . Many of
the properties we have introduced translate to topological properties on this simplicial
complex. For example, P is disconnected if and only if ∆(P ) is disconnected, a poset
fibration f : P → Q gives a fibration between ∆(P ) and ∆(Q), and the Möbius function
of P equals the Euler Characteristic of ∆(P ). We refer the reader to [Wac07] for further
background on poset topology.
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3 Pattern Posets

Pattern occurrence has been studied on a variety of different combinatorial objects, with
permutation patterns receiving the most attention. In this section we present pattern
posets, which is a general definition of posets of combinatorial objects where the partial
order is given by the occurrence of patterns. First we need to formally define pattern
occurrence.

Definition 12. We define a pattern relation ∼ρ as a binary relation between words on an
alphabet Σ.

Definition 13. Define a position condition function κ(β, q) which returns a set of inequal-
ities on the letters of β and q, where β is a word on some alphabet Σ, and q is a word on
the alphabet N, with qi < qi+1 for all i.

Definition 14. Consider a pair of words α, β on an alphabet Σ. Given a pattern relation
∼ρ and a position condition function κ, we call (ρ, κ) a pattern pair. We say that a
subsequence βi1βi2 . . . βik is a (ρ, κ)-occurrence of α if:

(1) α ∼ρ βi1 . . . βik , and

(2) βi1βi2 . . . βik satisfies the conditions of κ(β, i1i2 . . . ik).

Remark 15. A position condition function κ takes two inputs β and q, as it allows us to
introduce conditions on both the locations of the occurrences, via the letters of q, and
the values of the letters in the occurrence, via the letters of β. This can be considered a
generalisation of the notion of bivincular permutation patterns, see [BMCDK10].

We can use our notion of pattern relations to define a poset as follows:

Definition 16. Consider a pattern pair (ρ, κ). Given σ, π ∈ Σ∗ we define a binary relation
by σ 6ρ,κ π if there is a (ρ, κ)-occurrence of σ in π. If 6ρ,κ is reflexive, antisymmetric and
transitive, then we define a pattern poset P (B, ρ, κ) as the poset with elements B ⊆ Σ∗

and partial order 6ρ,κ.

Example 17. Let S and A be the set of all permutations and set of all words on the non-
negative integers, respectively, and let κ∅ be the position condition function that always
maps to the empty set. Some examples of pattern posets are:

1. On A define α ∼ω β if and only if α and β are equal. Then P (A, ω, κ∅) is the poset
of subword order; see [Bjö90],

2. On A, given a poset Q whose elements are N, define σ ∼ω(Q) π if and only if σi 6Q πi
for all i. Then P (A, ω(Q), κ∅) is the poset of generalised subword order; see [MS12],

3. Let N be the chain of natural numbers. Then P (A, ω(N ), κ∅) is the composition
poset; see [SV06],

4. On S define σ ∼δ π if and only if red(σ) = red(π). Then P (S, δ, κ∅) is the classical
permutation pattern poset; see [MS15],
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Classical Permutation Poset

21

312 132

3124 1243
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Consecutive Permutation Poset

2122

212322132223122

231322 231232 213232

2313232

Subword Poset

21

3122

23 32

33

Composition Poset

01

00110101

010101 001101 001011

00110101

Dyck Path Poset

Figure 2: Intervals of five different pattern posets.

5. Define κc(β, q) = {qi + 1 = qi+1 | ∀i ∈ N}. Then P (S, δ, κc) is the consecutive
permutation pattern poset; see [BFS11, EM15],

6. Define κX(β, q) = {qi + 1 = qi+1 | if Xi = 0}, where X is an infinite binary string.
Then P (A, ω, κX) are the vincular pattern posets; see [BF17],

7. Define B ⊆ A as the set of Dyck words. Then P (B,ω, κ∅) is the Dyck pattern
poset; see [BFPW13, BBF+14].

See Figure 2 for examples of some of the pattern posets listed above. When it is clear
what poset we are considering we drop the subscript and use the notation 6. The notion
of pattern pair is very general and not every pattern pair will induce a partial order, in
fact most pattern pairs do not.
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4 A Poset Fibration

In this section we introduce a poset fibration for pattern posets, along with a variation for
pattern posets with a particular property that we define. Poset fibrations were first studied
by Quillen in [Qui78] and have many nice properties. First we introduce embeddings which
play an important role throughout the paper:

Definition 18. Consider a pattern poset P , defined over an alphabet Σ, and two elements
α 6 β of P . An embedding η of α in β is a sequence of length |β|, consisting of letters of
Σ and dashes, such that the non-dash letters are exactly in the positions of an occurrence
of α in β and the removal of the dashed letters results in a word which is equal to α.
Define Eα,β as the set of embeddings of α in β and E(α, β) as the size of Eα,β.

Example 19. In the composition poset 121 − − is an embedding of 121 in 13211. In the
classical permutation poset −56 − −3 is an embedding of 231 in 156243. Although 563
and 231 are not the same word, according to Definition 3 they are equal permutations as
they have the same reduced form, hence the conditions of Definition 18 are satisfied.

Definition 20. Given an embedding η ∈ Eα,β, we call the positions of the dashed letters
in η the empty positions and let the zero set of η, denoted Z(η), be the set of empty
positions in η.

Traditionally zeroes are used in embeddings instead of dashes, but we use dashes as
this allows us to consider words that contain zeroes. We can define a poset fibration using
the embeddings of a pattern poset:

Definition 21. Consider an interval [σ, π] of a pattern poset P . Define the poset

A(σ, π) =
⋃

λ∈(σ,π)

Eλ,π,

with the partial order η 6 φ if Z(η) ⊇ Z(φ) and α 6P β, where α and β are obtained by
removing the dashes from η and φ, respectively. Also, define A∗(σ, π) = A(σ, π) ∪ Eσ,π.
Moreover, define Â(σ, π) and Â∗(σ, π) as the bounded posets obtained by adding a top
element π and bottom element 0̂ to A(σ, π) and A∗(σ, π).

Example 22. Consider the permutation pattern poset with π = 243516, then −435−− 6
−435− 6 however −4−−16 66 −435− 6.

We can now define the poset fibration:

Definition 23. Define fPπ : A(σ, π)→ (σ, π) as the map that takes the elements of Eλ,π to
λ.

So we have a poset fibration where fPπ is the projection map and A(σ, π) is the total
space. Where it is clear we use the notation f , dropping the P and π. We can define a
variation of this poset fibration by considering pattern posets with the following property:

Definition 24. Consider a pattern poset P whose elements are defined on the alphabet
Σ. We say that P is closed if we can represent Σ ∪ {−} as a tree rooted at −, which we
denote Σ̄, where for every η ∈ Â∗(σ, π) \ {0̂} we have:

[η, π] = {φ | ηi 6Σ̄ φi 6Σ̄ πi for all i} (1)
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for every pair σ, π ∈ P . Moreover, we say P is fully-closed if Σ̄ consists of an antichain
and the bottom element −.

Definition 25. In a closed pattern poset P we say that we are decreasing a letter in an
embedding if we change a letter i to j lΣ̄ i, and increasing if we change j to i. Similarly,
we can decrease a letter in an element π ∈ P , and if we reach − then we delete the letter.

Example 26. The subword order and classical permutation pattern posets are fully-closed,
because we can construct Σ̄ from the antichain N and bottom element −, and we can get
between embeddings by turning non-empty letters to empty letters, and vice-versa.

The composition poset is closed but not fully-closed, where Σ̄ is the chain of natural
numbers, and − at the bottom.

The consecutive permutation poset is not closed, because only embeddings where
the non-empty letters are consecutive are valid embeddings, so we can never satisfy (1).
Similarly, the Dyck pattern poset is not closed, because embeddings must have an even
number of non-empty letters.

Remark 27. If [σ, π] is an interval of a closed pattern poset P , then every interval [η, φ]
in Â∗(σ, π), with η 6= 0̂, is isomorphic to the poset

∏
i[ηi, φi], where [ηi, φi] is a chain in Σ̄.

Moreover, if P is fully closed then [η, φ] is isomorphic to the boolean lattice Bt, where t
is the number of positions ηi 6= φi. This is because a chain [ηi, φi] is of length 1 if ηi 6= φi,
and of length 0 otherwise.

As Σ̄ is a tree the decreasing and increasing operations are well defined on any embed-
ding η ∈ Eσ,π as there is a unique path between − and πi in Σ̄, for all i. The decreasing
operation on a word π is well defined as this corresponds to travelling down the unique
path from πi to −. However, we cannot always uniquely increase a letter of a word,
because an element of Σ̄ can be covered by more than one element.

Next we introduce normal embeddings, which haved played an important role in many
of the existing results on the Möbius function of pattern posets. For example, normal
embeddings appear in results on the poset of words with subword order [Bjö90, Bjö93], the
poset of words with composition order [SV06], the poset of words with generalised subword
order [SV06, MS12] and the classical permutation poset [BJJS11, Smi14, Smi16, Smi17].
We generalise these notions of normal embeddings and present a simple definition for a
normal embedding for any closed pattern poset. This definition is different from some
definitions in the literature but extracts the common aspect of all of them, and the
variation is then accounted for in our formula for the Möbius function in Section 5. First
we introduce adjacencies which play an important role in defining a normal embedding.

Definition 28. Consider a closed pattern poset P := P (B, ρ, κ). An adjacency in an
element σ ∈ P is a maximal sequence of consecutive positions such that decreasing any
letter of the adjacency yields the same element relative to ∼ρ. An adjacency of length 1
is trivial, the tail of a non-trivial adjacency is all but the first letter of the adjacency and
trivial adjacencies have no tails.

Example 29. Consider the classical permutation poset, where the decreasing operation is
deletion. In the permutation π = 2341657 we have an adjacency 234 because deletion
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of any letter gives the permutation 231657, which has the reduced form 231546. So the
adjacencies are 234, 1, 65, 7 and the tails are 34 and 5.

Consider the composition poset, where the decreasing operation is: reduce the value
of i > 2 by 1 or delete 1. In 321122 the only non-trivial adjacency is 11. In fact, in any
word of this poset the only non-trivial adjacencies are consecutive sequences of 1’s.

Definition 30. Given any embedding η of σ in π in a closed pattern poset we say a position
i of η is full if ηi = πi and fillable if increasing ηi once results in πi.

For example, a position is full in a fully-closed pattern poset if and only if it is non-
empty and fillable if and only if it is empty. A position is full in the composition poset if
ηi = πi and fillable if ηi = πi − 1 or ηi = − and πi = 1.

Using our definition of adjacency we can define a normal embedding, which appears
frequently in the results on pattern posets:

Definition 31. Consider a closed pattern poset P := P (B, ρ, κ) and two elements σ, π ∈ P .
An embedding η of σ in π is normal if all the positions that are in a tail of any adjacency
in π are full in η and all other positions are fillable. Let NE(σ, π) denote the number of
normal embeddings of σ in π.

An embedding η is representative if for every adjacency of π the corresponding letters
in η have all the empty letters to the left, the full letters to the right and at most one
non-full non-empty letter positioned between them. Let Êσ,π be the set of representative
embeddings of σ in π.

Example 32. Consider the classical permutation poset. The embeddings of 213 in 231645
are:

2− 16−− − 316−− 2− 1− 4− −31− 4− 2− 1−−5 − 31−−5

The representative embeddings are−316−− and−31−−5 and the only normal embedding
is −31−−5.

Note that in a fully-closed pattern poset an embedding is representative if there is no
empty position to the right of a non-empty position in the same adjacency, and normal if
all positions in the tail of an adjacency are non-empty.

The definition of normal in Definition 31 is equivalent to the definition of normal in the
poset of words with subword order; see [Bjö90], and the classical permutation poset; see
[Smi17]. However, the definition is not equivalent to the definitions given for the poset of
words with composition order [SV06] or generalised subword order [MS12]. In these cases
our definition of normal embeddings gives a subset of the normal embeddings according
to the previous definitions. We account for these differences in the formulas we present
in Section 5.1.

Using the notion of representative embeddings we can define another poset fibration,
with a smaller total space than the initial fibration. This allows us to simplify many of
the results presented in Section 5.

Definition 33. Consider an interval [σ, π] of a closed pattern poset. Let R(σ, π) and
R∗(σ, π) be the posets of all the representative embeddings of λ in π, for all λ ∈ (σ, π)
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and λ ∈ [σ, π), respectively. Moreover, let R̂(σ, π) and R̂∗(σ, π) be the bounded posets
obtained by adding the top element π and bottom element 0̂.

Remark 34. Consider an interval [σ, π] of a closed pattern poset and any η ∈ R∗(σ, π).
To obtain an element that covers η in R̂∗(σ, π) we must increase the rightmost non-
full position of an adjacency, as increasing any other position would result in a non-
representative embedding. So let η̂i be the number of increasing operations required until
every letter of the i’th adjacency is full and let [0, η̂i] be the chain of integers from 0 to η̂i.
The interval [η, π] in R̂∗(σ, π) is isomorphic to the product of chains [0, η̂1]× · · · × [0, η̂t].

The poset of representative embeddings R(σ, π) is a subposet of the poset of all em-
bedding A(σ, π). So we can define a poset fibration onto [σ, π] by restricting fPπ to R(σ, π),
which has the total space R(σ, π) and the projection map fPπ |R(σ,π). When the context is
clear we simply use f to denote the projection map.

5 Results on Pattern Poset

5.1 The Möbius Function of Intervals of a Pattern Poset

In this subsection we focus on the Möbius function of pattern posets. Given a poset P
and an element p ∈ P define the induced subposet P<p = {q ∈ P | q < p} and similarly
define P6p, P>p and P>p. The following result, which is the dual of Corollary 3.2 in [Wal81],
proves very useful:

Proposition 35. Given a poset fibration f : P → Q:

µ̂(Q) = µ̂(P ) +
∑
q∈Q

µ̂(Q<q)µ̂(f−1(Q>q)).

In many of our applications of Proposition 35 we consider bounded posets so use µ
rather than µ̂. Applying Proposition 35 to the poset fibrations given in Section 4 gives
the following results:

Theorem 36. If [σ, π] is an interval of a pattern poset, then:

µ(σ, π) = µ(Â(σ, π)) +
∑

λ∈(σ,π)

µ(σ, λ)µ(Â∗(λ, π)) (2)

=
∑
η∈Eσ,π

µ(η, π) +
∑

λ∈[σ,π)

µ(σ, λ)µ(Â∗(λ, π)). (3)

Proof. Applying Proposition 35 to the poset fibration given in Definition 21 gives Equa-
tion (2). The posets A(σ, π) and A∗(σ, π) can be considered as the union of the in-
tervals (η, π) and [η, π), respectively, for all η ∈ Eσ,π. Applying an inclusion-exclusion
argument for the Möbius function we get:

µ(Â(σ, π)) =
∑
η∈Eσ,π

µ(η, π) +
∑

S⊆Eσ,π
|S|>1

(−1)|S|µ̂

(⋂
η∈S

(η, π)

)
, (4)
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µ(Â∗(σ, π)) =
∑
η∈Eσ,π

µ̂([η, π)) +
∑

S⊆Eσ,π
|S|>1

(−1)|S|µ̂

(⋂
η∈S

(η, π)

)
. (5)

Note that in Equation (5) we use the intersections of (η, π) instead of [η, π), because
these are equivalent as η will never be in the intersections. Moreover, [η, π) has the unique
bottom element η and thus the Möbius number equals 0. So the first term on the right
hand side of Equation (5) equals zero. Therefore, the second term on the right hand side
of Equation (4) is equal to µ(Â∗(σ, π)), so we have:

µ(Â(σ, π)) =
∑
η∈Eσ,π

µ(η, π) + µ(Â∗(σ, π)). (6)

Combining Equations (2) and (6) gives Equation (3).

Theorem 37. If [σ, π] is an interval of a fully-closed pattern poset, then:

µ(σ, π) = (−1)|π|−|σ|E(σ, π) +
∑

λ∈[σ,π)

µ(σ, λ)µ(Â∗(λ, π)). (7)

Proof. By Remark 27 we know that in a fully-closed pattern poset the interval [η, π] is
a boolean lattice of rank |π| − |σ|, for all η ∈ Eσ,π, so has Möbius number (−1)|π|−|σ|.
Therefore, the result follows from Theorem 36.

Theorem 38. If [σ, π] is an interval of a closed pattern poset, then:

µ(σ, π) = (−1)|π|−|σ|NE(σ, π) +
∑

λ∈[σ,π)

µ(σ, λ)µ(R̂∗(λ, π)). (8)

Proof. If we consider the posets R(σ, π) and R∗(σ, π) and apply an analogous argument
to that used in the proof of Theorem 36 to derive Equation (3), then we get the following
equation:

µ(σ, π) =
∑
η∈Êσ,π

µ(η, π) +
∑

λ∈[σ,π)

µ(σ, λ)µ(R̂∗(λ, π)) (9)

By Remark 34 we know that [η, π] is the Cartesian product of chains, for any η ∈ Êσ,π.
Moreover, these chains all have length at most 1 if and only if η is normal. If η is normal
then there are |π| − |σ| chains of length 1, the rest having length 0. The Möbius function
of a chain is 1 if the chain has length 0, −1 if the chain has length 1 and 0 otherwise.
Furthermore, the Möbius function of the Cartesian product of posets is the product of
the Möbius functions. Therefore, µ(η, π) equals (−1)|π|−|σ| if η is normal and 0 otherwise.
So the first term on the right hand side of Equation (9) equals (−1)|π|−|σ|NE(σ, π), which
completes the proof.
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13254

1243 1324 2143

123 132 213

12 21

1

↑f

13254

−3254 1− 254 132− 4

−− 254 −32− 4 1−−54 1− 2− 4 132−−

−−−54 −− 2− 4 −32−− 1−−− 4 1− 2−−

0̂

13254

−3254 1− 254 132− 4

−− 254 −32− 4 1−−54 1− 2− 4 132−−

−− 1− 4 1−−− 4 1− 2−−

0̂

13254

−3254 1− 254 132− 4

−− 254 −32− 4 1−−54 132−−

−−−54 −32−−

0̂

13254

−3254 1− 254 132− 4

−− 254 1−−54 132−−

0̂

13254

−3254 1− 254 132− 4

−− 254 −32− 3 1−−54 1− 2− 4 132−−

−−−54 −− 2− 4 −32−− 1−−− 4 1− 2−−

−−−− 4 −− 2−− 1−−−−

0̂

Figure 3: The interval [1, 13254] (top) of the permutation poset, the poset R̂(1, 13254)
(middle) and the fibres R̂∗(132, 13254), R̂∗(12, 13254), R̂∗(21, 13254) and R̂∗(1, 13254)
(bottom).
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Example 39. In Figure 3 we can see the poset fibration applied to the interval [1, 13254]
of the permutation poset. So we can use Theorem 38 to compute the Möbius function in
the following way:

µ(1, 13254) = NE(1, 13254) + µ(1, 132)µ̂(R∗(132, 13254))

+ µ(1, 12)µ̂(R∗(12, 13254)) + µ(1, 21)µ̂(R∗(21, 13254))

= 0 + 1 + 0 + 0

Theorem 38 shows that the Möbius function on closed pattern posets is intrinsically
linked to the number of normal embeddings. This helps to explain why normal embed-
dings appear in many of the results on different pattern posets that have been studied
independently.

In small examples such as Figure 3 it is often simpler to compute the Möbius function
in the traditional way. However, Theorems 36 and 38 are useful when considering large
general intervals of pattern posets as the total spaces tends to behave in a more structured
way that allows for easier analysis. Some examples of this are presented in Section 6.

5.2 Disconnected Intervals of a Pattern Poset

In this subsection we study the property of disconnectedness in pattern posets. Proposi-
tion 5.3 of [MS15] gives a characterisation of when an interval of the classical permutation
poset is disconnected, based on whether the set of embeddings can be split in a certain
way, and we generalise this result to fully-closed pattern posets. First note that in a
fully-closed pattern poset an embedding is uniquely determined by its zero set.

Definition 40. An interval [σ, π] of a pattern poset, with rk(σ, π) > 2, is zero split (resp.
rep-zero split) if the embedding set (resp. representative embedding set) can be split into
two disjoint non-empty sets E1 and E2 such that Z(E1)∩Z(E2) = ∅, where Z(Ei) is the
union of the zero sets of the elements of Ei. We call E1 and E2 a zero split partition of
the embedding set. We say an interval of rank k 6 1 is never zero split.

We say that an interval [σ, π], with rk(σ, π) > 2, is strongly zero split if there exists
a zero split partition E1 and E2 of Eσ,π which satisfies the following condition: For all
η1 ∈ E1 and η2 ∈ E2 there does not exist a pair z1 ∈ Z(η1) and z2 ∈ Z(η2) such that the
embeddings in π with zero sets Z(η1) \ {z1} and Z(η2) \ {z2} are embeddings of the same
element λ in π.

Example 41. Consider the interval [41253, 41627385] of the classical permutation poset.
The embeddings are η1 = 41 − 273 − − and η2 = − − 62 − 385. If we partition the
embeddings into the sets E1 = {η1} and E2 = {η2}, then this is a zero split partition but
not a strongly zero split partition. To see this is not a strongly zero split partition, note
that Z(η1) = {3, 7, 8} and Z(η2) = {1, 2, 5}. The embeddings with zero sets Z(η1) \ {3}
and Z(η2) \ {5} are 416273−− and −− 627385, respectively, which are both embeddings
of 415263. Therefore, the condition for a strongly zero split partition is violated.

Remark 42. Any partition of the embeddings of a rank 1 interval is a zero split partition,
however we assume rank 1 intervals to be non-zero split. The reason for this is that we
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are interested in zero split partitions because they imply disconnectivity, however a rank
1 interval has an empty interior so cannot be disconnected.

Next we give some properties of being zero split in relation to the embedding posets
defined in Section 4. In an interval [σ, π] of a fully-closed pattern poset the join of any two
embeddings α, β ∈ A∗(σ, π) is given by the embedding with the zero set Z(α)∩Z(β). We
can use this to show that an interval [σ, π] being zero split is intrinsically related to the
connectedness of the posets A(σ, π), A∗(σ, π) and [σ, π]. Note that given any embedding
η ∈ Eσ,π there is a unique representative embedding rp(η) ∈ Êσ,π obtained by moving all
empty position to the left and full positions to the right in each adjacency.

Lemma 43. Consider an interval [σ, π] of a fully-closed pattern poset, with rk(σ, π) > 2,
then the following conditions are equivalent:

(1) [σ, π] is zero split,

(2) A∗(σ, π) is disconnected,

(3) [σ, π] is rep-zero split,

(4) R∗(σ, π) is disconnected,

Furthermore, if rk(σ, π) > 3, then the above conditions are equivalent to:

(5) A(σ, π) is disconnected.

(6) R(σ, π) is disconnected.

Proof. Case (1) =⇒ (2). Suppose that [σ, π] is zero split with the partition E1 and E2

of Eσ,π. Let P1 and P2 be the elements of A∗(σ, π) that contain an element of E1 and E2,
respectively. Note that any two atoms η1 ∈ E1 and η2 ∈ E2 have Z(η1) ∩ Z(η2) = ∅, so
their join is 1̂. Therefore, P1 and P2 are disconnected components of A∗(σ, π).

Case (2) =⇒ (1). Suppose A∗(σ, π) is disconnected with components P1 and P2,
which have atoms E1 and E2, respectively. The join of any elements η1 ∈ E1 and η2 ∈ E2

equals π which implies that the intersection of their zero set is empty. Moreover, because
this is true for any pair, it implies E1 and E2 form a zero split partition of Eσ,π.

Case (1) =⇒ (3): Suppose [σ, π] is zero split with the zero split partition E1 and
E2. Let r(Ei) be obtained by removing the non-representative embeddings from Ei. We
claim the sets r(E1) and r(E2) form a rep-zero split partition of the set of representative
embeddings. We know that the intersection of zero sets is empty because Z(r(E1)) ∩
Z(r(E2)) ⊆ Z(E1) ∩ Z(E2) = ∅. However, we must check that r(E1) and r(E2) are
non-empty. We can get from η to rp(η) by a sequence η = α1, α2, . . . , αk = rp(η), where
we can get from αi to αi+1 by swapping a full position with an empty position. Therefore,
as |π| − |σ| > 2 we know there is at least two empty positions in each αi which implies
that Z(αi) ∩ Z(αi+1) 6= ∅, so αi and αi+1 must be in the same part of the partition,
which implies that rp(η) is in the same part as η. Therefore, r(E1) and r(E2) must be
non-empty, so r(E1) and r(E2) is a valid rep-zero split partition of Êσ,π.
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Case (3) =⇒ (1): Suppose [σ, π] is rep-zero split, with rep-zero split partition E1

and E2. Let Bi = {η ∈ Eσ,π | rp(η) ∈ Ei}, for i = 1, 2. Suppose there exists a pair η ∈ B1

and φ ∈ B2 such that Z(η) ∩ Z(φ) 6= ∅, this implies Z(rp(η)) ∩ Z(rp(φ)) 6= ∅. However,
because rp(η) ∈ E1 and rp(φ) ∈ E2 this contradicts E1 and E2 being a valid rep-zero split
partition. Therefore, Z(B1) ∩ Z(B2) = ∅ so B1 and B2 form a zero split partition.

Case (3) ⇐⇒ (4): This follows by arguments analogous to (1) =⇒ (2) and (2) =⇒
(1).

Cases (2) =⇒ (5) and (4) =⇒ (6): These follow trivially because A(σ, π) (resp.
R(σ, π)) is obtained from A∗(σ, π) (resp. R∗(σ, π)) by removing the atoms.

Case (5) =⇒ (2). If A(σ, π) is disconnected then A∗(σ, π) is connected only if
there is an embedding η ∈ Eσ,π contained in elements from both components of A(σ, π).
However, as the interval [η, 1̂] is a Boolean lattice, with rank greater than 2, it cannot be
disconnected. Therefore, no such embedding exists so A∗(σ, π) is disconnected.

Case (6) =⇒ (4): This follows by a similar argument to that used in the case
(5) =⇒ (2), where the only alteration is that [η, π] is a product of chains, so again it
cannot be disconnected when it has rank greater than 2.

By Lemma 43, when looking at fully-closed pattern posets we can consider either
zero splitness or rep-zero splitness. For simplicity we drop the rep prefix and simply
refer to zero splitness, which can be checked by looking at either the embedding set or
representative embedding set. We now use Lemma 43 to consider the disconnectivity of
[σ, π]:

Proposition 44. Consider an interval [σ, π] of a fully-closed pattern poset, where
rk(σ, π) > 3. The interval [σ, π] is disconnected if and only if [σ, π] is strongly zero split.

Proof. Suppose that [σ, π] is strongly zero split with the partition E1 and E2 of Eσ,π. Then
A(σ, π) is disconnected by Lemma 43. So the only way that [σ, π] is not disconnected
is if there are two embeddings κ1 and κ2 in separate components of A(σ, π) such that
f(κ1) = f(κ2), where f is the poset fibration map. First note that if f(κ1) = f(κ2), then
for any φ1 6 κ1 there exists a φ2 6 κ2 such that f(φ1) = f(φ2). Therefore, we need only
consider the case that κ1 and κ2 are atoms.

So suppose κ1 and κ2 are atoms with zero sets Z(κi) = Z(ηi) \ {zi}, where ηi ∈
Ei and zi ∈ Z(ηi), for i = 1, 2. However, this implies that the embeddings with zero
sets Z(η1) \ {z1} and Z(η2) \ {z2} are embeddings of the same element f(κ1) in π, which
is exactly the forbidden situation in the definition of strongly zero split. Therefore, we
cannot have elements from separate components mapping to the same element, so [σ, π]
is disconnected.

To see the other direction suppose that [σ, π] is disconnected with components P1 and
P2, and let E1 = f−1(P1) and E2 = f−1(P2). As f is a poset fibration we know that
E1 and E2 are disconnected, so A(σ, π) is disconnected and Lemma 43 implies [σ, π] is
zero split. Moreover, no two elements from different components E2 and E2 maps to the
same element, which implies no two atoms map to the same element. Therefore, [σ, π] is
strongly zero split.
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The proof of Proposition 44 allows us to see what the disconnected components of
[σ, π] look like when [σ, π] is strongly zero split.

Corollary 45. If [σ, π] is an interval of a fully-closed pattern poset, with rk(σ, π) > 3,
which is strongly zero split by the partition E1 and E2, then [σ, π] is disconnected with
components

Pi = {λ ∈ (σ, π) |λ = π \ S for some S ⊂ Z(Ei)}, for i = 1, 2,

where π \ S is obtained from π by removing the letters πi, for all i ∈ S.

Applying Proposition 44 and Corollary 45 to the classical permutation poset implies
Proposition 5.3 of [MS15]. Also note that it may be possible to derive results similar to
those in this section for pattern posets that are not fully-closed, which we leave as an
open problem.

5.3 Cohen-Macaulayness Preserved by a Poset Fibration

A poset is Cohen-Macaulay if the order complex of every interval of the poset is homo-
topically equivalent to a wedge of top dimensional spheres. It was first shown in [Qui78]
that the Cohen-Macaulay property is preserved across a poset fibration f : P → Q if the
sets f−1(Q>q), known as the fibres, satisfy certain conditions. The following is a variation
of these results and is the dual pure form of Theorem 5.2 of [BWW05]:

Proposition 46. Let P and Q be pure posets and let f : P → Q be a poset fibration.
Assume that for all q ∈ Q there is some pq ∈ P such that f−1(Q<q) = P<pq and f−1(Q>q)
is Cohen-Macaulay. If P is Cohen-Macaulay, then Q is Cohen-Macaulay.

We can alter the lower ideal condition of Proposition 46 to get the following result:

Proposition 47. Let P and Q be pure posets and let f : P → Q be a poset fibration.
Assume that for all q ∈ Q there is some pq ∈ P such that Q<q = f(P<pq) and f−1(Q>q)
is Cohen-Macaulay. If P is Cohen-Macaulay, then Q is Cohen-Macaulay.

Proof. Consider the posets Qi = {q ∈ Q| rk(q) 6 i} ∪ {p ∈ P | rk(p) > i} and maps
fi : Qi−1 → Qi where:

α 6Qi β ⇐⇒


α 6Q β, and rk(α), rk(β) 6 i

α 6P β, and rk(α), rk(β) > i

α 6Q f(β), and rk(α) 6 i, rk(β) > i

,

fi(q) =

{
q, if rk(q) 6= i

f(q), if rk(q) = i
.

Note that Q0 = P and Qrk(Q) = Q, so Q0 is Cohen-Macaulay by our assumption
and we proceed by an inductive argument. Assume Qi−1 is Cohen-Macaulay, for some
i > 0, and consider Qi. We apply Proposition 46 to fi. Given any q ∈ Qi, if rk(q) 6= i
then f−1

i (Qi
>q) is [q, 1̂] in Qi−1, which is an interval of a Cohen-Macaulay poset and so
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is Cohen-Macaulay. If rk(q) = i then f−1
i (Qi

>q) = f−1(Q>q) which we assumed to be

Cohen-Macaulay. Furthermore, if rk(q) 6= i, then f−1
i (Qi

<q) = Qi−1
<q and if rk(q) = i, then

f−1
i (Qi

<q) = Qi
<q = f(P<pq) = Qi−1

<pq .

So the conditions of Proposition 46 are satisfied for fi which implies Qi is Cohen-Macaulay.
Therefore, by induction Q is Cohen-Macaulay.

We can use Proposition 47 to consider the Cohen-Macaulay property on pattern posets.
First we note that the lower ideal condition of Proposition 47 is always satisfied for pattern
posets.

Lemma 48. Let [σ, π] be an interval of a pattern poset along with the poset fibration
f : A(σ, π)→ (σ, π), we have (σ, λ) = f(A(σ, π)<`), for all ` ∈ f−1(λ).

Proof. First note that f−1(λ) = Eλ,π, so we need to show that given any element κ ∈ (σ, λ)
and ` ∈ Eλ,π there is an embedding of κ in π that is contained in `. Let φ be an embedding
of κ in λ and create an embedding ψ by replacing the non-empty positions of ` with φ.
So ψ is an embedding of κ in π and clearly κ 6 `. This completes the proof.

Corollary 49. Let [σ, π] be an interval of a closed pattern poset along with the poset
fibration f : R(σ, π)→ (σ, π), we have (σ, λ) = f(R(σ, π)<`), for every ` ∈ f−1(λ).

So applying Proposition 47 and Lemma 48 implies the following result:

Theorem 50. Let [σ, π] be an interval of a pure pattern poset such that A∗(λ, π) is Cohen-
Macaulay for all λ ∈ (σ, π). If A(σ, π) is Cohen-Macaulay, then so is [σ, π].

Corollary 51. Let [σ, π] be an interval of a closed pattern poset such that R∗(λ, π) is
Cohen-Macaulay for all λ ∈ (σ, π). If R(σ, π) is Cohen-Macaulay, then so is [σ, π].

A Cohen-Macaulay poset cannot contain a disconnected subposet of rank greater than
2. Therefore, Proposition 44 implies the following result:

Corollary 52. If [σ, π] is an interval of a fully-closed pattern poset and contains a strongly
zero split subinterval of rank greater than 2, then [σ, π] is not Cohen-Macaulay, thus not
shellable.

5.4 Shellability Preserved by a Poset Fibration

A poset is CL-shellable if there is an integer labelling of the edges satisfying certain
conditions, we refer the reader to [Wac07] for a formal definition of CL-shellability and
further background. If a poset is CL-shellable, then it is shellable. It was shown in [BW83]
that a poset is CL-shellable if and only if it admits a recursive atom ordering, which is
defined below.

Given a bounded poset P , a rooted interval is an interval [α, β] of P and a chain c
from 0̂ to α, and is denoted [α, β]c. Given any chain c let ci denote the element with rank
i in c, let c<i denote the chain of all elements of rank less than i in c and let c · a denote
the chain c concatenated with the element or chain a. Let atP (α) denote the set of atoms
of [α, 1̂] in P .
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Definition 53. A bounded poset P is said to admit a recursive atom ordering (RAO) if
there is an ordering a1, . . . , at of atP (α) for every rooted interval [α, 1̂]c that satisfies:

(R1) If r = rk(α) > 1, then the elements of ΩP
c (α) must appear first in the ordering,

where ΩP
c (α) contains the elements of atP (α) which cover an element ordered before

α in the ordering of the atoms of [cr−1, 1̂]c<r .

(R2) For all i < j if ai, aj < y, then there is a k < j and an atom z ∈ atP (aj) such that
y > z > ak.

We drop the subscripts and superscripts from ΩP
c (α) and atP (α) when the context is

clear.

Example 54. In Figure 4 a recursive atom ordering of P is given, where the atoms of each
element are ordered by their labels. To see condition (R1) consider at(3) = {4, 6}. The
only element of Ω(3) is 4, because 4 contains 2 which is ordered before 3. So the condition
requires that 4 is ordered before 6.

To see condition (R2) consider at(2) = {4, 5, 7}. We have 4, 7 6 10 so we require an
element k ordered before 7 and an element z ∈ at(7) with k < z < 10. So the condition
is satisfied by k = 5 and z = 9. However, if we switched the ordering of 5 and 7, then it
is no longer possible to find a valid pair k < z, hence we would no longer have an RAO.

8

7 6

4 5

2 3

1

Q

−→f

10

9 8

7 5 4 6

2 3

1

P

10

9 8

7 5 4

0̂ f−1(4)

Figure 4: A poset fibration f : P → Q which maps {4, 5, 7} 7→ 4, where the linear order ≺
of P given by the labels, induces a shelling on P and the fibres of f , and thus ≺f induces
a shelling on Q by Proposition 55.

A linear order ≺ of P is an ordering of all elements of P . We say that a linear order
≺ induces an RAO on P if the ordering of at(α) by ≺ satisfies the RAO conditions for
all rooted intervals [α, 1̂]c of P . Given a poset fibration f : P → Q define r≺f (q) as the
earliest element of f−1(q) in the linear ordering ≺. Define ≺f as the linear order on Q
where a ≺f b if and only if r≺f (a) ≺ r≺f (b). Moreover, given a chain c in Q let r≺f (c) be the
chain r≺f (c1) < r≺f (c2) < · · ·. We drop the subscripts and superscripts from r≺f (q) when
the context is unambiguous.
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Proposition 55. Let P and Q be pure posets, f : P → Q be a poset fibration and ≺ a linear
ordering of P . Suppose that f−1(Q<q) = P<r(q) and ≺ induces an RAO on f−1(Q>q),
for all q ∈ Q. If ≺ induces an RAO on P , then ≺f induces an RAO on Q, thus Q is
CL-shellable.

Proof. To show this we check that both conditions of an RAO are satisfied given any
rooted interval [α, 1̂]c in Q. First we check Condition (R1). Consider ai ∈ ΩQ

c (α) and
aj 6∈ ΩQ

c (α) and let λ be the element ordered before α that is covered by ai. By the
condition f−1(Q<ai) = P<r(ai) we know that r(λ) l r(ai) and it is straightforward to see
r(λ) ≺ r(α), therefore r(ai) ∈ ΩP

r(c)(r(α)). Moreover, by a similar argument, r(aj) 6∈
ΩP
r(c)(r(α)). Therefore, r(ai) ≺ r(aj) so ai ≺f aj and thus Condition (R1) is satisfied.

Now we check Condition (R2). Consider two elements ai ≺f aj in atQ(α) and some y >
ai, aj. So, r(ai) and r(aj) are atoms of f−1(Q>α) and by the condition f−1(Q<y) = P<r(y)

we know that r(y) > r(ai), r(aj). Moreover, because ≺ induces an RAO on f−1(Q>α),
there exists an atom â of f−1(Q>α) and element z ∈ Q with â ≺ r(aj) and âl z 6 r(y).
Therefore, f(â) ≺f aj and f(â) l f(z) 6 y, so Condition (R2) is satisfied.

See Figure 4 for an example of Proposition 55. We also get the following result,
whose proof we omit as it follows by an argument analogous to that used in the proof of
Proposition 47.

Proposition 56. Let P and Q be pure posets, f : P → Q a poset fibration and ≺ a linear
ordering of P . Suppose that Q<q = f(P<r(q)) and ≺ induces an RAO in f−1(Q>q), for all
q ∈ Q. If ≺ induces an RAO in P , then ≺f induces an RAO in Q, thus Q is CL-shellable.

Applying Proposition 56 and Lemma 48 to pattern posets gives the following result:

Theorem 57. Consider an interval [σ, π] of a pure pattern poset P .

(a) If A(σ, π) has a linear order which induces an RAO on A(σ, π) and A∗(λ, π) for
all λ ∈ (σ, π), then [σ, π] is CL-shellable.

(b) Suppose P is a closed pattern poset. If R(σ, π) has a linear order which induces an
RAO on R(σ, π) and R∗(λ, π) for all λ ∈ (σ, π), then [σ, π] is CL-shellable.

We believe it is possible to relax the conditions in Proposition 55 to consider CL-
shellings not induced by a linear order. So we leave the following as an open question:

Question 58. When can CL-shellability be preserved by a poset fibration?

6 Applications

In this section we use the results from Section 5 to examine the poset of words with
subword order and the consecutive permutation poset. First we introduce a lemma that
proves useful. To show that R∗(σ, π) and R(σ, π) are shellable using a recursive atom
ordering does not require that we check every rooted interval [λ, π]c. In fact it suffices to
prove there is an ordering of the atoms of R∗(σ, π) which satisfies Condition (R2).
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Lemma 59. Consider an interval [σ, π] of a closed pattern poset P . If there is an ordering≺
of Êσ,π which satisfies Condition (R2), then R∗(σ, π) and R(σ, π) are shellable. Moreover,
if P is a fully-closed pattern poset, then

µ(R̂∗(σ, π)) = (−1)|π|−|σ|−1|V (σ, π)|,

where V (σ, π) is the set of embeddings η ∈ Êσ,π such that at(η) = Ω(η).

Proof. Given any α ∈ R∗(σ, π) we refer to the filling position of each element β ∈ at(α)
as the position of the letter increased to get from α to β. First we show that R∗(σ, π)
is shellable. By Remark 34 we know that [α, π] is isomorphic to a product of chains.
Therefore, every pair in at(α) are covered by their join, so any ordering of the atoms
satisfies Condition (R2). Define an RAO on R∗(σ, π) in the following way. Consider
any rooted element φc in R∗(σ, π). If rk(φ) = 0, then order at(φ) according to ≺. If
rk(φ) = 1 order the elements of Ω(φ) in increasing order of the filling position and then
the remaining elements in any order. If rk(φ) > 1, then order at(φ) by the order of
the filling positions induced by the ordering of at(c1). It is straightforward to see that
this ordering satisfies Conditions (R1) and (R2), so we have an RAO of R∗(σ, π), so it
is shellable. Furthermore, R(σ, π) is obtained by removing the atoms of R∗(σ, π), and so
R(σ, π) is shellable by [BW83, Theorem 8.1].

Now we show the Möbius function result. Using the RAO we defined on R∗(σ, π) a
chain c is decreasing if the empty positions of c1 are filled in the reverse order of at(c1)
and c2 is in Ω(c1), which implies every atom of at(c1) must be in Ω(c1). So the number
of decreasing chains is |V (σ, π)|.

Corollary 60. Consider an interval [σ, π] of a fully-closed pattern poset. If there is an
ordering of Eσ,π which satisfies Condition (R2), then A∗(σ, π) and A(σ, π) are shellable.

Proof. By Remark 27 we know that in a fully-closed pattern poset [η, π] is isomorphic to
a boolean lattice, for all η ∈ Eσ,π. Therefore, the proof follows by the same argument
used to prove shellability in Lemma 59.

6.1 Poset of Words With Subword Order

It was shown in [Bjö90] that any interval [u,w] of the poset of words with subword order
is shellable, thus Cohen-Macaulay, and the Möbius function equals the number of normal
embeddings with sign given by the rank. In this section we give an alternative proof of
Cohen-Macaulayness and the Möbius function result on this poset.

Note that the poset of words with subword order is a fully-closed pattern poset and
that the definition of normal embedding given by Björner is equivalent to Definition 31
when applied to this poset. Given a pair of positions i and j in η ∈ R∗(u,w) that are
empty and non-empty, respectively, then moving i to j means setting the position i as
empty and the position j as non-empty.
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Proposition 61. Consider an interval [u,w] of the poset of words with subword order. The
interval [u,w] is Cohen-Macaulay and

µ(u,w) = (−1)|w|−|u|NE(u,w).

Proof. The poset of words with subword order is a fully-closed pattern poset. So first
we show that R(u,w) and R∗(u,w) are shellable. By Lemma 59 it suffices to order the
elements of Êu,w in a way satisfying Condition (R2). Define the position word of an
embedding as the non-empty positions listed in increasing order and the order ≺ on Êu,w

as the lexicographic order on the position words. To show that ≺ satisfies Condition (R2),
consider any two embeddings ηi, ηj ∈ Êu,w, with ηi ≺ ηj, and some y > ηi, ηj. Let a
(resp. b) be the leftmost non-empty position of ηi (resp. ηj) that is empty in ηj (resp. ηi).
The a’th letter of ηi and b’th letter of ηj correspond to the same letter in u. Therefore,
moving b to a in ηj gives a valid embedding ηk with ηk ≺ ηj. Moreover, let z ∈ at(ηj) be
the embedding obtained by filling a in ηj, then ηk l z 6 y, so Condition (R2) is satisfied.
So [u,w] is Cohen-Macaulay by Corollary 51.

Next we consider the Möbius function result using Lemma 59. Consider any embedding
η and the embedding φ obtained by filling the rightmost empty position i of η, then
φ 6∈ Ω(η). To see this note that if φ ∈ Ω(η) then there is an element ψ ≺ η with
ψ l φ, where ψ is obtained from η by moving a letter j > i to i. However, if j is in
the same adjacency as i, then ψ would not be representative, so there must be a letter
with a different value between i and j. However, this means we are moving j across a
letter with a different value, so the order of the letters is different which implies ψ is
not an embedding of u. Therefore, φ 6∈ Ω(η), so Ω(η) 6= at(η), for any η ∈ Êu,w, so by
Lemma 59 µ(R̂∗(u,w)) = 0. Moreover, as this is true for any interval [u,w] the Möbius
function result follows from Theorem 38.

6.2 Consecutive Permutation Poset

The Möbius function and topology of the consecutive permutation poset has been studied
in [BFS11, SW12, EM15], and a formula for the Möbius function has been developed. To
state this formula we first introduce some notation. A permutation is monotone if it is of
the form 12 . . . n or n . . . 21. A permutation σ is a prefix of π if π1 . . . π|σ| is an occurrence
of σ, similarly define a suffix, and σ is bifix of π if it is both a prefix and suffix of π. The
exterior of π, denoted x(π), is the longest bifix of π and the interior of π, denoted i(π),
is π2 . . . π|π|−1.

Theorem 62. [SW12, Theorem 1.1] The Möbius function of any interval [σ, π] of the
consecutive pattern poset is:

µ(σ, π) =


µ(σ, x(π)), if |π| − |σ| > 2 and σ 6 x(π) 66 i(π)

1, if |π| − |σ| = 2, π is non-monotone & σ ∈ {i(π), x(π)}
(−1)|π|−|σ|, if |π| − |σ| < 2

0, otherwise

.
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The consecutive pattern poset is a non-closed pattern poset. We can use Theorem 36
to provide an alternative proof of Theorem 62. So to compute µ(σ, π) we need to know
µ(η, π), for each η ∈ Eσ,π, and µ(Â∗(λ, π)), for all λ ∈ [σ, π). Note that given any
embedding η of σ in π there are at most two positions that can be filled in η, the positions
immediately left and right of the occurrence. So any element φ > η is obtained by a
sequence of left/right fillings. We say an embedding is a prefix embedding if the non-
empty positions are the initial k positions, and similarly define a suffix embedding.

Lemma 63. Given any interval [σ, π] of the consecutive permutation poset and embedding
η ∈ Eσ,π, we have

µ(η, 1̂) =


0, if |π| − |σ| > 2,

0, if |π| − |σ| = 2 and η is a prefix or suffix embedding,

(−1)|π|−|σ|, otherwise.

Proof. If |π|−|σ| < 2 the result is trivial, so suppose |π|−|σ| > 2. There are at most three
elements of rank 2 in [η, π], obtained from η in the following way: α1 obtained by two left
fillings, α2 obtained by two right fillings and α3 obtained by a left and right filling. It is
straightforward to see that µ(η, α1) = µ(η, α2) = 0 and µ(η, α3) = −1. Note that if α1 or
α2 equal 1̂, then η is a prefix or suffix embedding, so the case |π| − |σ| = 2 is complete.
If |π| − |σ| > 2, consider any element φ with rank greater than 2. If φ does not contain
α3 then it must be obtained by only filling left or only filling right positions, so [η, φ] is a
chain and thus µ(η, φ) = 0. If φ contains α3, then by a simple inductive argument it can
be seen that µ(η, φ) = 0, because α3 contains all the elements κ with µ(η, κ) 6= 0. This
completes the proof.

Lemma 64. Given any interval [σ, π] of the consecutive permutation poset, we have

µ(Â∗(σ, π)) =

{
1, if σ = x(π) and σ 66 i(π)

0, otherwise
.

Proof. Given two embeddings η1 and η2, let i and j be the leftmost and rightmost posi-
tions, respectively, that are non-empty in η1 or η2. Then the join of η1 and η2 is obtained
by setting positions i through j as non-empty and all other positions as empty. So if σ is
not a bifix of π then the join of the atoms of A∗(σ, π) is less than π, so µ(Â∗(σ, π)) = 0.

Next note that π cannot contain a non-exterior bifix not contained in the interior. To
see this let α be such a bifix, then α is also a bifix of x(π), which means that α occurs as
the suffix of the prefix occurrence of x(π), which is in the interior, giving a contradiction.

Suppose σ is a bifix and let η1 and η2 be the prefix and suffix embeddings, respec-
tively. The join of any set of k > 0 embeddings, that doesn’t contain both η1 and η2,
contributes (−1)k to the µ(Â∗(σ, π)) and every other element contributes 0, by the Cross-
cut Theorem; see [Sta12, Corollary 3.9.4]. Therefore,

µ(Â∗(σ, π)) = −
∑

S⊆Eσ,π\{η1,η2}

(−1)|S| + (−1)|S|+1 + (−1)|S|+1, (10)
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where we get three terms from considering the sets S, S∪{η1} and S∪{η2}. Equation (10)
equals 1 if Eσ,π = {η1, η2} and 0 otherwise, which completes the proof.

Combining Lemmas 63 and 64 and Theorem 36 provides an alternative proof of The-
orem 62. Moreover, Theorem 4.3 of [EM15] states that an interval of the consecutive
permutation poset is shellable if and only if it has no disconnected subintervals of rank
greater than 2. It is straightforward to define a shelling on A∗(σ, π) if [σ, π] has no dis-
connected subintervals. So Theorem 50 can be used to provide an alternative proof of the
Cohen-Macaulayness of these posets.

7 Future work

We have introduced a general definition of a pattern poset and given some results that
apply to these posets. In Section 6 we applied these results to two previously studied
posets and showed that our results can provide alternative proofs for existing results on
these posets. There are many other pattern posets, some of which have been previously
studied and many of which have not, and applying the results and techniques we have
presented here could be very helpful in the study of these posets. For example, very little
is known of the Dyck path poset introduced in [BBF+14], which seems to have many nice
properties, such as the sign of the Möbius function being alternating. Can we apply some
of the results we have introduced to learn more about this poset?

One particular pattern poset for which there are many open problems is the classical
permutation poset. The results from Section 5.1 imply the main results of [Smi17], and
the results from Section 5.2 imply some of the results in [MS15]. Whether we can apply
the results from Sections 5.3 and 5.4 to determine the topology of intervals of the classical
permutation poset is still open. We conjecture that if an interval [σ, π] of the classical
permutation pattern poset does not contain any zero split subintervals, then [σ, π] is
shellable. If we can find an ordering of the embeddings of such intervals which satisfies
Condition (R2), then Lemma 59 would prove that these intervals are Cohen-Macaulay
and allow us to compute the Möbius function of these intervals.

Our definition of normal is not equivalent to those given for the poset of words with
composition order or for generalised subword order. Therefore, the results on the Möbius
function of these posets given in [SV06] and [MS12] do not follow immediately from
Theorem 38. However, it seems reasonable to hope that with some work one could apply
Theorem 38 to provide an alternative proof of these results. Moreover, such an alternative
proof might provide further insight into the structure of these posets.
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