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Abstract

We obtain a new weak Hilton-Milner type result for intersecting families of k-
spaces in F2k

q , which improves several known results. In particular the chromatic
number of the q-Kneser graph qKn:k was previously known for n > 2k (except for
n = 2k+1 and q = 2) or k < q log q−q. Our result determines the chromatic number
of qK2k:k for q > 5, so that the only remaining open cases are (n, k) = (2k, k) with
q ∈ {2, 3, 4} and (n, k) = (2k + 1, k) with q = 2.

Mathematics Subject Classifications: 51E20, 05C69, 05B25, 05D05, 06E30

1 Introduction

The Kneser graph Kn:k has all k-sets of {1, 2, . . . , n}, n > 2k, as vertices and two sets are
adjacent if they are disjoint. The following conjecture due to Kneser [14] was shown by
Lovász [15]:

Theorem 1 (Lovász (1978)). The chromatic number of Kn:k is n− 2k + 2.

We want to point out that the case n = 2k is trivial as K2k:k is bipartite. A natural
generalization is the q-analog of the Kneser graph: the q-Kneser graph qKn:k. Here we
take the k-spaces of Fnq as vertices and two vertices are adjacent if they intersect trivially.

Let
[
n
k

]
denote the number of k-spaces in Fnq . Note that for 0 6 k 6 n we have[

n

k

]
=

k∏
i=1

qk−i+1 − 1

qi − 1
.

Due to two previous results by Blokhuis et al. [1] for n > 2k and Blokhuis et al. [2] for
n = 2k, we know the following:

∗The author is supported by a postdoctoral fellowship of the Research Foundation — Flanders (FWO).

the electronic journal of combinatorics 26(1) (2019), #P1.50 1



Theorem 2 (Blokhuis, Brouwer, Chowdhury, Frankl, Mussche, Patkós, Szőnyi (2010),
Blokhuis, Brouwer, Szőnyi (2012)). If k > 3 and either q > 3 and n > 2k + 1, or q = 2
and n > 2k + 2, then the chromatic number of qKn:k is

[
n−k+1

1

]
. If either k < q log q − q

or k 6 3, then the chromatic number of qK2k:k is qk + qk−1.

We complete this result for n = 2k and q > 5.

Theorem 3. Let q > 5. Then the chromatic number of qK2k:k is qk + qk−1 for n = 2k.

The key ingredient of the n = 2k proof by Blokhuis et al. [2] is a weak Hilton-Milner
type result (see [11] for the Hilton-Milner theorem for the classical set case, a variation
of the famous Erdős-Ko-Rado theorem [8]). In the following, we use projective notation,
so we call 1-spaces points, 2-spaces lines, and (n− 1)-spaces hyperplanes. Call the set of
all k-spaces on fixed point a dictator (also known as point-pencil). The dual of a dictator
consists of all k-spaces in a fixed hyperplane. Due to work by Hsieh [12], Frankl and
Wilson [10], and Godsil and Newman [17], we know that the largest independent sets of
qKn:k are dictators and, if n = 2k, duals of dictators, that is the family of all k-spaces in
a hyperplane. Blokhuis et al. showed the following:

Theorem 4 (Blokhuis, Brouwer, Szőnyi (2011)). Let k < q log q − q and let Y be an
independent set of qK2k:k. If Y is not contained in a dictator or its dual, then |Y | <
qk(k−1)/2.

Using a result by Tokushige on cross-intersecting families in vector spaces [20] and
some properties of the spectrum of the Grassmann scheme, we improve this as follows:

Theorem 5. Let q > 3 and k > 5 and let Y be an independent set of qK2k:k. If Y is not
contained in a dictator or its dual, then

|Y | < (1 + 3q−1)

[
k

1

][
2k − 2

k − 2

]
.

As this does not cover k = 4, we also provide the following:

Theorem 6. Let q > 4 and let Y be an independent set of qK2k:k. If Y is not contained
in a dictator or its dual, then

|Y | < 3

[
k

1

][
2k − 2

k − 2

]
.

While our second bound is slightly worse than Theorem 4 for k and q large, it is clearly
better for q small compared to k. It is easy to construct independent sets of k-spaces of
size vaguely

[
k
1

][
2k−2
k−2

]
, so our result is close to a proper stability result.

Recently, Cameron-Liebler k-space classes (also known as Boolean degree 1 functions)
received some attention [3, 9, 18]. In particular, Metsch showed the following [16]:

Theorem 7 (Metsch (2017)). Let q > q0 for some universal constant q0 and let k <
q log q − q − 1. Let Y be a non-trivial Boolean degree 1 function on k-spaces of F2k

q , then

|Y | > q
5

[
2k−1
k−1

]
.
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The condition on k comes from Theorem 4, so with Theorem 5 we can improve this
to the following:

Theorem 8. Let q > q0 for some universal constant q0. Let Y be a non-trivial Boolean
degree 1 function on k-spaces of F2k

q , then |Y | > q
5

[
2k−1
k−1

]
.

Note that a tedious calculation shows that we can choose q0 = 89 if we follow the
argument in [16] without optimizing any of the used constants. We believe that all
Boolean degree 1 functions for k > 2 are trivial, so most likely might be still far from the
truth.

Our paper is organized as follows: In Section 2, we write down some basic background
on the Grassmann scheme, so that we can exploit the spectrum of qKn:k. In Section 3 we
prove Theorem 5, and then we finish our investigation with the mentioned consequences
in Section 4 and a conclusion in Section 5.

2 The Grassmann Scheme

We summarize some needed notation and results for association schemes in the following.
Delsarte’s PhD thesis [4] provides a deeper introduction into the theory of combinatorial
applications of association schemes.

Definition 9. Let X be a finite set. A k-class association scheme is a pair (X,R), where
R = {R0, . . . Rk} is a set of symmetric binary relations on X with the following properties:

(a) {R0, . . . Rk} is a partition of X ×X.

(b) R0 is the identity relation.

(c) There are constants p`ij such that for x, y ∈ X with (x, y) ∈ R` there are exactly p`ij
elements z with (x, z) ∈ Ri and (z, y) ∈ Rj.

Clearly, (X,Ri) is a pii0 -regular graph. For convenience, we write v = |X|. The
relation Ri can be described by its adjacency matrix Ai, so a (v × v)-0-1-matrix which is
the indicator function of Ri. As the Ais are Hermitian and commute, we can diagonalize
them simultaneously, that is their eigenvectors are the same. It is well-known that there
are k+1 common eigenspaces V0, V1, . . . , Vk of the Ais. As the Ais are regular, the all-ones
vector j is an eigenvector and we can assume that V0 = 〈j〉. Let Ei denote the orthogonal
projection onto the ith eigenspace. We can express the Ais as

Ai =
k∑
j=0

PjiEj.

Note that P0i = pii0 .
The following stability version of Hoffman’s bound for independent sets is surely known

for a long time. Its first application, at least in the context of intersecting families, which
the author is aware of, is due to Ellis [7]. We include a proof, limited to the setting of
association schemes, to keep this paper mostly self-contained.
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Lemma 10. Let χ be the characteristic vector of an independent set of (X,Ri). Assume
that P1i is the smallest eigenvalue of Ai and that P− is the second smallest eigenvalue of
Ai. Let Er be the orthogonal projection matrix onto the eigenspaces orthogonal to 〈j〉 and
the eigenspace of P1i. Then

(P− − P1i)χ
TErχ 6 y

(
−P1i −

P0i − P1i

v
y

)
.

Proof. As χ is a 0-1-vector, we have

y = χTχ =
y2

v
+

k∑
i=1

χTEiχ.

Hence,

0 = χTAiχ =
P0i

v
χTJχ+

k∑
j=1

Pjiχ
TEjχ

>
P0i

v
y2 + P1i

k∑
j=1

χTEjχ+ (P− − P1i)χ
TErχ

>
P0i

v
y2 + P1i

(
y − y2

v

)
+ (P− − P1i)χ

TErχ.

Rearranging shows the claim.

The following is surely folklore; see for example the proof of Theorem 2 in [5] for a
mostly identical statement.

Lemma 11. Let χ be the characteristic vector of a non-empty subset Y of X, where
y = |Y |. Let Er be the orthogonal projection matrix onto the eigenspaces orthogonal to
〈j〉+ V1. Let P− be the smallest eigenvalue of Ai. Then there exists a T ∈ Y such that at
least

P0i − P1i

v
y + P1i + (P− − P1i)χ

TErχ/y

elements of Y are in relation Ri to T .

Proof. As in the proof of Lemma 10 we obtain

χTAiχ =
P0i − P1i

v
y2 + P1iy + (P− − P1i)χ

TErχ.

Now averaging shows the claim.
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In the Grassmann scheme Jq(n, k) the set of all k-spaces of Fnq is X and two subspaces
x and y are in relation Ri if their intersection is a subspace of dimension k − i. Clearly,
Rk corresponds to adjacency in qK2k:k. The eigenvalues Pij of the Grassmann scheme are
well-known. There are two useful formulas, one due to Delsarte [4] and one due to Eisfeld
[6]:

Pij =
i∑

h=0

(−1)i−hqhj+(i−h
2 )
[
k − j
h

][
k − h
i− h

][
n− k − j + h

h

]
(1)

=

j∑
h=0

(−1)j−hqi(i−j+h)+(j−h
2 )
[
j

h

][
k − h
i

][
n− k − j + h

n− k − i

]
. (2)

3 The Weak Hilton-Milner Theorem

We rely on the following result by Tokushige. Here a pair (Y, Z), Y, Z ⊆ X is a cross-
intersecting family if all elements in Y intersect all elements of Z non-trivially. Similarly,
throughout this section we call an independent set of qK2k:k an intersecting family.

Theorem 12 (Tokushige (2013)). Let (Y, Z) be a cross-intersecting family of qKn:k. Then

|Y | · |Z| 6
[
n− 1

k − 1

]2
.

For the rest of the section, set y = (1 + 3q−1)
[
k
1

][
2k−2
k−2

]
. We also assume that k > 3

as the case k = 3 was taken care of in [2], and that Y is not a dictator or the dual of a
dictator.

3.1 Proof of Theorem 5

Lemma 13. Let ` be a line in Fnq . Let Z be a set of k-spaces which meet ` in a fixed point

p. Set Z ′ = {〈z, `〉/` : z ∈ Z}. Then |Z ′| > |Z|/
[
k
1

]
.

Proof. Let C be a complement of ` in Fnq . For z ∈ Z we have that 〈z, `〉 meets C in

a (k − 1)-space z′ as dim(C) = n − 2 and dim(〈z, `〉) = k + 1. There are at most
[
k
1

]
k-spaces z̃ through p in 〈z′, `〉. Hence, at most

[
k
1

]
k-spaces in Z correspond to the same

(k − 1)-space in Z ′.

Lemma 14. Let k > 5 and q > 3. Let Y be an intersecting family of qK2k:k of size at
least y, then no point lies in more than (q3−k

[
k
1

]
+ 1)

[
2k−2
k−2

]
elements of Y .

Proof. First we show that no point p1 lies on more than
[
k
1

][
2k−2
k−2

]
elements of Y . This is

clear as otherwise there is a T ∈ Y with p1 /∈ T . We want to bound the number of R ∈ Y
with p1 ∈ R. We have

[
k
1

]
choices for one point p′ in R ∩ T and then

[
2k−2
k−2

]
choices for

choosing the k-space R through 〈p1, p′〉. Hence, there are at most
[
k
1

][
2k−2
k−2

]
elements of Y

on p1.
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We continue by showing that if one point p1 lies in at least (q−α
[
k
1

]
+1)

[
2k−2
k−2

]
elements

of Y , then all other points lie in at most (1 + q−1)qα+1
[
2k−3
k−2

]
elements of Y which are not

on p1.
Suppose to the contrary that there are two points p1 and p2 such that p1 lies in at

least (q−1
[
k
1

]
+ 1)

[
2k−2
k−2

]
elements of Y . Let Z1, respectively, Z2 denote the elements of Y

on p1, respectively, p2. Let ` be 〈p1, p2〉. Let Z ′i = {〈`, z〉/` : z ∈ Zi and not ` ⊆ z} for
i ∈ {1, 2}. Let x be the number of elements of Y containing `. By Lemma 13, we conclude
that |Z ′i| > (|Zi| − x)/

[
k
1

]
and (Z1, Z2) is a cross-intersecting family of (k − 1)-spaces in

F2k−2
q . Notice that x 6

[
2k−2
k−2

]
, so |Z1| − x > q−α

[
k
1

][
2k−2
k−2

]
. By Theorem 12, we obtain

q−α
[
k

1

][
2k − 2

k − 2

]
· (|Z2| − x) 6

[
k

1

]2[
2k − 3

k − 2

]2
.

For q > 3, this simplifies to

|Z2| − x 6 qα
qk − 1

q2k−2 − 1

[
k

1

][
2k − 3

k − 2

]
6 (1 + q−1)qα+1

[
2k − 3

k − 2

]
=: b.

Let R ∈ Y . As no point on R except for p1 lies in more than b elements of Y , R has
[
k
1

]
points and all elements of Y meet R in at least one point, we have

(|Y | − |Z1|)/
([
k

1

][
2k − 2

k − 2

])
6

qk − 1

q2k−2 − 1
· (1 + q−1)qα+1 6 (1 + q−1)q3+α−k.

Suppose that no point p1 lies in at least q−α+1
[
k
1

][
2k−2
k−2

]
> (q−α

[
k
1

]
+ 1)

[
2k−2
k−2

]
elements of

Y . Then

|Y |/
([
k

1

][
2k − 2

k − 2

])
6 q−α+1 + (1 + q−1)q3+α−k.

Recall that we can assume that α > 1 as p1 lies in at most
[
k
1

][
2k−2
k−2

]
elements of Y . For

k > 5 and α > 1, this is less than 1 + 3q−1, a contradiction as long as 3 + α − k 6 0.
Hence, we can choose α = k − 3 which shows the assertion.

Lemma 15. Let either k > 5 and q > 3, or k > 6 and q > 5. Let Y be an intersecting
family of qK2k:k of size at least y. Then there are no points p1 and p2 such that the number
of elements of Y on p1 and the number of elements of Y on p2 is at least

(1− 2q3−k − 2q1−k)y/

[
k − 1

1

]
.

Proof. Let Z1, respectively, Z2 denote the elements of Y on p1, respectively, p2. Set z1 =
|Z1| and z2 = |Z2| (we assume z1 > z2). Suppose that z1, z2 > (1− 2q3−k− 2q1−k)y/

[
k−1
1

]
.

Set ` = 〈p1, p2〉. Let Z ′i = {〈`, z〉/` : z ∈ Zi and not ` ⊆ z} for i ∈ {1, 2}. As ` contains
at most

[
2k−2
k−2

]
elements of Y , we conclude, using Lemma 13, that |Z ′i| > (zi−

[
2k−2
k−2

]
)/
[
k
1

]
.
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As Y is an intersecting family, (Z1, Z2) is a cross-intersecting family of (k − 1)-sets in
F2k−2
q . By the bound in Theorem 12, taking the square root and rearranging, we obtain

(1− 2q3−k − 2q1−k)y/

[
k − 1

1

]
−
[
2k − 2

k − 2

]
6 z2 −

[
2k − 2

k − 2

]
6

[
k

1

][
2k − 3

k − 2

]
.

By using y = (1 + 3q−1)
[
k
1

][
2k−2
k−2

]
and rearranging, we obtain

(1− 2q3−k − 2q1−k)(1 + 3q−1) 6
qk−1 − 1

q − 1
· qk − 1

q2k−2 − 1
+
qk−1 − 1

qk − 1
.

This is easily verified to be a contradiction under the conditions on k and q.

Lemma 16. Let either k > 5 and q > 3, or k > 6 and q > 5. Let Y be an intersecting
family of qK2k:k of size at least y. Let s be the dimension of a smallest subspace meeting
all elements of Y . Then s ∈ {1, k}.

Proof. Let S be a subspace meeting all elements of Y . We suppose that 1 < dim(S) < k
and will arrive at a contradiction, so suppose that dim(S) = k − 1 from now on. Let
p1 and p2 the points in S which lie on the most elements of Y . Let Z1, respectively, Z2

denote the elements of Y on p1, respectively, p2. Set z1 = |Z1| and z2 = |Z2| (we assume
z1 > z2). By Lemma 14, z1 6 (q3−k + q1−k)

[
k
1

][
2k−2
k−2

]
. Clearly,

z2 > (y − z1)/
[
k − 1

1

]
>

(
y − (q3−k + q1−k)

[
k

1

][
2k − 2

k − 2

])
.

Hence, z2 > (1 − q3−k − q1−k)y/
[
k−1
1

]
. By Lemma 15, this is a contradiction. Hence,

s ∈ {1, k}.

By duality, we obtain the following:

Corollary 17. Let either k > 5 and q > 3, or k > 6 and q > 5. Let Y be an intersecting
family of qK2k:k of size at least y. Let s′ be the dimension of a largest subspace S such
that the hyperplanes through S contain all elements of Y . Then s′ ∈ {2k − 1, k}.

Hence, in the notation of Lemma 16 and Corollary 17,

(s, s′) ∈ {(1, 2k − 1), (1, k), (k, 2k − 1), (k, k)}.

If s = 1, then all elements of Y lies on a fixed point, so Y is a subset of a dictator.
Similarly, if s = 2k − 1, then all elements of Y lie in a fixed, so is a subset of the dual of
a dictator. Hence, we only need to rule out the case (s, s′) = (k, k).

Lemma 18. Let Y be an intersecting family of qK2k:k of size at least y. Then an element
in Y meets more than

[
k
1

][
k−1
1

]
elements of Y in a (k − 1)-space.
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Proof. We assume without loss of generality that y = |Y |. By Equation (1), we have
P0k = qk

2
, P1k = −qk(k−1) as the smallest eigenvalue and P3k = −qk(k−3)+3 as the second

smallest eigenvalue of Ak. By Lemma 10,

(P3k − P1k)χ
TErχ 6 y(−P1k −

P0k − P1k

v
y).

We have

−P1k − P0k−P1k

v
y

P3k − P1k

=
qk(k−1) − qk2(1 + q−k)y/

[
2k
k

]
qk(k−1)(1− q−2k+3)

=
1− qk(1 + q−k)y/

[
2k
k

]
1− q−2k+3

=
1− qk(1 + q−k)(1 + 3q−1) (qk−1)2(qk−1−1)

(q−1)(q2k−1)(q2k−1−1)

1− q−2k+3

6
1− q−1(1 + q−k)(1 + 3q−1)(1 + q−1)

1− q−2k+3
6 1− q−1 − 4q−2.

Hence, χTErχ 6 y(1 − q−1 − 4q−2). We want to apply Lemma 11 for i = 1, so we want
to show that

P01 − P11

v
y + P11(q

−1 + 4q−2) + P−(1− q−1 − 4q−2)

is larger than
[
k−1
1

][
k
1

]
. By Equation (2), P− = −

[
k
1

]
, P01 =

[
k+1
1

][
k
1

]
−
[
k
1

]
= q

[
k
1

]2
and

P11 = q
[
k
1

][
k−1
1

]
−
[
k
1

]
= q2

[
k−2
1

][
k
1

]
− 1. Hence, we find

P11(q
−1 + 4q−2) > (q + 4)

[
k

1

][
k − 2

1

]
− 2q−1.

and

P−(1− q−1 − 4q−2) 6 P− 6

[
k

1

]
.

Hence, as k > 4, x meets at least (q + 3)
[
k
1

][
k−2
1

]
elements of Y in a (k − 1)-space. It is

easily verified that (q + 3)
[
k−2
1

]
>
[
k−1
1

]
.

Proof of Theorem 5. As noted before, we only have to rule out that (s, s′) = (k, k) occurs,
so suppose that (s, s′) = (k, k). By Lemma 18, we can find a k-space R′ ∈ Y which meets
more than

[
k
1

][
k−1
1

]
elements of Y in a (k−1)-space. By averaging over the

[
k
1

]
(k−1)-spaces

of R′, we find a (k−1)-space R that lies in more than
[
k−1
1

]
elements of Y . As s = k, R is

disjoint to one element T ∈ Y . Let H = 〈R, T 〉. Set Z = {S ∈ Y : dim(S ∩H) = k − 1}.
As there are more than

[
k−1
1

]
elements through R, which are all contained in H, all
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elements in Z meet R non-trivially. By the dual of Lemma 14, H contains at most
(q3−k + q1−k)

[
k
1

][
2k−2
k−2

]
elements of Y . Hence,

|Z| > (1− q3−k − q1−k)y.

By averaging, we find a point p1 on at least

z1 = (1− q3−k − q1−k)y/
[
k − 1

1

]
elements of Z and a point p2 in at least

z2 = (1− 2q3−k − 2q1−k)y/

[
k − 1

1

]
elements of Z. By Lemma 15, this is a contradiction. Hence, (s, s′) = (k, k) does not
occur and the proof is complete.

3.2 Proof of Theorem 6

Now y = 3
[
k
1

][
2k−2
k−2

]
. For this case the proof is nearly identical to the proof of Theorem

5. Instead of Lemma 14, we just use the crude bound that no point lies on more than[
k
1

][
2k−2
k−2

]
elements of Y . The key difference is that we can replace Lemma 15 with the

following.

Lemma 19. Let k > 4. Let Y be an intersecting family of qK2k:k of size at least y. Then
there are no points p1 and p2 such that the number of elements of Y on p1 or the number
of elements of Y on p2 is more than

1

3
y/

[
k − 1

1

]
.

Proof. Our setup is as in the proof of Lemma 15, just that this time the resulting inequality
is

1

3
y/

[
k − 1

1

]
−
[
2k − 2

k − 2

]
6 z2 −

[
2k − 2

k − 2

]
6

[
k

1

][
2k − 3

k − 2

]
.

By using y = 3
[
k
1

][
2k−2
k−2

]
and rearranging, we obtain

qk − 1

qk−1 − 1
6 1 +

qk − 1

q2k−2 − 1
· q

k − 1

q − 1
.

This is a contradiction. The assertion follows.

From here on it is easy to copy the steps which we took for the proof of Theorem 5,
replacing Lemma 14 and Lemma 15 accordingly.
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4 The Chromatic Number

In [2, p. 192] it was established that if qk + qk−1 is not the chromatic number and f is the
size of the largest independent set which is not contained in a dictator or its dual, then

(qk − qk−1)
[
2k − 1

k − 1

]
qk−1 − f

[
k

1

][
k + 1

1

]
< ε

(
2f −

[
2k − 1

k − 1

])
. (3)

for some ε > 0. By Theorem 5,

2f/

[
2k − 1

k − 1

]
6 2(1 + 3q−1) · q

k − 1

q − 1
· q

k−1 − 1

q2k−1 − 1
.

For q > 5 this is easily verified to be less than 1 and therefore the right hand side of
Equation (3) is negative. Similarly,

f
[
k
1

][
k+1
1

]
(qk − qk−1)

[
2k−1
k−1

]
qk−1

6
qk−1 − 1

q2k−1 − 1
· (qk − 1)2(qk+1 − 1)

(q2k−1 − qk−1)(q − 1)3
< 1,

so the left hand side of Equation (3) is positive. As this is a contradiction, we have shown
Theorem 3. Note that [2, Proposition 5.1] gives a characterization of the case of equality.

Theorem 8 is a simple consequence of replacing Theorem 4 with Theorem 5 in the
proof of Theorem 7. See [16] for details.

5 Future Work

Clearly, the most urgent open cases are the determination of the chromatic number qK2k:k

for q = 2, 3, 4. For q = 3, 4 it is sufficient to obtain slightly better stability type results
which show f 6

[
k
1

][
2k−2
k−2

]
as then 2f <

[
2k−1
k−1

]
. For q = 2 the current approach of

determining the chromatic number cannot work as there are examples very close in size
to a dictator and its dual.

Classical polar spaces are the geometries induced by non-degenerate sesquilinear forms
onto Fnq . There are currently barely any stability results known for intersecting families of
maximals of finite classical polar spaces in literature and there is an interesting diversity
of largest families [19], similar to qK2k:k. Results for cross-intersecting families are known
for finite classical polar spaces [13], so it might be feasible to determine their chromatic
number in a similar fashion.
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